Abstract

A polymer-based micromachined Fabry-Perot interferometer (µFPI) with embedded nanostructures in its cavity, called nanostructured-FPI, is reported. The nanostructures inside the cavity are a layer of Au-coated nanopores. As a refractive-index sensitive optical sensor, it offers the following advantages over a traditional µFPI for label-free biosensing applications, including increased sensing surface area, extended penetration depth of the excitation light and amplified optical transducing signals. For a nanostructured-FPI with nanopore size of 50 nm in diameter and the gap size of FPI cavity of 50 µm, measurements find that it has ~20 times improvement in free spectral range (FSR), ~2 times improvement in finesse and ~4 times improvement in contrast of optical transducing signals over a traditional µFPI even without any device performance optimization. Several chemicals have also been evaluated using this device. Fourier transform has been performed on the measured optical signals to facilitate the analysis of the transducing signals.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Ramachandran, D. N. Larson, P. R. Stark, E. Hainsworth, and J. LaBaer, “Emerging tools for real-time label-free detection of interactions on functional protein microarrays,” FEBS J. 272(21), 5412–5425 (2005).
    [CrossRef] [PubMed]
  2. R. Karlsson, “SPR for molecular interaction analysis: a review of emerging application areas,” J. Mol. Recognit. 17(3), 151–161 (2004).
    [CrossRef] [PubMed]
  3. C. Haynes, A. McFarland, and R. Van Duyne, “Surface-enhanced Raman spectroscopy,” Anal. Chem. 4, 338–346 (2005).
  4. J. Zhao, X. Zhang, C. R. Yonzon, A. J. Haes, and R. P. Van Duyne, “Localized surface plasmon resonance biosensors,” Nanomedicine (Lond) 1(2), 219–228 (2006).
    [CrossRef]
  5. I. White, H. Oveys, X. Fan, T. Smith, and J. Zhang, “Integrated multiplexed biosensors based on liquid core optical ring resonators and anti-resonant reflecting optical waveguides,” Appl. Phys. Lett. 89(19), 191106 (2006).
    [CrossRef]
  6. S. Mandal and D. Erickson, “Nanoscale optofluidic sensor arrays,” Opt. Express 16(3), 1623–1631 (2008).
    [CrossRef] [PubMed]
  7. C. Wang, B. Wherrett, and T. Harvey, “Fabrication and characterization of a 4×4 array of asymmetric Fabry-Perot reflection modulators,” Electron. Lett. 30(15), 1219–1220 (1994).
    [CrossRef]
  8. N. Hall and F. Degertekin, “Integrated optical interferometric detection method for micromachined capacitive acoustic transducers,” Appl. Phys. Lett. 80(20), 3859–3861 (2002).
    [CrossRef]
  9. J. Han, “Fabry-Perot cavity chemical sensors by silicon micromachining techniques,” Appl. Phys. Lett. 74(3), 445–447 (1999).
    [CrossRef]
  10. L. Que, “Two-dimensional tunable filter array for a matrix of integrated fiber optic input-output light channels,” US Patent 6,449,410, 2002.
  11. M. Blomberg, O. Rusanen, K. Keranen, and A. Lethto, “A silicon microsystem-miniaturized infrared spectrometer,” Proc. 9th Int. Conf. On Solid-state Sensors, Actuators and Microsystems (Transducers’97), 1257–1258 (1997)
  12. N. Neumann, M. Ebermann, K. Hiller, and S. Kurth, “Tunable infrared detector with integrated micromachined Fabry-Perot filter,” Proc. SPIE 6466, 646606 (2007).
    [CrossRef]
  13. L. Que, A. Zribi, A. Banerjee, and D. Hays, “Raman system on a chip,” US Patent #7,505,128.
  14. T. Dohi, K. Matsumoto, and I. Shimoyama, “The optical blood test device with the micro Fabry-Perot interferometer,” Proceedings of IEEE MEMS, 403–406 (2004).
  15. T. Dohi, K. Matsumoto, and I. Shimoyama, “The micro Fabry-Perot interferometer for the spectral endoscope,” Proceedings of IEEE MEMS, 830–833(2005).
  16. K. M. van Delft, J. C. Eijkel, D. Mijatovic, T. S. Druzhinina, H. Rathgen, N. R. Tas, A. van den Berg, and F. Mugele, “Micromachined Fabry-Pérot interferometer with embedded nanochannels for nanoscale fluid dynamics,” Nano Lett. 7(2), 345–350 (2007).
    [CrossRef] [PubMed]
  17. Y. Zhang, H. Shibru, K. L. Cooper, and A. Wang, “Miniature fiber-optic multicavity Fabry-Perot interferometric biosensor,” Opt. Lett. 30(9), 1021–1023 (2005).
    [CrossRef] [PubMed]
  18. J. Liu, Y. Sun, and X. Fan, “Highly versatile fiber-based optical Fabry-Pérot gas sensor,” Opt. Express 17(4), 2731–2738 (2009).
    [CrossRef] [PubMed]
  19. T. Zhang, Z. Gong, and L. Que, “A white-light source operated polymer-based micromachined Fabry-Perot chemo/biosensor,” Proc. of IEEE Intl. Conf. on NEMS, 177–180 (2009).
  20. T. Zhang, S. Talla, Z. Gong, S. Karandikar, R. Giorno, and L. Que, “Biochemical sensing with a polymer-based micromachined Fabry-Perot sensor,” Opt. Express 18(17), 18394–18400 (2010).
    [CrossRef] [PubMed]
  21. T. Zhang, Z. Gong, R. Giorno, and L. Que, “Signal sensitivity and intensity enhancement for a polymer-based Fabry-Perot interferometer with embedded nanostructures in its cavity,” Proceeding of 15th International Conference on Solid-State Sensors, Actuators & Microsystems (Transducers'09), 2310–2313(2009).
  22. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
    [CrossRef] [PubMed]
  23. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
    [CrossRef] [PubMed]
  24. T. L. Williamson, X. Guo, A. Zukoski, A. Sood, D. J. Díaz, and P. W. Bohn, “Porous GaN as a template to produce surface-enhanced Raman scattering-active surfaces,” J. Phys. Chem. B 109(43), 20186–20191 (2005).
    [CrossRef]
  25. H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science 268(5216), 1466–1468 (1995).
    [CrossRef] [PubMed]
  26. J. W. Goodman, Introduction to Fourier Optics (Roberts & Company Publishers, 2005).

2010 (1)

2009 (1)

2008 (2)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

S. Mandal and D. Erickson, “Nanoscale optofluidic sensor arrays,” Opt. Express 16(3), 1623–1631 (2008).
[CrossRef] [PubMed]

2007 (2)

N. Neumann, M. Ebermann, K. Hiller, and S. Kurth, “Tunable infrared detector with integrated micromachined Fabry-Perot filter,” Proc. SPIE 6466, 646606 (2007).
[CrossRef]

K. M. van Delft, J. C. Eijkel, D. Mijatovic, T. S. Druzhinina, H. Rathgen, N. R. Tas, A. van den Berg, and F. Mugele, “Micromachined Fabry-Pérot interferometer with embedded nanochannels for nanoscale fluid dynamics,” Nano Lett. 7(2), 345–350 (2007).
[CrossRef] [PubMed]

2006 (2)

J. Zhao, X. Zhang, C. R. Yonzon, A. J. Haes, and R. P. Van Duyne, “Localized surface plasmon resonance biosensors,” Nanomedicine (Lond) 1(2), 219–228 (2006).
[CrossRef]

I. White, H. Oveys, X. Fan, T. Smith, and J. Zhang, “Integrated multiplexed biosensors based on liquid core optical ring resonators and anti-resonant reflecting optical waveguides,” Appl. Phys. Lett. 89(19), 191106 (2006).
[CrossRef]

2005 (4)

Y. Zhang, H. Shibru, K. L. Cooper, and A. Wang, “Miniature fiber-optic multicavity Fabry-Perot interferometric biosensor,” Opt. Lett. 30(9), 1021–1023 (2005).
[CrossRef] [PubMed]

T. L. Williamson, X. Guo, A. Zukoski, A. Sood, D. J. Díaz, and P. W. Bohn, “Porous GaN as a template to produce surface-enhanced Raman scattering-active surfaces,” J. Phys. Chem. B 109(43), 20186–20191 (2005).
[CrossRef]

N. Ramachandran, D. N. Larson, P. R. Stark, E. Hainsworth, and J. LaBaer, “Emerging tools for real-time label-free detection of interactions on functional protein microarrays,” FEBS J. 272(21), 5412–5425 (2005).
[CrossRef] [PubMed]

C. Haynes, A. McFarland, and R. Van Duyne, “Surface-enhanced Raman spectroscopy,” Anal. Chem. 4, 338–346 (2005).

2004 (1)

R. Karlsson, “SPR for molecular interaction analysis: a review of emerging application areas,” J. Mol. Recognit. 17(3), 151–161 (2004).
[CrossRef] [PubMed]

2002 (1)

N. Hall and F. Degertekin, “Integrated optical interferometric detection method for micromachined capacitive acoustic transducers,” Appl. Phys. Lett. 80(20), 3859–3861 (2002).
[CrossRef]

1999 (1)

J. Han, “Fabry-Perot cavity chemical sensors by silicon micromachining techniques,” Appl. Phys. Lett. 74(3), 445–447 (1999).
[CrossRef]

1997 (1)

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

1995 (1)

H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science 268(5216), 1466–1468 (1995).
[CrossRef] [PubMed]

1994 (1)

C. Wang, B. Wherrett, and T. Harvey, “Fabrication and characterization of a 4×4 array of asymmetric Fabry-Perot reflection modulators,” Electron. Lett. 30(15), 1219–1220 (1994).
[CrossRef]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

Bohn, P. W.

T. L. Williamson, X. Guo, A. Zukoski, A. Sood, D. J. Díaz, and P. W. Bohn, “Porous GaN as a template to produce surface-enhanced Raman scattering-active surfaces,” J. Phys. Chem. B 109(43), 20186–20191 (2005).
[CrossRef]

Cooper, K. L.

Degertekin, F.

N. Hall and F. Degertekin, “Integrated optical interferometric detection method for micromachined capacitive acoustic transducers,” Appl. Phys. Lett. 80(20), 3859–3861 (2002).
[CrossRef]

Díaz, D. J.

T. L. Williamson, X. Guo, A. Zukoski, A. Sood, D. J. Díaz, and P. W. Bohn, “Porous GaN as a template to produce surface-enhanced Raman scattering-active surfaces,” J. Phys. Chem. B 109(43), 20186–20191 (2005).
[CrossRef]

Druzhinina, T. S.

K. M. van Delft, J. C. Eijkel, D. Mijatovic, T. S. Druzhinina, H. Rathgen, N. R. Tas, A. van den Berg, and F. Mugele, “Micromachined Fabry-Pérot interferometer with embedded nanochannels for nanoscale fluid dynamics,” Nano Lett. 7(2), 345–350 (2007).
[CrossRef] [PubMed]

Ebermann, M.

N. Neumann, M. Ebermann, K. Hiller, and S. Kurth, “Tunable infrared detector with integrated micromachined Fabry-Perot filter,” Proc. SPIE 6466, 646606 (2007).
[CrossRef]

Eijkel, J. C.

K. M. van Delft, J. C. Eijkel, D. Mijatovic, T. S. Druzhinina, H. Rathgen, N. R. Tas, A. van den Berg, and F. Mugele, “Micromachined Fabry-Pérot interferometer with embedded nanochannels for nanoscale fluid dynamics,” Nano Lett. 7(2), 345–350 (2007).
[CrossRef] [PubMed]

Emory, S. R.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

Erickson, D.

Fan, X.

J. Liu, Y. Sun, and X. Fan, “Highly versatile fiber-based optical Fabry-Pérot gas sensor,” Opt. Express 17(4), 2731–2738 (2009).
[CrossRef] [PubMed]

I. White, H. Oveys, X. Fan, T. Smith, and J. Zhang, “Integrated multiplexed biosensors based on liquid core optical ring resonators and anti-resonant reflecting optical waveguides,” Appl. Phys. Lett. 89(19), 191106 (2006).
[CrossRef]

Fukuda, K.

H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science 268(5216), 1466–1468 (1995).
[CrossRef] [PubMed]

Giorno, R.

Gong, Z.

Guo, X.

T. L. Williamson, X. Guo, A. Zukoski, A. Sood, D. J. Díaz, and P. W. Bohn, “Porous GaN as a template to produce surface-enhanced Raman scattering-active surfaces,” J. Phys. Chem. B 109(43), 20186–20191 (2005).
[CrossRef]

Haes, A. J.

J. Zhao, X. Zhang, C. R. Yonzon, A. J. Haes, and R. P. Van Duyne, “Localized surface plasmon resonance biosensors,” Nanomedicine (Lond) 1(2), 219–228 (2006).
[CrossRef]

Hainsworth, E.

N. Ramachandran, D. N. Larson, P. R. Stark, E. Hainsworth, and J. LaBaer, “Emerging tools for real-time label-free detection of interactions on functional protein microarrays,” FEBS J. 272(21), 5412–5425 (2005).
[CrossRef] [PubMed]

Hall, N.

N. Hall and F. Degertekin, “Integrated optical interferometric detection method for micromachined capacitive acoustic transducers,” Appl. Phys. Lett. 80(20), 3859–3861 (2002).
[CrossRef]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

Han, J.

J. Han, “Fabry-Perot cavity chemical sensors by silicon micromachining techniques,” Appl. Phys. Lett. 74(3), 445–447 (1999).
[CrossRef]

Harvey, T.

C. Wang, B. Wherrett, and T. Harvey, “Fabrication and characterization of a 4×4 array of asymmetric Fabry-Perot reflection modulators,” Electron. Lett. 30(15), 1219–1220 (1994).
[CrossRef]

Haynes, C.

C. Haynes, A. McFarland, and R. Van Duyne, “Surface-enhanced Raman spectroscopy,” Anal. Chem. 4, 338–346 (2005).

Hiller, K.

N. Neumann, M. Ebermann, K. Hiller, and S. Kurth, “Tunable infrared detector with integrated micromachined Fabry-Perot filter,” Proc. SPIE 6466, 646606 (2007).
[CrossRef]

Karandikar, S.

Karlsson, R.

R. Karlsson, “SPR for molecular interaction analysis: a review of emerging application areas,” J. Mol. Recognit. 17(3), 151–161 (2004).
[CrossRef] [PubMed]

Kurth, S.

N. Neumann, M. Ebermann, K. Hiller, and S. Kurth, “Tunable infrared detector with integrated micromachined Fabry-Perot filter,” Proc. SPIE 6466, 646606 (2007).
[CrossRef]

LaBaer, J.

N. Ramachandran, D. N. Larson, P. R. Stark, E. Hainsworth, and J. LaBaer, “Emerging tools for real-time label-free detection of interactions on functional protein microarrays,” FEBS J. 272(21), 5412–5425 (2005).
[CrossRef] [PubMed]

Larson, D. N.

N. Ramachandran, D. N. Larson, P. R. Stark, E. Hainsworth, and J. LaBaer, “Emerging tools for real-time label-free detection of interactions on functional protein microarrays,” FEBS J. 272(21), 5412–5425 (2005).
[CrossRef] [PubMed]

Liu, J.

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

Mandal, S.

Masuda, H.

H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science 268(5216), 1466–1468 (1995).
[CrossRef] [PubMed]

McFarland, A.

C. Haynes, A. McFarland, and R. Van Duyne, “Surface-enhanced Raman spectroscopy,” Anal. Chem. 4, 338–346 (2005).

Mijatovic, D.

K. M. van Delft, J. C. Eijkel, D. Mijatovic, T. S. Druzhinina, H. Rathgen, N. R. Tas, A. van den Berg, and F. Mugele, “Micromachined Fabry-Pérot interferometer with embedded nanochannels for nanoscale fluid dynamics,” Nano Lett. 7(2), 345–350 (2007).
[CrossRef] [PubMed]

Mugele, F.

K. M. van Delft, J. C. Eijkel, D. Mijatovic, T. S. Druzhinina, H. Rathgen, N. R. Tas, A. van den Berg, and F. Mugele, “Micromachined Fabry-Pérot interferometer with embedded nanochannels for nanoscale fluid dynamics,” Nano Lett. 7(2), 345–350 (2007).
[CrossRef] [PubMed]

Neumann, N.

N. Neumann, M. Ebermann, K. Hiller, and S. Kurth, “Tunable infrared detector with integrated micromachined Fabry-Perot filter,” Proc. SPIE 6466, 646606 (2007).
[CrossRef]

Nie, S.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

Oveys, H.

I. White, H. Oveys, X. Fan, T. Smith, and J. Zhang, “Integrated multiplexed biosensors based on liquid core optical ring resonators and anti-resonant reflecting optical waveguides,” Appl. Phys. Lett. 89(19), 191106 (2006).
[CrossRef]

Que, L.

Ramachandran, N.

N. Ramachandran, D. N. Larson, P. R. Stark, E. Hainsworth, and J. LaBaer, “Emerging tools for real-time label-free detection of interactions on functional protein microarrays,” FEBS J. 272(21), 5412–5425 (2005).
[CrossRef] [PubMed]

Rathgen, H.

K. M. van Delft, J. C. Eijkel, D. Mijatovic, T. S. Druzhinina, H. Rathgen, N. R. Tas, A. van den Berg, and F. Mugele, “Micromachined Fabry-Pérot interferometer with embedded nanochannels for nanoscale fluid dynamics,” Nano Lett. 7(2), 345–350 (2007).
[CrossRef] [PubMed]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

Shibru, H.

Smith, T.

I. White, H. Oveys, X. Fan, T. Smith, and J. Zhang, “Integrated multiplexed biosensors based on liquid core optical ring resonators and anti-resonant reflecting optical waveguides,” Appl. Phys. Lett. 89(19), 191106 (2006).
[CrossRef]

Sood, A.

T. L. Williamson, X. Guo, A. Zukoski, A. Sood, D. J. Díaz, and P. W. Bohn, “Porous GaN as a template to produce surface-enhanced Raman scattering-active surfaces,” J. Phys. Chem. B 109(43), 20186–20191 (2005).
[CrossRef]

Stark, P. R.

N. Ramachandran, D. N. Larson, P. R. Stark, E. Hainsworth, and J. LaBaer, “Emerging tools for real-time label-free detection of interactions on functional protein microarrays,” FEBS J. 272(21), 5412–5425 (2005).
[CrossRef] [PubMed]

Sun, Y.

Talla, S.

Tas, N. R.

K. M. van Delft, J. C. Eijkel, D. Mijatovic, T. S. Druzhinina, H. Rathgen, N. R. Tas, A. van den Berg, and F. Mugele, “Micromachined Fabry-Pérot interferometer with embedded nanochannels for nanoscale fluid dynamics,” Nano Lett. 7(2), 345–350 (2007).
[CrossRef] [PubMed]

van Delft, K. M.

K. M. van Delft, J. C. Eijkel, D. Mijatovic, T. S. Druzhinina, H. Rathgen, N. R. Tas, A. van den Berg, and F. Mugele, “Micromachined Fabry-Pérot interferometer with embedded nanochannels for nanoscale fluid dynamics,” Nano Lett. 7(2), 345–350 (2007).
[CrossRef] [PubMed]

van den Berg, A.

K. M. van Delft, J. C. Eijkel, D. Mijatovic, T. S. Druzhinina, H. Rathgen, N. R. Tas, A. van den Berg, and F. Mugele, “Micromachined Fabry-Pérot interferometer with embedded nanochannels for nanoscale fluid dynamics,” Nano Lett. 7(2), 345–350 (2007).
[CrossRef] [PubMed]

Van Duyne, R.

C. Haynes, A. McFarland, and R. Van Duyne, “Surface-enhanced Raman spectroscopy,” Anal. Chem. 4, 338–346 (2005).

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

J. Zhao, X. Zhang, C. R. Yonzon, A. J. Haes, and R. P. Van Duyne, “Localized surface plasmon resonance biosensors,” Nanomedicine (Lond) 1(2), 219–228 (2006).
[CrossRef]

Wang, A.

Wang, C.

C. Wang, B. Wherrett, and T. Harvey, “Fabrication and characterization of a 4×4 array of asymmetric Fabry-Perot reflection modulators,” Electron. Lett. 30(15), 1219–1220 (1994).
[CrossRef]

Wherrett, B.

C. Wang, B. Wherrett, and T. Harvey, “Fabrication and characterization of a 4×4 array of asymmetric Fabry-Perot reflection modulators,” Electron. Lett. 30(15), 1219–1220 (1994).
[CrossRef]

White, I.

I. White, H. Oveys, X. Fan, T. Smith, and J. Zhang, “Integrated multiplexed biosensors based on liquid core optical ring resonators and anti-resonant reflecting optical waveguides,” Appl. Phys. Lett. 89(19), 191106 (2006).
[CrossRef]

Williamson, T. L.

T. L. Williamson, X. Guo, A. Zukoski, A. Sood, D. J. Díaz, and P. W. Bohn, “Porous GaN as a template to produce surface-enhanced Raman scattering-active surfaces,” J. Phys. Chem. B 109(43), 20186–20191 (2005).
[CrossRef]

Yonzon, C. R.

J. Zhao, X. Zhang, C. R. Yonzon, A. J. Haes, and R. P. Van Duyne, “Localized surface plasmon resonance biosensors,” Nanomedicine (Lond) 1(2), 219–228 (2006).
[CrossRef]

Zhang, J.

I. White, H. Oveys, X. Fan, T. Smith, and J. Zhang, “Integrated multiplexed biosensors based on liquid core optical ring resonators and anti-resonant reflecting optical waveguides,” Appl. Phys. Lett. 89(19), 191106 (2006).
[CrossRef]

Zhang, T.

Zhang, X.

J. Zhao, X. Zhang, C. R. Yonzon, A. J. Haes, and R. P. Van Duyne, “Localized surface plasmon resonance biosensors,” Nanomedicine (Lond) 1(2), 219–228 (2006).
[CrossRef]

Zhang, Y.

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

J. Zhao, X. Zhang, C. R. Yonzon, A. J. Haes, and R. P. Van Duyne, “Localized surface plasmon resonance biosensors,” Nanomedicine (Lond) 1(2), 219–228 (2006).
[CrossRef]

Zukoski, A.

T. L. Williamson, X. Guo, A. Zukoski, A. Sood, D. J. Díaz, and P. W. Bohn, “Porous GaN as a template to produce surface-enhanced Raman scattering-active surfaces,” J. Phys. Chem. B 109(43), 20186–20191 (2005).
[CrossRef]

Anal. Chem. (1)

C. Haynes, A. McFarland, and R. Van Duyne, “Surface-enhanced Raman spectroscopy,” Anal. Chem. 4, 338–346 (2005).

Appl. Phys. Lett. (3)

I. White, H. Oveys, X. Fan, T. Smith, and J. Zhang, “Integrated multiplexed biosensors based on liquid core optical ring resonators and anti-resonant reflecting optical waveguides,” Appl. Phys. Lett. 89(19), 191106 (2006).
[CrossRef]

N. Hall and F. Degertekin, “Integrated optical interferometric detection method for micromachined capacitive acoustic transducers,” Appl. Phys. Lett. 80(20), 3859–3861 (2002).
[CrossRef]

J. Han, “Fabry-Perot cavity chemical sensors by silicon micromachining techniques,” Appl. Phys. Lett. 74(3), 445–447 (1999).
[CrossRef]

Electron. Lett. (1)

C. Wang, B. Wherrett, and T. Harvey, “Fabrication and characterization of a 4×4 array of asymmetric Fabry-Perot reflection modulators,” Electron. Lett. 30(15), 1219–1220 (1994).
[CrossRef]

FEBS J. (1)

N. Ramachandran, D. N. Larson, P. R. Stark, E. Hainsworth, and J. LaBaer, “Emerging tools for real-time label-free detection of interactions on functional protein microarrays,” FEBS J. 272(21), 5412–5425 (2005).
[CrossRef] [PubMed]

J. Mol. Recognit. (1)

R. Karlsson, “SPR for molecular interaction analysis: a review of emerging application areas,” J. Mol. Recognit. 17(3), 151–161 (2004).
[CrossRef] [PubMed]

J. Phys. Chem. B (1)

T. L. Williamson, X. Guo, A. Zukoski, A. Sood, D. J. Díaz, and P. W. Bohn, “Porous GaN as a template to produce surface-enhanced Raman scattering-active surfaces,” J. Phys. Chem. B 109(43), 20186–20191 (2005).
[CrossRef]

Nano Lett. (1)

K. M. van Delft, J. C. Eijkel, D. Mijatovic, T. S. Druzhinina, H. Rathgen, N. R. Tas, A. van den Berg, and F. Mugele, “Micromachined Fabry-Pérot interferometer with embedded nanochannels for nanoscale fluid dynamics,” Nano Lett. 7(2), 345–350 (2007).
[CrossRef] [PubMed]

Nanomedicine (Lond) (1)

J. Zhao, X. Zhang, C. R. Yonzon, A. J. Haes, and R. P. Van Duyne, “Localized surface plasmon resonance biosensors,” Nanomedicine (Lond) 1(2), 219–228 (2006).
[CrossRef]

Nat. Mater. (1)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Proc. SPIE (1)

N. Neumann, M. Ebermann, K. Hiller, and S. Kurth, “Tunable infrared detector with integrated micromachined Fabry-Perot filter,” Proc. SPIE 6466, 646606 (2007).
[CrossRef]

Science (2)

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science 268(5216), 1466–1468 (1995).
[CrossRef] [PubMed]

Other (8)

J. W. Goodman, Introduction to Fourier Optics (Roberts & Company Publishers, 2005).

T. Zhang, Z. Gong, and L. Que, “A white-light source operated polymer-based micromachined Fabry-Perot chemo/biosensor,” Proc. of IEEE Intl. Conf. on NEMS, 177–180 (2009).

L. Que, A. Zribi, A. Banerjee, and D. Hays, “Raman system on a chip,” US Patent #7,505,128.

T. Dohi, K. Matsumoto, and I. Shimoyama, “The optical blood test device with the micro Fabry-Perot interferometer,” Proceedings of IEEE MEMS, 403–406 (2004).

T. Dohi, K. Matsumoto, and I. Shimoyama, “The micro Fabry-Perot interferometer for the spectral endoscope,” Proceedings of IEEE MEMS, 830–833(2005).

L. Que, “Two-dimensional tunable filter array for a matrix of integrated fiber optic input-output light channels,” US Patent 6,449,410, 2002.

M. Blomberg, O. Rusanen, K. Keranen, and A. Lethto, “A silicon microsystem-miniaturized infrared spectrometer,” Proc. 9th Int. Conf. On Solid-state Sensors, Actuators and Microsystems (Transducers’97), 1257–1258 (1997)

T. Zhang, Z. Gong, R. Giorno, and L. Que, “Signal sensitivity and intensity enhancement for a polymer-based Fabry-Perot interferometer with embedded nanostructures in its cavity,” Proceeding of 15th International Conference on Solid-State Sensors, Actuators & Microsystems (Transducers'09), 2310–2313(2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic of 2 × 2 nanostructured-FPI devices with embedded Au-coated nanopores inside their FPI cavities; (b) Cross-sectional sketch of a nanostructured-FPI and its operational principle: the reflected light is monitored as the transducing signal.

Fig. 2
Fig. 2

Fabrication process flow of the nanostructured FPI device (a) start from polished Aluminum; (b) nanopore (AAO) formed using 2-step anodization process [25]; (c) gold film sputtered on AAO; (d)-(e) PDMS microfluidic channel formation using SU8 mold with soft lithography process; (f) bind PDMS microfluidic channel with the gold thin film coated AAO.

Fig. 3
Fig. 3

(a) Scanning electron microscopy (SEM) image of the nanopore structures inside the FPI cavity; (b) Photo of a fabricated nanostructured FPI sensor shown with a 5-cent coin; (c) close-up SEM image of a bare AAO layer; (d) close-up SEM image of a AAO layer coated with 50 Å Au thin film. Its surface, which consists of Au nano-particles with typical size of 10-20 nm, is much rougher than that of a bare AAO layer. Insets of (c-d) are low magnification SEM images of AAO substrate with arrayed nanopores.

Fig. 4
Fig. 4

Measured output optical signals from a traditional-FPI with Au thin film coated on the planar plate, a nanostructured-FPI with and without Au thin film coating, showing significant signal intensity, resolution and contrast enhancement for the one with Au thin film coating. Air is in the FPI cavity.

Fig. 5
Fig. 5

(a) Measured output optical signals from nanostructured-FPIs with different Au thicknesses, showing similar signal intensity and contrast enhancement. The interference fringes shift up to 8-17 nm with the Au thicknesses change just in the range of tens of angstroms, indicating its great sensitivity; (b) Measured output optical signals of different chemical samples on a nanostructured-FPI device, showing clear shift of the interference fringes. The coated Au thickness is 50 Å; (c) The plot for FT of the figure (a), the EOT changes for Au film with different thickness; (d) The plot for FT of figure (b), clear changes of the EOT are obtained for different chemicals.

Tables (1)

Tables Icon

Table 1 Fringe peak shift and EOT change relative to air for different samples

Metrics