Abstract

We employ an optical vortex beam for the generation of femtosecond supercontinuum in a solid state medium. We demonstrate that the continuum generation process is initiated by the filamentation of the vortex, resulting in a spatially divergent continuum. Despite the strong self-focusing and the formation of multiple hot-spots along the vortex ring, the singularity is preserved in both the near- and far-fields.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
    [CrossRef]
  2. R. R. Alfano, and S. L. Shapiro, “Emission in the region 4000 to 7000 °A via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584–587 (1970).
    [CrossRef]
  3. M. Bellini, and T. W. Hänsch, “Phase-locked white-light continuum pulses: toward a universal optical frequency comb synthesizer,” Opt. Lett. 25, 1049–1051 (2000).
    [CrossRef]
  4. H. I. Sztul, V. Kartazayev, and R. R. Alfano, “Laguerre-Gaussian supercontinuum,” Opt. Lett. 31, 2725–2727 (2006).
    [CrossRef] [PubMed]
  5. D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
    [CrossRef] [PubMed]
  6. G. Foo, D. M. Palacios, and G. A. Swartzlander, Jr., “Optical vortex coronagraph,” Opt. Lett. 30, 3308–3310 (2005).
    [CrossRef]
  7. S. Furhapter, A. Jesacher, S. Bernet, and M. Ritsch Marte, “Spiral interferometry,” Opt. Lett. 30, 1953–1955 (2005).
    [CrossRef] [PubMed]
  8. G. Molina Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3, 305–310 (2007).
    [CrossRef]
  9. T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, “Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography,” Science 324, 913–917 (2009).
    [CrossRef] [PubMed]
  10. A. V. Gorbach, and D. V. Skryabin, “Cascaded generation of multiply charged optical vortices and spatiotemporal helical beams in a raman medium,” Phys. Rev. Lett. 98, 243601 (2007).
    [CrossRef] [PubMed]
  11. A. Berzanskis, A. Matijosius, A. Piskarskas, V. Smilgevicius, and A. Stabinis, “Conversion of topological charge of optical vortices in a parametric frequency converter,” Opt. Commun. 140, 273–276 (1997).
    [CrossRef]
  12. W. J. Firth, and D. V. Skryabin, “Optical solitons carrying orbital angular momentum,” Phys. Rev. Lett. 79, 2450–2453 (1997).
    [CrossRef]
  13. V. Tikhonenko, J. Christou, and B. Luther-Daves, “Spiraling bright spatial solitons formed by the breakup of an optical vortex in a saturable self-focusing medium,” J. Opt. Soc. Am. B 12, 2046–2052 (1995).
    [CrossRef]
  14. L. T. Vuong, T. D. Grow, A. Ishaaya, A. L. Gaeta, G. W. ’t Hooft, E. R. Eliel, and G. Fibich, “Collapse of optical vortices,” Phys. Rev. Lett. 96, 13390 (2006).
    [CrossRef]
  15. A. Brodeour, and S. L. Chin, “Ultrafast white-light continuum generation and self-focusing in transparent condensed media,” J. Opt. Soc. Am. B 16, 637–650 (1999).
    [CrossRef]
  16. A. Vinçotte, and L. Bergé, “Femtosecond optical vortices in air,” Phys. Rev. Lett. 95, 193901 (2005).
    [CrossRef] [PubMed]
  17. I. Buchvarov, A. Trifonov, and T. Fiebig, “Toward an understanding of white-light generation in cubic media-polarization properties across the entire spectral range,” Opt. Lett. 32, 1539–1541 (2007).
    [CrossRef] [PubMed]

2009 (1)

T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, “Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography,” Science 324, 913–917 (2009).
[CrossRef] [PubMed]

2007 (3)

A. V. Gorbach, and D. V. Skryabin, “Cascaded generation of multiply charged optical vortices and spatiotemporal helical beams in a raman medium,” Phys. Rev. Lett. 98, 243601 (2007).
[CrossRef] [PubMed]

I. Buchvarov, A. Trifonov, and T. Fiebig, “Toward an understanding of white-light generation in cubic media-polarization properties across the entire spectral range,” Opt. Lett. 32, 1539–1541 (2007).
[CrossRef] [PubMed]

G. Molina Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3, 305–310 (2007).
[CrossRef]

2006 (3)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

H. I. Sztul, V. Kartazayev, and R. R. Alfano, “Laguerre-Gaussian supercontinuum,” Opt. Lett. 31, 2725–2727 (2006).
[CrossRef] [PubMed]

L. T. Vuong, T. D. Grow, A. Ishaaya, A. L. Gaeta, G. W. ’t Hooft, E. R. Eliel, and G. Fibich, “Collapse of optical vortices,” Phys. Rev. Lett. 96, 13390 (2006).
[CrossRef]

2005 (3)

2003 (1)

D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
[CrossRef] [PubMed]

2000 (1)

1999 (1)

1997 (2)

A. Berzanskis, A. Matijosius, A. Piskarskas, V. Smilgevicius, and A. Stabinis, “Conversion of topological charge of optical vortices in a parametric frequency converter,” Opt. Commun. 140, 273–276 (1997).
[CrossRef]

W. J. Firth, and D. V. Skryabin, “Optical solitons carrying orbital angular momentum,” Phys. Rev. Lett. 79, 2450–2453 (1997).
[CrossRef]

1995 (1)

1970 (1)

R. R. Alfano, and S. L. Shapiro, “Emission in the region 4000 to 7000 °A via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584–587 (1970).
[CrossRef]

’t Hooft, G. W.

L. T. Vuong, T. D. Grow, A. Ishaaya, A. L. Gaeta, G. W. ’t Hooft, E. R. Eliel, and G. Fibich, “Collapse of optical vortices,” Phys. Rev. Lett. 96, 13390 (2006).
[CrossRef]

Alfano, R. R.

H. I. Sztul, V. Kartazayev, and R. R. Alfano, “Laguerre-Gaussian supercontinuum,” Opt. Lett. 31, 2725–2727 (2006).
[CrossRef] [PubMed]

R. R. Alfano, and S. L. Shapiro, “Emission in the region 4000 to 7000 °A via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584–587 (1970).
[CrossRef]

Bellini, M.

Bergé, L.

A. Vinçotte, and L. Bergé, “Femtosecond optical vortices in air,” Phys. Rev. Lett. 95, 193901 (2005).
[CrossRef] [PubMed]

Bernet, S.

Berzanskis, A.

A. Berzanskis, A. Matijosius, A. Piskarskas, V. Smilgevicius, and A. Stabinis, “Conversion of topological charge of optical vortices in a parametric frequency converter,” Opt. Commun. 140, 273–276 (1997).
[CrossRef]

Bowman, C. N.

T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, “Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography,” Science 324, 913–917 (2009).
[CrossRef] [PubMed]

Brodeour, A.

Buchvarov, I.

Chin, S. L.

Christou, J.

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Eliel, E. R.

L. T. Vuong, T. D. Grow, A. Ishaaya, A. L. Gaeta, G. W. ’t Hooft, E. R. Eliel, and G. Fibich, “Collapse of optical vortices,” Phys. Rev. Lett. 96, 13390 (2006).
[CrossRef]

Fibich, G.

L. T. Vuong, T. D. Grow, A. Ishaaya, A. L. Gaeta, G. W. ’t Hooft, E. R. Eliel, and G. Fibich, “Collapse of optical vortices,” Phys. Rev. Lett. 96, 13390 (2006).
[CrossRef]

Fiebig, T.

Firth, W. J.

W. J. Firth, and D. V. Skryabin, “Optical solitons carrying orbital angular momentum,” Phys. Rev. Lett. 79, 2450–2453 (1997).
[CrossRef]

Foo, G.

Furhapter, S.

Gaeta, A. L.

L. T. Vuong, T. D. Grow, A. Ishaaya, A. L. Gaeta, G. W. ’t Hooft, E. R. Eliel, and G. Fibich, “Collapse of optical vortices,” Phys. Rev. Lett. 96, 13390 (2006).
[CrossRef]

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Gorbach, A. V.

A. V. Gorbach, and D. V. Skryabin, “Cascaded generation of multiply charged optical vortices and spatiotemporal helical beams in a raman medium,” Phys. Rev. Lett. 98, 243601 (2007).
[CrossRef] [PubMed]

Grier, D. G.

D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
[CrossRef] [PubMed]

Grow, T. D.

L. T. Vuong, T. D. Grow, A. Ishaaya, A. L. Gaeta, G. W. ’t Hooft, E. R. Eliel, and G. Fibich, “Collapse of optical vortices,” Phys. Rev. Lett. 96, 13390 (2006).
[CrossRef]

Hänsch, T. W.

Ishaaya, A.

L. T. Vuong, T. D. Grow, A. Ishaaya, A. L. Gaeta, G. W. ’t Hooft, E. R. Eliel, and G. Fibich, “Collapse of optical vortices,” Phys. Rev. Lett. 96, 13390 (2006).
[CrossRef]

Jesacher, A.

Kartazayev, V.

Kowalski, B. A.

T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, “Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography,” Science 324, 913–917 (2009).
[CrossRef] [PubMed]

Luther-Daves, B.

Matijosius, A.

A. Berzanskis, A. Matijosius, A. Piskarskas, V. Smilgevicius, and A. Stabinis, “Conversion of topological charge of optical vortices in a parametric frequency converter,” Opt. Commun. 140, 273–276 (1997).
[CrossRef]

McLeod, R. R.

T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, “Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography,” Science 324, 913–917 (2009).
[CrossRef] [PubMed]

Molina Terriza, G.

G. Molina Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3, 305–310 (2007).
[CrossRef]

Palacios, D. M.

Piskarskas, A.

A. Berzanskis, A. Matijosius, A. Piskarskas, V. Smilgevicius, and A. Stabinis, “Conversion of topological charge of optical vortices in a parametric frequency converter,” Opt. Commun. 140, 273–276 (1997).
[CrossRef]

Ritsch Marte, M.

Scott, T. F.

T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, “Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography,” Science 324, 913–917 (2009).
[CrossRef] [PubMed]

Shapiro, S. L.

R. R. Alfano, and S. L. Shapiro, “Emission in the region 4000 to 7000 °A via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584–587 (1970).
[CrossRef]

Skryabin, D. V.

A. V. Gorbach, and D. V. Skryabin, “Cascaded generation of multiply charged optical vortices and spatiotemporal helical beams in a raman medium,” Phys. Rev. Lett. 98, 243601 (2007).
[CrossRef] [PubMed]

W. J. Firth, and D. V. Skryabin, “Optical solitons carrying orbital angular momentum,” Phys. Rev. Lett. 79, 2450–2453 (1997).
[CrossRef]

Smilgevicius, V.

A. Berzanskis, A. Matijosius, A. Piskarskas, V. Smilgevicius, and A. Stabinis, “Conversion of topological charge of optical vortices in a parametric frequency converter,” Opt. Commun. 140, 273–276 (1997).
[CrossRef]

Stabinis, A.

A. Berzanskis, A. Matijosius, A. Piskarskas, V. Smilgevicius, and A. Stabinis, “Conversion of topological charge of optical vortices in a parametric frequency converter,” Opt. Commun. 140, 273–276 (1997).
[CrossRef]

Sullivan, A. C.

T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, “Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography,” Science 324, 913–917 (2009).
[CrossRef] [PubMed]

Swartzlander, G. A.

Sztul, H. I.

Tikhonenko, V.

Torner, L.

G. Molina Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3, 305–310 (2007).
[CrossRef]

Torres, J. P.

G. Molina Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3, 305–310 (2007).
[CrossRef]

Trifonov, A.

Vinçotte, A.

A. Vinçotte, and L. Bergé, “Femtosecond optical vortices in air,” Phys. Rev. Lett. 95, 193901 (2005).
[CrossRef] [PubMed]

Vuong, L. T.

L. T. Vuong, T. D. Grow, A. Ishaaya, A. L. Gaeta, G. W. ’t Hooft, E. R. Eliel, and G. Fibich, “Collapse of optical vortices,” Phys. Rev. Lett. 96, 13390 (2006).
[CrossRef]

J. Opt. Soc. Am. B (2)

Nat. Phys. (1)

G. Molina Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3, 305–310 (2007).
[CrossRef]

Nature (1)

D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
[CrossRef] [PubMed]

Opt. Commun. (1)

A. Berzanskis, A. Matijosius, A. Piskarskas, V. Smilgevicius, and A. Stabinis, “Conversion of topological charge of optical vortices in a parametric frequency converter,” Opt. Commun. 140, 273–276 (1997).
[CrossRef]

Opt. Lett. (5)

Phys. Rev. Lett. (5)

A. V. Gorbach, and D. V. Skryabin, “Cascaded generation of multiply charged optical vortices and spatiotemporal helical beams in a raman medium,” Phys. Rev. Lett. 98, 243601 (2007).
[CrossRef] [PubMed]

W. J. Firth, and D. V. Skryabin, “Optical solitons carrying orbital angular momentum,” Phys. Rev. Lett. 79, 2450–2453 (1997).
[CrossRef]

L. T. Vuong, T. D. Grow, A. Ishaaya, A. L. Gaeta, G. W. ’t Hooft, E. R. Eliel, and G. Fibich, “Collapse of optical vortices,” Phys. Rev. Lett. 96, 13390 (2006).
[CrossRef]

A. Vinçotte, and L. Bergé, “Femtosecond optical vortices in air,” Phys. Rev. Lett. 95, 193901 (2005).
[CrossRef] [PubMed]

R. R. Alfano, and S. L. Shapiro, “Emission in the region 4000 to 7000 °A via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584–587 (1970).
[CrossRef]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Science (1)

T. F. Scott, B. A. Kowalski, A. C. Sullivan, C. N. Bowman, and R. R. McLeod, “Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography,” Science 324, 913–917 (2009).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experimental setup: CPA-2001 – femtosecond laser and chirped pulse amplifier (Clark-MXR); CGH – computer generated hologram; D – diaphragm; λ/4 – quarter waveplate; L 1 – focusing lens of a focal length f = 30 cm; L 2 – imaging lens of f = 10 cm; CaF2 – 5mm thick rotating sample, which longitudinal position is varied simultaneously with the mirror M and the lens L 2; CCD – color camera; SP – spectrometer (Avantes). Pos. 1 and Pos. 2 denote data acquisition in the near- and far-field, respectively. Inset – typical vortex profile observed after the CGH.

Fig. 2.
Fig. 2.

Supercontinuum generation from a vortex beam. (a) Normalized spectrum of the output light for different positions of the beam waist with respect to the CaF2 sample. (b–d) Color far-field profiles for different input positions of the beam waist.

Fig. 3.
Fig. 3.

Far-field vortex intensity profiles in the spectral range 750 – 800 nm at longitudinal positions (a) 3mm and (c) 0 mm. (b, d) The corresponding spectral content (log scale - lnS) of the vortex core recorded at 16 positions along the dashed line in (a, c).

Fig. 4.
Fig. 4.

(a, b) Far-field intensity profile of the supercontinuum at 8 mW average laser power, showing fringes in the blue spectral range. (a) Full color profile, (b) only the blue components have been extracted from (a) to improve fringe visibility. (c, d) Near-field intensity profile of the supercontinuum radiation at the back side of the CaF2 sample at 22mW average laser power, showing the formation of light filaments and their contribution to the supercontinuum generation. (c) Full-color image and (d) image filtered with a long-pass spectral filter.

Fig. 5.
Fig. 5.

Near-field vortex profiles observed for low (top) and high (bottom) power at focusing lens-to-sample distance of 4, 3, 2, 1, 0 mm, respectively. At high average power of 22mW (bottom row) the vortex ring experiences strong self-focusing and hot spot formation.

Metrics