Abstract

We present a new application of the acousto-optic superlattice modulation of a fiber Bragg grating based on the dynamic phase and group delay properties of this fiber-optic component. We demonstrate a tunable photonic true-time-delay line based on the group delay change of the light reflected from the grating sidebands. The delay is electrically tuned by adjusting the voltage applied to a piezoelectric transducer that generates the acoustic wave propagating along the grating. In our experiments, a true-time delay of 400 ps is continuously adjusted (300 ps within the 3 dB amplitude range of the first sideband), using a 12 cm long uniform grating.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
    [CrossRef]
  2. J. Yao, “Microwave Photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
    [CrossRef]
  3. C. Caucheteur, A. Mussot, S. Bette, A. Kudlinski, M. Douay, E. Louvergneaux, P. Mégret, M. Taki, and M. Gonz Lez-Herrāez, “All-fiber tunable optical delay line,” Opt. Express 18(3), 3093–3100 (2010).
    [CrossRef] [PubMed]
  4. Y. Liu, J. Yang, and J. Yao, “Continuous true-time-delay beamforming for phase array antenna using a tunable chirped fiber grating delay line,” IEEE Photon. Technol. Lett. 14(8), 1172–1174 (2002).
    [CrossRef]
  5. V. Italia, M. Pisco, S. Campopiano, A. Cusano, and A. Cutolo, “Chirped fiber Bragg gratings for electrically tunable time delay lines,” IEEE J. Sel. Top. Quantum Electron. 11(2), 408–416 (2005).
    [CrossRef]
  6. P. Perez-Millan, S. Torres-Peiro, J. Mora, A. Diez, J. L. Cruz, and M. V. Andres, “Electronic tuning of delay lines based on chirped fiber gratings for phased arrays powered by a single optical carrier,” Opt. Commun. 238(4-6), 277–280 (2004).
    [CrossRef]
  7. J. Capmany, B. Ortega, D. Pastor, and S. Sales, “Discrete-time optical processing of microwave signals,” J. Lightwave Technol. 23(2), 702–723 (2005).
    [CrossRef]
  8. X. Li, L. Peng, S. Wang, Y.-C. Kim, and J. Chen, “A novel kind of programmable 3n feed-forward optical fiber true delay line based on SOA,” Opt. Express 15(25), 16760–16766 (2007).
    [CrossRef] [PubMed]
  9. A. Zadok, O. Raz, A. Eyal, and M. Tur, “Optically controlled low-distortion delay of GHz-wide radio-frequency signals using slow light in fibers,” IEEE Photon. Technol. Lett. 19(7), 462–464 (2007).
    [CrossRef]
  10. B. Ortega, J. L. Cruz, J. Capmany, M. V. Andrés, and D. Pastor, “Analysis of a microwave time delay line based on a perturbbed uniform fiber Bragg grating operating at constant wavelength,” J. Lightwave Technol. 18(3), 430–436 (2000).
    [CrossRef]
  11. L. Wei, W. Xue, Y. Chen, T. T. Alkeskjold, and A. Bjarklev, “Optically fed microwave true-time delay based on a compact liquid-crystal photonic-bandgap-fiber device,” Opt. Lett. 34(18), 2757–2759 (2009).
    [CrossRef] [PubMed]
  12. Z. Wang, K. S. Chiang, and Q. Liu, “Microwave photonic filter based on circulating a cladding mode in a fiber ring resonator,” Opt. Lett. 35(5), 769–771 (2010).
    [CrossRef] [PubMed]
  13. Y. Liu, J. Yao, and J. Yang, “Wideband true-time-delay beam former that employs a tunable chirped fiber grating prism,” Appl. Opt. 42(13), 2273–2277 (2003).
    [CrossRef] [PubMed]
  14. S. Blais and J. Yao, “Photonic true-time delay beamforming based on superstructured fiber Bragg grating with linearly increasing equivalent chirps,” J. Lightwave Technol. 27(9), 1147–1154 (2009).
    [CrossRef]
  15. M. Delgado-Pinar, D. Zalvidea, A. Díez, P. Pérez-Millan, and M. V. Andrés, “Q-switching of an all-fiber laser by acousto-optic modulation of a fiber Bragg grating,” Opt. Express 14(3), 1106–1112 (2006).
    [CrossRef] [PubMed]
  16. W. F. Liu, P. St. J. Russell, and L. Dong, “Acousto-optic superlattice modulator using a fiber Bragg grating,” Opt. Lett. 22(19), 1515–1517 (1997).
    [CrossRef]
  17. P. St. J. Russell and W. F. Liu, “Acousto-optic superlattice modulation in fiber Bragg gratings,” J. Opt. Soc. Am. A 17(8), 1421–1429 (2000).
    [CrossRef]
  18. C. Cuadrado-Laborde, A. Diez, M. Delgado-Pinar, J. L. Cruz, and M. V. Andrés, “Mode locking of an all-fiber laser by acousto-optic superlattice modulation,” Opt. Lett. 34(7), 1111–1113 (2009).
    [CrossRef] [PubMed]
  19. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
    [CrossRef]
  20. R. Kashyap, “Fiber Bragg Gratings,” San Diego: Academic Press, 1999, chapter 4.
  21. Y. O. Barmenkov, D. Zalvidea, S. Torres-Peiró, J. L. Cruz, and M. V. Andrés, “Effective length of short Fabry-Perot cavity formed by uniform fiber Bragg gratings,” Opt. Express 14(14), 6394–6399 (2006).
    [CrossRef] [PubMed]

2010

2009

2007

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[CrossRef]

X. Li, L. Peng, S. Wang, Y.-C. Kim, and J. Chen, “A novel kind of programmable 3n feed-forward optical fiber true delay line based on SOA,” Opt. Express 15(25), 16760–16766 (2007).
[CrossRef] [PubMed]

A. Zadok, O. Raz, A. Eyal, and M. Tur, “Optically controlled low-distortion delay of GHz-wide radio-frequency signals using slow light in fibers,” IEEE Photon. Technol. Lett. 19(7), 462–464 (2007).
[CrossRef]

2006

2005

J. Capmany, B. Ortega, D. Pastor, and S. Sales, “Discrete-time optical processing of microwave signals,” J. Lightwave Technol. 23(2), 702–723 (2005).
[CrossRef]

V. Italia, M. Pisco, S. Campopiano, A. Cusano, and A. Cutolo, “Chirped fiber Bragg gratings for electrically tunable time delay lines,” IEEE J. Sel. Top. Quantum Electron. 11(2), 408–416 (2005).
[CrossRef]

2004

P. Perez-Millan, S. Torres-Peiro, J. Mora, A. Diez, J. L. Cruz, and M. V. Andres, “Electronic tuning of delay lines based on chirped fiber gratings for phased arrays powered by a single optical carrier,” Opt. Commun. 238(4-6), 277–280 (2004).
[CrossRef]

2003

2002

Y. Liu, J. Yang, and J. Yao, “Continuous true-time-delay beamforming for phase array antenna using a tunable chirped fiber grating delay line,” IEEE Photon. Technol. Lett. 14(8), 1172–1174 (2002).
[CrossRef]

2000

1997

Alkeskjold, T. T.

Andres, M. V.

P. Perez-Millan, S. Torres-Peiro, J. Mora, A. Diez, J. L. Cruz, and M. V. Andres, “Electronic tuning of delay lines based on chirped fiber gratings for phased arrays powered by a single optical carrier,” Opt. Commun. 238(4-6), 277–280 (2004).
[CrossRef]

Andrés, M. V.

Barmenkov, Y. O.

Bette, S.

Bjarklev, A.

Blais, S.

Campopiano, S.

V. Italia, M. Pisco, S. Campopiano, A. Cusano, and A. Cutolo, “Chirped fiber Bragg gratings for electrically tunable time delay lines,” IEEE J. Sel. Top. Quantum Electron. 11(2), 408–416 (2005).
[CrossRef]

Capmany, J.

Caucheteur, C.

Chen, J.

Chen, Y.

Chiang, K. S.

Cruz, J. L.

Cuadrado-Laborde, C.

Cusano, A.

V. Italia, M. Pisco, S. Campopiano, A. Cusano, and A. Cutolo, “Chirped fiber Bragg gratings for electrically tunable time delay lines,” IEEE J. Sel. Top. Quantum Electron. 11(2), 408–416 (2005).
[CrossRef]

Cutolo, A.

V. Italia, M. Pisco, S. Campopiano, A. Cusano, and A. Cutolo, “Chirped fiber Bragg gratings for electrically tunable time delay lines,” IEEE J. Sel. Top. Quantum Electron. 11(2), 408–416 (2005).
[CrossRef]

Delgado-Pinar, M.

Diez, A.

C. Cuadrado-Laborde, A. Diez, M. Delgado-Pinar, J. L. Cruz, and M. V. Andrés, “Mode locking of an all-fiber laser by acousto-optic superlattice modulation,” Opt. Lett. 34(7), 1111–1113 (2009).
[CrossRef] [PubMed]

P. Perez-Millan, S. Torres-Peiro, J. Mora, A. Diez, J. L. Cruz, and M. V. Andres, “Electronic tuning of delay lines based on chirped fiber gratings for phased arrays powered by a single optical carrier,” Opt. Commun. 238(4-6), 277–280 (2004).
[CrossRef]

Díez, A.

Dong, L.

Douay, M.

Erdogan, T.

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[CrossRef]

Eyal, A.

A. Zadok, O. Raz, A. Eyal, and M. Tur, “Optically controlled low-distortion delay of GHz-wide radio-frequency signals using slow light in fibers,” IEEE Photon. Technol. Lett. 19(7), 462–464 (2007).
[CrossRef]

Gonz Lez-Herraez, M.

Italia, V.

V. Italia, M. Pisco, S. Campopiano, A. Cusano, and A. Cutolo, “Chirped fiber Bragg gratings for electrically tunable time delay lines,” IEEE J. Sel. Top. Quantum Electron. 11(2), 408–416 (2005).
[CrossRef]

Kim, Y.-C.

Kudlinski, A.

Li, X.

Liu, Q.

Liu, W. F.

Liu, Y.

Y. Liu, J. Yao, and J. Yang, “Wideband true-time-delay beam former that employs a tunable chirped fiber grating prism,” Appl. Opt. 42(13), 2273–2277 (2003).
[CrossRef] [PubMed]

Y. Liu, J. Yang, and J. Yao, “Continuous true-time-delay beamforming for phase array antenna using a tunable chirped fiber grating delay line,” IEEE Photon. Technol. Lett. 14(8), 1172–1174 (2002).
[CrossRef]

Louvergneaux, E.

Mégret, P.

Mora, J.

P. Perez-Millan, S. Torres-Peiro, J. Mora, A. Diez, J. L. Cruz, and M. V. Andres, “Electronic tuning of delay lines based on chirped fiber gratings for phased arrays powered by a single optical carrier,” Opt. Commun. 238(4-6), 277–280 (2004).
[CrossRef]

Mussot, A.

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[CrossRef]

Ortega, B.

Pastor, D.

Peng, L.

Perez-Millan, P.

P. Perez-Millan, S. Torres-Peiro, J. Mora, A. Diez, J. L. Cruz, and M. V. Andres, “Electronic tuning of delay lines based on chirped fiber gratings for phased arrays powered by a single optical carrier,” Opt. Commun. 238(4-6), 277–280 (2004).
[CrossRef]

Pérez-Millan, P.

Pisco, M.

V. Italia, M. Pisco, S. Campopiano, A. Cusano, and A. Cutolo, “Chirped fiber Bragg gratings for electrically tunable time delay lines,” IEEE J. Sel. Top. Quantum Electron. 11(2), 408–416 (2005).
[CrossRef]

Raz, O.

A. Zadok, O. Raz, A. Eyal, and M. Tur, “Optically controlled low-distortion delay of GHz-wide radio-frequency signals using slow light in fibers,” IEEE Photon. Technol. Lett. 19(7), 462–464 (2007).
[CrossRef]

Russell, P. St. J.

Sales, S.

Taki, M.

Torres-Peiro, S.

P. Perez-Millan, S. Torres-Peiro, J. Mora, A. Diez, J. L. Cruz, and M. V. Andres, “Electronic tuning of delay lines based on chirped fiber gratings for phased arrays powered by a single optical carrier,” Opt. Commun. 238(4-6), 277–280 (2004).
[CrossRef]

Torres-Peiró, S.

Tur, M.

A. Zadok, O. Raz, A. Eyal, and M. Tur, “Optically controlled low-distortion delay of GHz-wide radio-frequency signals using slow light in fibers,” IEEE Photon. Technol. Lett. 19(7), 462–464 (2007).
[CrossRef]

Wang, S.

Wang, Z.

Wei, L.

Xue, W.

Yang, J.

Y. Liu, J. Yao, and J. Yang, “Wideband true-time-delay beam former that employs a tunable chirped fiber grating prism,” Appl. Opt. 42(13), 2273–2277 (2003).
[CrossRef] [PubMed]

Y. Liu, J. Yang, and J. Yao, “Continuous true-time-delay beamforming for phase array antenna using a tunable chirped fiber grating delay line,” IEEE Photon. Technol. Lett. 14(8), 1172–1174 (2002).
[CrossRef]

Yao, J.

Zadok, A.

A. Zadok, O. Raz, A. Eyal, and M. Tur, “Optically controlled low-distortion delay of GHz-wide radio-frequency signals using slow light in fibers,” IEEE Photon. Technol. Lett. 19(7), 462–464 (2007).
[CrossRef]

Zalvidea, D.

Appl. Opt.

IEEE J. Sel. Top. Quantum Electron.

V. Italia, M. Pisco, S. Campopiano, A. Cusano, and A. Cutolo, “Chirped fiber Bragg gratings for electrically tunable time delay lines,” IEEE J. Sel. Top. Quantum Electron. 11(2), 408–416 (2005).
[CrossRef]

IEEE Photon. Technol. Lett.

Y. Liu, J. Yang, and J. Yao, “Continuous true-time-delay beamforming for phase array antenna using a tunable chirped fiber grating delay line,” IEEE Photon. Technol. Lett. 14(8), 1172–1174 (2002).
[CrossRef]

A. Zadok, O. Raz, A. Eyal, and M. Tur, “Optically controlled low-distortion delay of GHz-wide radio-frequency signals using slow light in fibers,” IEEE Photon. Technol. Lett. 19(7), 462–464 (2007).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. A

Nat. Photonics

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[CrossRef]

Opt. Commun.

P. Perez-Millan, S. Torres-Peiro, J. Mora, A. Diez, J. L. Cruz, and M. V. Andres, “Electronic tuning of delay lines based on chirped fiber gratings for phased arrays powered by a single optical carrier,” Opt. Commun. 238(4-6), 277–280 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

Other

R. Kashyap, “Fiber Bragg Gratings,” San Diego: Academic Press, 1999, chapter 4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup. SL: semiconductor laser; PC: polarization controller; EOM: electro-optical amplitude modulator; FBG: fiber Bragg grating; PZT: piezo-electric transducer; SH: fused silica horn; PD: photodetector.

Fig. 2
Fig. 2

(a) Spectra of FBG perturbed by ultra-sound wave at different PZT voltages (voltage’s values are shown in the upper right corner); l indicates the sideband number. (b) Dependence of the + 1 sideband efficiency on PZT voltage. Circles: experimental data; solid line: fitting.

Fig. 3
Fig. 3

(a) Dependence of the RF modulation envelope phase of light reflected from the FBG + 1 sideband on amplitude of voltage applied to PZT. The left scale: uncorrected values, the right scale: corrected values. (b) FBG + 1 sideband effective length and group delay versus the diffraction efficiency. Symbols: experimental data; solid line: curve calculated by Eq. (8). In both figures different symbols correspond to different experimental series.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

n ( z , t ) = n 0 + n 1 cos [ K z Δ Φ cos ( k s z + Ω t ) ] = n 0 + n 1 J 0 ( Δ Φ ) cos ( K z ) + 2 n 1 cos ( K z ) m = 1 ( 1 ) m J 2 m ( Δ Φ ) cos [ 2 m ( k s z + Ω t ) ] + 2 n 1 sin ( K z ) m = 1 ( 1 ) m 1 J 2 m 1 ( Δ Φ ) cos [ ( 2 m 1 ) ( k s z + Ω t ) ] ,
d A ± l + d z = i Δ β ± l A ± l + + i ( l 1 ) κ l B ± l +
d B ± l + d z = i Δ β ± l B ± l + + ( i ) ( l 1 ) κ l A ± l +
ρ ± l = i ± l κ ± l sinh ( γ ± l L ) Δ β ± l sinh ( γ ± l L ) + i γ ± l cosh ( γ ± l L )
λ ± l = λ 0 ( 1 ± l λ 0 2 n 0 λ s )
τ ± l = λ 2 2 π c d ϕ ± l d λ ,
ϕ ± l = a tan [ ( γ ± l / Δ β ± l ) cotanh ( γ ± l L ) ]
R ± l = ( tanh ( κ ± l L ) ) 2 ,
L ± l e f f = 1 2 κ ± l tanh ( κ ± l L ) = L R ± l 2 a tanh ( R ± l ) ,
τ ± l = 2 n 0 L ± l e f f / c ,
Ψ + 1 = 2 π τ + 1 f m = 4 π n 0 L + 1 e f f f m / c

Metrics