Abstract

A bench-top physical model eye that closely replicates both anatomical and optical properties of an average human eye was designed and constructed. The cornea was sourced from a flouro-polymer with refractive index (RI) of 1.376 and crystalline lenses were made of Boston RGP polymers, EO and Equalens II, with an equivalent RI of 1.429 and 1.423 respectively. These materials served to make crystalline lens components of different age groups and accommodative states. De-Ionized water, with RI of 1.334 represented both aqueous and vitreous humor. The complementary metal-oxide sensor of a PixelLink digital camera with a resolution of 5MP and a 2.2µm pixel pitch, hosted on a motor-base, served as the ‘acting’ retina. The translation and rotary functions of the motor-base facilitated the simulation of different states of ametropia and assessment of peripheral visual function, respectively. We validated one of its configurations to suit normal viewing conditions and results from the on and off-axis optical quality measurements are presented. As a demonstration of potential practical uses, several corrective soft contact lenses were placed on the model eye and their optical performance evaluated.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Patel, M. Fakhry, and J. L. Alió, “Objective assessment of aberrations induced by multifocal contact lenses in vivo,” CLAO J. 28(4), 196–201 (2002).
    [PubMed]
  2. W. Donnelly, “The Advanced Human Eye Model (AHEM): a personal binocular eye modeling system inclusive of refraction, diffraction, and scatter,” J. Refract. Surg. 24(9), 976–983 (2008).
    [PubMed]
  3. H. L. Liou and N. A. Brennan, “Anatomically accurate, finite model eye for optical modeling,” J. Opt. Soc. Am. A 14(8), 1684–1695 (1997).
    [CrossRef]
  4. I. Escudero-Sanz and R. Navarro, “Off-axis aberrations of a wide-angle schematic eye model,” J. Opt. Soc. Am. A 16(8), 1881–1891 (1999).
    [CrossRef]
  5. D. A. Atchison, “Optical models for human myopic eyes,” Vision Res. 46(14), 2236–2250 (2006).
    [CrossRef] [PubMed]
  6. R. C. Bakaraju, K. Ehrmann, E. Papas, and A. Ho, “Finite schematic eye models and their accuracy to in-vivo data,” Vision Res. 48(16), 1681–1694 (2008).
    [CrossRef] [PubMed]
  7. ISO11979–2, “Ophthalmic implants-Intraocular lenses-Part 2: optical properties and test methods,” (International Organization for Standardization, 1999).
  8. S. Norrby, P. Piers, C. Campbell, and M. van der Mooren, “Model eyes for evaluation of intraocular lenses,” Appl. Opt. 46(26), 6595–6605 (2007).
    [CrossRef] [PubMed]
  9. P. G. Gobbi, F. Fasce, S. Bozza, and R. Brancato, “Optomechanical eye model with imaging capabilities for objective evaluation of intraocular lenses,” J. Cataract Refract. Surg. 32(4), 643–651 (2006).
    [CrossRef] [PubMed]
  10. S. Pieh, W. Fiala, A. Malz, and W. Stork, “In vitro strehl ratios with spherical, aberration-free, average, and customized spherical aberration-correcting intraocular lenses,” Invest. Ophthalmol. Vis. Sci. 50(3), 1264–1270 (2008).
    [CrossRef] [PubMed]
  11. J. Shen and L. N. Thibos, “Measuring ocular aberrations and image quality in peripheral vision with a clinical wavefront aberrometer,” Clin. Exp. Optom. 92(3), 212–222 (2009).
    [CrossRef] [PubMed]
  12. L. N. Thibos, M. Ye, X. Zhang, and A. Bradley, “The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans,” Appl. Opt. 31(19), 3594–3600 (1992).
    [CrossRef] [PubMed]
  13. ZEMAX, “Focus Software Inc,” (Bellevue, WA, USA, 2009).
  14. A. V. Goncharov and C. Dainty, “Wide-field schematic eye models with gradient-index lens,” J. Opt. Soc. Am. A 24(8), 2157–2174 (2007).
    [CrossRef]
  15. A. V. Goncharov, M. Nowakowski, M. T. Sheehan, and C. Dainty, “Reconstruction of the optical system of the human eye with reverse ray-tracing,” Opt. Express 16(3), 1692–1703 (2008).
    [CrossRef] [PubMed]
  16. M. Dubbelman, V. A. Sicam, and G. L. Van der Heijde, “The shape of the anterior and posterior surface of the aging human cornea,” Vision Res. 46(6-7), 993–1001 (2006).
    [CrossRef]
  17. M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res. 41(14), 1867–1877 (2001).
    [CrossRef] [PubMed]
  18. M. Dubbelman, G. L. van der Heijde, and H. A. Weeber, “The thickness of the aging human lens obtained from corrected Scheimpflug images,” Optom. Vis. Sci. 78(6), 411–416 (2001).
    [CrossRef] [PubMed]
  19. M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res. 45(1), 117–132 (2005).
    [CrossRef]
  20. M. Dubbelman, G. L. Van der Heijde, H. A. Weeber, and G. F. Vrensen, “Changes in the internal structure of the human crystalline lens with age and accommodation,” Vision Res. 43(22), 2363–2375 (2003).
    [CrossRef] [PubMed]
  21. M. Dubbelman, H. A. Weeber, R. G. van der Heijde, and H. J. Völker-Dieben, “Radius and asphericity of the posterior corneal surface determined by corrected Scheimpflug photography,” Acta Ophthalmol. Scand. 80(4), 379–383 (2002).
    [CrossRef] [PubMed]
  22. C. E. Jones, D. A. Atchison, R. Meder, and J. M. Pope, “Refractive index distribution and optical properties of the isolated human lens measured using magnetic resonance imaging (MRI),” Vision Res. 45(18), 2352–2366 (2005).
    [CrossRef] [PubMed]
  23. I. Brunette, J. M. Bueno, M. Parent, H. Hamam, and P. Simonet, “Monochromatic aberrations as a function of age, from childhood to advanced age,” Invest. Ophthalmol. Vis. Sci. 44(12), 5438–5446 (2003).
    [CrossRef] [PubMed]
  24. H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, and A. Roorda, “A population study on changes in wave aberrations with accommodation,” J. Vis. 4(4), 272–280 (2004).
    [CrossRef] [PubMed]
  25. H. Radhakrishnan and W. N. Charman, “Age-related changes in ocular aberrations with accommodation,” J. Vis. 7(7), 11–21, 1–21 (2007).
    [CrossRef] [PubMed]
  26. L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A 19(12), 2329–2348 (2002).
    [CrossRef]
  27. N. A. McBrien and D. W. Adams, “A longitudinal investigation of adult-onset and adult-progression of myopia in an occupational group. Refractive and biometric findings,” Invest. Ophthalmol. Vis. Sci. 38(2), 321–333 (1997).
    [PubMed]
  28. S. A. Read, M. J. Collins, L. G. Carney, and R. J. Franklin, “The topography of the central and peripheral cornea,” Invest. Ophthalmol. Vis. Sci. 47(4), 1404–1415 (2006).
    [CrossRef] [PubMed]
  29. D. A. Atchison, E. L. Markwell, S. Kasthurirangan, J. M. Pope, G. Smith, and P. G. Swann, “Age-related changes in optical and biometric characteristics of emmetropic eyes,” J. Vis. 8(4), 29–1–20 (2008).
    [CrossRef] [PubMed]
  30. M. Dubbelman, R. G. van der Heijde, and H. A. Weeber, “Comment on “Scheimpflug and high-resolution magnetic resonance imaging of the anterior segment: a comparative study”,” J. Opt. Soc. Am. A 22(6), 1216–1218, discussion 1219–1220 (2005).
    [CrossRef]
  31. N. López-Gil, V. Fernández-Sánchez, R. Legras, R. Montés-Micó, F. Lara, and J. L. Nguyen-Khoa, “Accommodation-related changes in monochromatic aberrations of the human eye as a function of age,” Invest. Ophthalmol. Vis. Sci. 49(4), 1736–1743 (2008).
    [CrossRef] [PubMed]
  32. S. Plainis, H. S. Ginis, and A. Pallikaris, “The effect of ocular aberrations on steady-state errors of accommodative response,” J. Vis. 5(5), 466–477 (2005).
    [CrossRef] [PubMed]
  33. V. A. Sicam, M. Dubbelman, and R. G. van der Heijde, “Spherical aberration of the anterior and posterior surfaces of the human cornea,” J. Opt. Soc. Am. A 23(3), 544–549 (2006).
    [CrossRef]
  34. G. Smith, D. A. Atchison, D. R. Iskander, C. E. Jones, and J. M. Pope, “Mathematical models for describing the shape of the in vitro unstretched human crystalline lens,” Vision Res. 49(20), 2442–2452 (2009).
    [CrossRef] [PubMed]
  35. C. W. Oyster, The Human Eye; Structure and Function (Sinauer Associates, Sunderland, MA 1999).
    [PubMed]
  36. R. E. Bedford and G. Wyszecki, “Axial chromatic aberration of the human eye,” J. Opt. Soc. Am. 47(6), 564–565 (1957).
    [CrossRef] [PubMed]
  37. E. S. Bennett, “Contact lens correction of presbyopia,” Clin. Exp. Optom. 91(3), 265–278 (2008).
    [CrossRef] [PubMed]
  38. D. A. Atchison, and G. Smith, Optics of the Human Eye (Butterworth-Heinemann, Oxford, 2000).
  39. E. Dalimier and C. Dainty, “Use of a customized vision model to analyze the effects of higher-order ocular aberrations and neural filtering on contrast threshold performance,” J. Opt. Soc. Am. A 25(8), 2078–2087 (2008).
    [CrossRef]
  40. D. A. Atchison, N. Pritchard, S. D. White, and A. M. Griffiths, “Influence of age on peripheral refraction,” Vision Res. 45(6), 715–720 (2005).
    [CrossRef] [PubMed]
  41. R. C. Bakaraju, K. Ehrmann, A. Ho, and E. B. Papas, “Pantoscopic tilt in spectacle-corrected myopia and its effect on peripheral refraction,” Ophthalmic Physiol. Opt. 28(6), 538–549 (2008).
    [CrossRef] [PubMed]
  42. R. Calver, H. Radhakrishnan, E. Osuobeni, and D. O’Leary, “Peripheral refraction for distance and near vision in emmetropes and myopes,” Ophthalmic Physiol. Opt. 27(6), 584–593 (2007).
    [CrossRef] [PubMed]
  43. W. N. Charman and J. A. Jennings, “Longitudinal changes in peripheral refraction with age,” Ophthalmic Physiol. Opt. 26(5), 447–455 (2006).
    [CrossRef] [PubMed]
  44. W. N. Charman, J. Mountford, D. A. Atchison, and E. L. Markwell, “Peripheral refraction in orthokeratology patients,” Optom. Vis. Sci. 83(9), 641–648 (2006).
    [CrossRef] [PubMed]
  45. J. Tabernero and F. Schaeffel, “Fast scanning photoretinoscope for measuring peripheral refraction as a function of accommodation,” J. Opt. Soc. Am. A 26(10), 2206–2210 (2009).
    [CrossRef]
  46. J. Tabernero, D. Vazquez, A. Seidemann, D. Uttenweiler, and F. Schaeffel, “Effects of myopic spectacle correction and radial refractive gradient spectacles on peripheral refraction,” Vision Res. 49(17), 2176–2186 (2009).
    [CrossRef] [PubMed]

2009 (4)

J. Shen and L. N. Thibos, “Measuring ocular aberrations and image quality in peripheral vision with a clinical wavefront aberrometer,” Clin. Exp. Optom. 92(3), 212–222 (2009).
[CrossRef] [PubMed]

G. Smith, D. A. Atchison, D. R. Iskander, C. E. Jones, and J. M. Pope, “Mathematical models for describing the shape of the in vitro unstretched human crystalline lens,” Vision Res. 49(20), 2442–2452 (2009).
[CrossRef] [PubMed]

J. Tabernero and F. Schaeffel, “Fast scanning photoretinoscope for measuring peripheral refraction as a function of accommodation,” J. Opt. Soc. Am. A 26(10), 2206–2210 (2009).
[CrossRef]

J. Tabernero, D. Vazquez, A. Seidemann, D. Uttenweiler, and F. Schaeffel, “Effects of myopic spectacle correction and radial refractive gradient spectacles on peripheral refraction,” Vision Res. 49(17), 2176–2186 (2009).
[CrossRef] [PubMed]

2008 (9)

R. C. Bakaraju, K. Ehrmann, A. Ho, and E. B. Papas, “Pantoscopic tilt in spectacle-corrected myopia and its effect on peripheral refraction,” Ophthalmic Physiol. Opt. 28(6), 538–549 (2008).
[CrossRef] [PubMed]

E. S. Bennett, “Contact lens correction of presbyopia,” Clin. Exp. Optom. 91(3), 265–278 (2008).
[CrossRef] [PubMed]

E. Dalimier and C. Dainty, “Use of a customized vision model to analyze the effects of higher-order ocular aberrations and neural filtering on contrast threshold performance,” J. Opt. Soc. Am. A 25(8), 2078–2087 (2008).
[CrossRef]

N. López-Gil, V. Fernández-Sánchez, R. Legras, R. Montés-Micó, F. Lara, and J. L. Nguyen-Khoa, “Accommodation-related changes in monochromatic aberrations of the human eye as a function of age,” Invest. Ophthalmol. Vis. Sci. 49(4), 1736–1743 (2008).
[CrossRef] [PubMed]

D. A. Atchison, E. L. Markwell, S. Kasthurirangan, J. M. Pope, G. Smith, and P. G. Swann, “Age-related changes in optical and biometric characteristics of emmetropic eyes,” J. Vis. 8(4), 29–1–20 (2008).
[CrossRef] [PubMed]

A. V. Goncharov, M. Nowakowski, M. T. Sheehan, and C. Dainty, “Reconstruction of the optical system of the human eye with reverse ray-tracing,” Opt. Express 16(3), 1692–1703 (2008).
[CrossRef] [PubMed]

W. Donnelly, “The Advanced Human Eye Model (AHEM): a personal binocular eye modeling system inclusive of refraction, diffraction, and scatter,” J. Refract. Surg. 24(9), 976–983 (2008).
[PubMed]

R. C. Bakaraju, K. Ehrmann, E. Papas, and A. Ho, “Finite schematic eye models and their accuracy to in-vivo data,” Vision Res. 48(16), 1681–1694 (2008).
[CrossRef] [PubMed]

S. Pieh, W. Fiala, A. Malz, and W. Stork, “In vitro strehl ratios with spherical, aberration-free, average, and customized spherical aberration-correcting intraocular lenses,” Invest. Ophthalmol. Vis. Sci. 50(3), 1264–1270 (2008).
[CrossRef] [PubMed]

2007 (4)

S. Norrby, P. Piers, C. Campbell, and M. van der Mooren, “Model eyes for evaluation of intraocular lenses,” Appl. Opt. 46(26), 6595–6605 (2007).
[CrossRef] [PubMed]

H. Radhakrishnan and W. N. Charman, “Age-related changes in ocular aberrations with accommodation,” J. Vis. 7(7), 11–21, 1–21 (2007).
[CrossRef] [PubMed]

A. V. Goncharov and C. Dainty, “Wide-field schematic eye models with gradient-index lens,” J. Opt. Soc. Am. A 24(8), 2157–2174 (2007).
[CrossRef]

R. Calver, H. Radhakrishnan, E. Osuobeni, and D. O’Leary, “Peripheral refraction for distance and near vision in emmetropes and myopes,” Ophthalmic Physiol. Opt. 27(6), 584–593 (2007).
[CrossRef] [PubMed]

2006 (7)

W. N. Charman and J. A. Jennings, “Longitudinal changes in peripheral refraction with age,” Ophthalmic Physiol. Opt. 26(5), 447–455 (2006).
[CrossRef] [PubMed]

W. N. Charman, J. Mountford, D. A. Atchison, and E. L. Markwell, “Peripheral refraction in orthokeratology patients,” Optom. Vis. Sci. 83(9), 641–648 (2006).
[CrossRef] [PubMed]

S. A. Read, M. J. Collins, L. G. Carney, and R. J. Franklin, “The topography of the central and peripheral cornea,” Invest. Ophthalmol. Vis. Sci. 47(4), 1404–1415 (2006).
[CrossRef] [PubMed]

V. A. Sicam, M. Dubbelman, and R. G. van der Heijde, “Spherical aberration of the anterior and posterior surfaces of the human cornea,” J. Opt. Soc. Am. A 23(3), 544–549 (2006).
[CrossRef]

P. G. Gobbi, F. Fasce, S. Bozza, and R. Brancato, “Optomechanical eye model with imaging capabilities for objective evaluation of intraocular lenses,” J. Cataract Refract. Surg. 32(4), 643–651 (2006).
[CrossRef] [PubMed]

D. A. Atchison, “Optical models for human myopic eyes,” Vision Res. 46(14), 2236–2250 (2006).
[CrossRef] [PubMed]

M. Dubbelman, V. A. Sicam, and G. L. Van der Heijde, “The shape of the anterior and posterior surface of the aging human cornea,” Vision Res. 46(6-7), 993–1001 (2006).
[CrossRef]

2005 (5)

M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res. 45(1), 117–132 (2005).
[CrossRef]

S. Plainis, H. S. Ginis, and A. Pallikaris, “The effect of ocular aberrations on steady-state errors of accommodative response,” J. Vis. 5(5), 466–477 (2005).
[CrossRef] [PubMed]

D. A. Atchison, N. Pritchard, S. D. White, and A. M. Griffiths, “Influence of age on peripheral refraction,” Vision Res. 45(6), 715–720 (2005).
[CrossRef] [PubMed]

C. E. Jones, D. A. Atchison, R. Meder, and J. M. Pope, “Refractive index distribution and optical properties of the isolated human lens measured using magnetic resonance imaging (MRI),” Vision Res. 45(18), 2352–2366 (2005).
[CrossRef] [PubMed]

M. Dubbelman, R. G. van der Heijde, and H. A. Weeber, “Comment on “Scheimpflug and high-resolution magnetic resonance imaging of the anterior segment: a comparative study”,” J. Opt. Soc. Am. A 22(6), 1216–1218, discussion 1219–1220 (2005).
[CrossRef]

2004 (1)

H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, and A. Roorda, “A population study on changes in wave aberrations with accommodation,” J. Vis. 4(4), 272–280 (2004).
[CrossRef] [PubMed]

2003 (2)

I. Brunette, J. M. Bueno, M. Parent, H. Hamam, and P. Simonet, “Monochromatic aberrations as a function of age, from childhood to advanced age,” Invest. Ophthalmol. Vis. Sci. 44(12), 5438–5446 (2003).
[CrossRef] [PubMed]

M. Dubbelman, G. L. Van der Heijde, H. A. Weeber, and G. F. Vrensen, “Changes in the internal structure of the human crystalline lens with age and accommodation,” Vision Res. 43(22), 2363–2375 (2003).
[CrossRef] [PubMed]

2002 (3)

M. Dubbelman, H. A. Weeber, R. G. van der Heijde, and H. J. Völker-Dieben, “Radius and asphericity of the posterior corneal surface determined by corrected Scheimpflug photography,” Acta Ophthalmol. Scand. 80(4), 379–383 (2002).
[CrossRef] [PubMed]

S. Patel, M. Fakhry, and J. L. Alió, “Objective assessment of aberrations induced by multifocal contact lenses in vivo,” CLAO J. 28(4), 196–201 (2002).
[PubMed]

L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A 19(12), 2329–2348 (2002).
[CrossRef]

2001 (2)

M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res. 41(14), 1867–1877 (2001).
[CrossRef] [PubMed]

M. Dubbelman, G. L. van der Heijde, and H. A. Weeber, “The thickness of the aging human lens obtained from corrected Scheimpflug images,” Optom. Vis. Sci. 78(6), 411–416 (2001).
[CrossRef] [PubMed]

1999 (1)

1997 (2)

H. L. Liou and N. A. Brennan, “Anatomically accurate, finite model eye for optical modeling,” J. Opt. Soc. Am. A 14(8), 1684–1695 (1997).
[CrossRef]

N. A. McBrien and D. W. Adams, “A longitudinal investigation of adult-onset and adult-progression of myopia in an occupational group. Refractive and biometric findings,” Invest. Ophthalmol. Vis. Sci. 38(2), 321–333 (1997).
[PubMed]

1992 (1)

1957 (1)

Adams, D. W.

N. A. McBrien and D. W. Adams, “A longitudinal investigation of adult-onset and adult-progression of myopia in an occupational group. Refractive and biometric findings,” Invest. Ophthalmol. Vis. Sci. 38(2), 321–333 (1997).
[PubMed]

Alió, J. L.

S. Patel, M. Fakhry, and J. L. Alió, “Objective assessment of aberrations induced by multifocal contact lenses in vivo,” CLAO J. 28(4), 196–201 (2002).
[PubMed]

Applegate, R. A.

H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, and A. Roorda, “A population study on changes in wave aberrations with accommodation,” J. Vis. 4(4), 272–280 (2004).
[CrossRef] [PubMed]

Atchison, D. A.

G. Smith, D. A. Atchison, D. R. Iskander, C. E. Jones, and J. M. Pope, “Mathematical models for describing the shape of the in vitro unstretched human crystalline lens,” Vision Res. 49(20), 2442–2452 (2009).
[CrossRef] [PubMed]

D. A. Atchison, E. L. Markwell, S. Kasthurirangan, J. M. Pope, G. Smith, and P. G. Swann, “Age-related changes in optical and biometric characteristics of emmetropic eyes,” J. Vis. 8(4), 29–1–20 (2008).
[CrossRef] [PubMed]

W. N. Charman, J. Mountford, D. A. Atchison, and E. L. Markwell, “Peripheral refraction in orthokeratology patients,” Optom. Vis. Sci. 83(9), 641–648 (2006).
[CrossRef] [PubMed]

D. A. Atchison, “Optical models for human myopic eyes,” Vision Res. 46(14), 2236–2250 (2006).
[CrossRef] [PubMed]

C. E. Jones, D. A. Atchison, R. Meder, and J. M. Pope, “Refractive index distribution and optical properties of the isolated human lens measured using magnetic resonance imaging (MRI),” Vision Res. 45(18), 2352–2366 (2005).
[CrossRef] [PubMed]

D. A. Atchison, N. Pritchard, S. D. White, and A. M. Griffiths, “Influence of age on peripheral refraction,” Vision Res. 45(6), 715–720 (2005).
[CrossRef] [PubMed]

Bakaraju, R. C.

R. C. Bakaraju, K. Ehrmann, A. Ho, and E. B. Papas, “Pantoscopic tilt in spectacle-corrected myopia and its effect on peripheral refraction,” Ophthalmic Physiol. Opt. 28(6), 538–549 (2008).
[CrossRef] [PubMed]

R. C. Bakaraju, K. Ehrmann, E. Papas, and A. Ho, “Finite schematic eye models and their accuracy to in-vivo data,” Vision Res. 48(16), 1681–1694 (2008).
[CrossRef] [PubMed]

Barnett, J. K.

H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, and A. Roorda, “A population study on changes in wave aberrations with accommodation,” J. Vis. 4(4), 272–280 (2004).
[CrossRef] [PubMed]

Bedford, R. E.

Bennett, E. S.

E. S. Bennett, “Contact lens correction of presbyopia,” Clin. Exp. Optom. 91(3), 265–278 (2008).
[CrossRef] [PubMed]

Bozza, S.

P. G. Gobbi, F. Fasce, S. Bozza, and R. Brancato, “Optomechanical eye model with imaging capabilities for objective evaluation of intraocular lenses,” J. Cataract Refract. Surg. 32(4), 643–651 (2006).
[CrossRef] [PubMed]

Bradley, A.

Brancato, R.

P. G. Gobbi, F. Fasce, S. Bozza, and R. Brancato, “Optomechanical eye model with imaging capabilities for objective evaluation of intraocular lenses,” J. Cataract Refract. Surg. 32(4), 643–651 (2006).
[CrossRef] [PubMed]

Brennan, N. A.

Brunette, I.

I. Brunette, J. M. Bueno, M. Parent, H. Hamam, and P. Simonet, “Monochromatic aberrations as a function of age, from childhood to advanced age,” Invest. Ophthalmol. Vis. Sci. 44(12), 5438–5446 (2003).
[CrossRef] [PubMed]

Bueno, J. M.

I. Brunette, J. M. Bueno, M. Parent, H. Hamam, and P. Simonet, “Monochromatic aberrations as a function of age, from childhood to advanced age,” Invest. Ophthalmol. Vis. Sci. 44(12), 5438–5446 (2003).
[CrossRef] [PubMed]

Calver, R.

R. Calver, H. Radhakrishnan, E. Osuobeni, and D. O’Leary, “Peripheral refraction for distance and near vision in emmetropes and myopes,” Ophthalmic Physiol. Opt. 27(6), 584–593 (2007).
[CrossRef] [PubMed]

Campbell, C.

Carney, L. G.

S. A. Read, M. J. Collins, L. G. Carney, and R. J. Franklin, “The topography of the central and peripheral cornea,” Invest. Ophthalmol. Vis. Sci. 47(4), 1404–1415 (2006).
[CrossRef] [PubMed]

Charman, W. N.

H. Radhakrishnan and W. N. Charman, “Age-related changes in ocular aberrations with accommodation,” J. Vis. 7(7), 11–21, 1–21 (2007).
[CrossRef] [PubMed]

W. N. Charman and J. A. Jennings, “Longitudinal changes in peripheral refraction with age,” Ophthalmic Physiol. Opt. 26(5), 447–455 (2006).
[CrossRef] [PubMed]

W. N. Charman, J. Mountford, D. A. Atchison, and E. L. Markwell, “Peripheral refraction in orthokeratology patients,” Optom. Vis. Sci. 83(9), 641–648 (2006).
[CrossRef] [PubMed]

Cheng, H.

H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, and A. Roorda, “A population study on changes in wave aberrations with accommodation,” J. Vis. 4(4), 272–280 (2004).
[CrossRef] [PubMed]

Cheng, X.

Collins, M. J.

S. A. Read, M. J. Collins, L. G. Carney, and R. J. Franklin, “The topography of the central and peripheral cornea,” Invest. Ophthalmol. Vis. Sci. 47(4), 1404–1415 (2006).
[CrossRef] [PubMed]

Dainty, C.

Dalimier, E.

Donnelly, W.

W. Donnelly, “The Advanced Human Eye Model (AHEM): a personal binocular eye modeling system inclusive of refraction, diffraction, and scatter,” J. Refract. Surg. 24(9), 976–983 (2008).
[PubMed]

Dubbelman, M.

M. Dubbelman, V. A. Sicam, and G. L. Van der Heijde, “The shape of the anterior and posterior surface of the aging human cornea,” Vision Res. 46(6-7), 993–1001 (2006).
[CrossRef]

V. A. Sicam, M. Dubbelman, and R. G. van der Heijde, “Spherical aberration of the anterior and posterior surfaces of the human cornea,” J. Opt. Soc. Am. A 23(3), 544–549 (2006).
[CrossRef]

M. Dubbelman, R. G. van der Heijde, and H. A. Weeber, “Comment on “Scheimpflug and high-resolution magnetic resonance imaging of the anterior segment: a comparative study”,” J. Opt. Soc. Am. A 22(6), 1216–1218, discussion 1219–1220 (2005).
[CrossRef]

M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res. 45(1), 117–132 (2005).
[CrossRef]

M. Dubbelman, G. L. Van der Heijde, H. A. Weeber, and G. F. Vrensen, “Changes in the internal structure of the human crystalline lens with age and accommodation,” Vision Res. 43(22), 2363–2375 (2003).
[CrossRef] [PubMed]

M. Dubbelman, H. A. Weeber, R. G. van der Heijde, and H. J. Völker-Dieben, “Radius and asphericity of the posterior corneal surface determined by corrected Scheimpflug photography,” Acta Ophthalmol. Scand. 80(4), 379–383 (2002).
[CrossRef] [PubMed]

M. Dubbelman, G. L. van der Heijde, and H. A. Weeber, “The thickness of the aging human lens obtained from corrected Scheimpflug images,” Optom. Vis. Sci. 78(6), 411–416 (2001).
[CrossRef] [PubMed]

M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res. 41(14), 1867–1877 (2001).
[CrossRef] [PubMed]

Ehrmann, K.

R. C. Bakaraju, K. Ehrmann, E. Papas, and A. Ho, “Finite schematic eye models and their accuracy to in-vivo data,” Vision Res. 48(16), 1681–1694 (2008).
[CrossRef] [PubMed]

R. C. Bakaraju, K. Ehrmann, A. Ho, and E. B. Papas, “Pantoscopic tilt in spectacle-corrected myopia and its effect on peripheral refraction,” Ophthalmic Physiol. Opt. 28(6), 538–549 (2008).
[CrossRef] [PubMed]

Escudero-Sanz, I.

Fakhry, M.

S. Patel, M. Fakhry, and J. L. Alió, “Objective assessment of aberrations induced by multifocal contact lenses in vivo,” CLAO J. 28(4), 196–201 (2002).
[PubMed]

Fasce, F.

P. G. Gobbi, F. Fasce, S. Bozza, and R. Brancato, “Optomechanical eye model with imaging capabilities for objective evaluation of intraocular lenses,” J. Cataract Refract. Surg. 32(4), 643–651 (2006).
[CrossRef] [PubMed]

Fernández-Sánchez, V.

N. López-Gil, V. Fernández-Sánchez, R. Legras, R. Montés-Micó, F. Lara, and J. L. Nguyen-Khoa, “Accommodation-related changes in monochromatic aberrations of the human eye as a function of age,” Invest. Ophthalmol. Vis. Sci. 49(4), 1736–1743 (2008).
[CrossRef] [PubMed]

Fiala, W.

S. Pieh, W. Fiala, A. Malz, and W. Stork, “In vitro strehl ratios with spherical, aberration-free, average, and customized spherical aberration-correcting intraocular lenses,” Invest. Ophthalmol. Vis. Sci. 50(3), 1264–1270 (2008).
[CrossRef] [PubMed]

Franklin, R. J.

S. A. Read, M. J. Collins, L. G. Carney, and R. J. Franklin, “The topography of the central and peripheral cornea,” Invest. Ophthalmol. Vis. Sci. 47(4), 1404–1415 (2006).
[CrossRef] [PubMed]

Ginis, H. S.

S. Plainis, H. S. Ginis, and A. Pallikaris, “The effect of ocular aberrations on steady-state errors of accommodative response,” J. Vis. 5(5), 466–477 (2005).
[CrossRef] [PubMed]

Gobbi, P. G.

P. G. Gobbi, F. Fasce, S. Bozza, and R. Brancato, “Optomechanical eye model with imaging capabilities for objective evaluation of intraocular lenses,” J. Cataract Refract. Surg. 32(4), 643–651 (2006).
[CrossRef] [PubMed]

Goncharov, A. V.

Griffiths, A. M.

D. A. Atchison, N. Pritchard, S. D. White, and A. M. Griffiths, “Influence of age on peripheral refraction,” Vision Res. 45(6), 715–720 (2005).
[CrossRef] [PubMed]

Hamam, H.

I. Brunette, J. M. Bueno, M. Parent, H. Hamam, and P. Simonet, “Monochromatic aberrations as a function of age, from childhood to advanced age,” Invest. Ophthalmol. Vis. Sci. 44(12), 5438–5446 (2003).
[CrossRef] [PubMed]

Ho, A.

R. C. Bakaraju, K. Ehrmann, E. Papas, and A. Ho, “Finite schematic eye models and their accuracy to in-vivo data,” Vision Res. 48(16), 1681–1694 (2008).
[CrossRef] [PubMed]

R. C. Bakaraju, K. Ehrmann, A. Ho, and E. B. Papas, “Pantoscopic tilt in spectacle-corrected myopia and its effect on peripheral refraction,” Ophthalmic Physiol. Opt. 28(6), 538–549 (2008).
[CrossRef] [PubMed]

Hong, X.

Iskander, D. R.

G. Smith, D. A. Atchison, D. R. Iskander, C. E. Jones, and J. M. Pope, “Mathematical models for describing the shape of the in vitro unstretched human crystalline lens,” Vision Res. 49(20), 2442–2452 (2009).
[CrossRef] [PubMed]

Jennings, J. A.

W. N. Charman and J. A. Jennings, “Longitudinal changes in peripheral refraction with age,” Ophthalmic Physiol. Opt. 26(5), 447–455 (2006).
[CrossRef] [PubMed]

Jones, C. E.

G. Smith, D. A. Atchison, D. R. Iskander, C. E. Jones, and J. M. Pope, “Mathematical models for describing the shape of the in vitro unstretched human crystalline lens,” Vision Res. 49(20), 2442–2452 (2009).
[CrossRef] [PubMed]

C. E. Jones, D. A. Atchison, R. Meder, and J. M. Pope, “Refractive index distribution and optical properties of the isolated human lens measured using magnetic resonance imaging (MRI),” Vision Res. 45(18), 2352–2366 (2005).
[CrossRef] [PubMed]

Kasthurirangan, S.

D. A. Atchison, E. L. Markwell, S. Kasthurirangan, J. M. Pope, G. Smith, and P. G. Swann, “Age-related changes in optical and biometric characteristics of emmetropic eyes,” J. Vis. 8(4), 29–1–20 (2008).
[CrossRef] [PubMed]

H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, and A. Roorda, “A population study on changes in wave aberrations with accommodation,” J. Vis. 4(4), 272–280 (2004).
[CrossRef] [PubMed]

Lara, F.

N. López-Gil, V. Fernández-Sánchez, R. Legras, R. Montés-Micó, F. Lara, and J. L. Nguyen-Khoa, “Accommodation-related changes in monochromatic aberrations of the human eye as a function of age,” Invest. Ophthalmol. Vis. Sci. 49(4), 1736–1743 (2008).
[CrossRef] [PubMed]

Legras, R.

N. López-Gil, V. Fernández-Sánchez, R. Legras, R. Montés-Micó, F. Lara, and J. L. Nguyen-Khoa, “Accommodation-related changes in monochromatic aberrations of the human eye as a function of age,” Invest. Ophthalmol. Vis. Sci. 49(4), 1736–1743 (2008).
[CrossRef] [PubMed]

Liou, H. L.

López-Gil, N.

N. López-Gil, V. Fernández-Sánchez, R. Legras, R. Montés-Micó, F. Lara, and J. L. Nguyen-Khoa, “Accommodation-related changes in monochromatic aberrations of the human eye as a function of age,” Invest. Ophthalmol. Vis. Sci. 49(4), 1736–1743 (2008).
[CrossRef] [PubMed]

Malz, A.

S. Pieh, W. Fiala, A. Malz, and W. Stork, “In vitro strehl ratios with spherical, aberration-free, average, and customized spherical aberration-correcting intraocular lenses,” Invest. Ophthalmol. Vis. Sci. 50(3), 1264–1270 (2008).
[CrossRef] [PubMed]

Markwell, E. L.

D. A. Atchison, E. L. Markwell, S. Kasthurirangan, J. M. Pope, G. Smith, and P. G. Swann, “Age-related changes in optical and biometric characteristics of emmetropic eyes,” J. Vis. 8(4), 29–1–20 (2008).
[CrossRef] [PubMed]

W. N. Charman, J. Mountford, D. A. Atchison, and E. L. Markwell, “Peripheral refraction in orthokeratology patients,” Optom. Vis. Sci. 83(9), 641–648 (2006).
[CrossRef] [PubMed]

Marsack, J. D.

H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, and A. Roorda, “A population study on changes in wave aberrations with accommodation,” J. Vis. 4(4), 272–280 (2004).
[CrossRef] [PubMed]

McBrien, N. A.

N. A. McBrien and D. W. Adams, “A longitudinal investigation of adult-onset and adult-progression of myopia in an occupational group. Refractive and biometric findings,” Invest. Ophthalmol. Vis. Sci. 38(2), 321–333 (1997).
[PubMed]

Meder, R.

C. E. Jones, D. A. Atchison, R. Meder, and J. M. Pope, “Refractive index distribution and optical properties of the isolated human lens measured using magnetic resonance imaging (MRI),” Vision Res. 45(18), 2352–2366 (2005).
[CrossRef] [PubMed]

Montés-Micó, R.

N. López-Gil, V. Fernández-Sánchez, R. Legras, R. Montés-Micó, F. Lara, and J. L. Nguyen-Khoa, “Accommodation-related changes in monochromatic aberrations of the human eye as a function of age,” Invest. Ophthalmol. Vis. Sci. 49(4), 1736–1743 (2008).
[CrossRef] [PubMed]

Mountford, J.

W. N. Charman, J. Mountford, D. A. Atchison, and E. L. Markwell, “Peripheral refraction in orthokeratology patients,” Optom. Vis. Sci. 83(9), 641–648 (2006).
[CrossRef] [PubMed]

Navarro, R.

Nguyen-Khoa, J. L.

N. López-Gil, V. Fernández-Sánchez, R. Legras, R. Montés-Micó, F. Lara, and J. L. Nguyen-Khoa, “Accommodation-related changes in monochromatic aberrations of the human eye as a function of age,” Invest. Ophthalmol. Vis. Sci. 49(4), 1736–1743 (2008).
[CrossRef] [PubMed]

Norrby, S.

Nowakowski, M.

O’Leary, D.

R. Calver, H. Radhakrishnan, E. Osuobeni, and D. O’Leary, “Peripheral refraction for distance and near vision in emmetropes and myopes,” Ophthalmic Physiol. Opt. 27(6), 584–593 (2007).
[CrossRef] [PubMed]

Osuobeni, E.

R. Calver, H. Radhakrishnan, E. Osuobeni, and D. O’Leary, “Peripheral refraction for distance and near vision in emmetropes and myopes,” Ophthalmic Physiol. Opt. 27(6), 584–593 (2007).
[CrossRef] [PubMed]

Pallikaris, A.

S. Plainis, H. S. Ginis, and A. Pallikaris, “The effect of ocular aberrations on steady-state errors of accommodative response,” J. Vis. 5(5), 466–477 (2005).
[CrossRef] [PubMed]

Papas, E.

R. C. Bakaraju, K. Ehrmann, E. Papas, and A. Ho, “Finite schematic eye models and their accuracy to in-vivo data,” Vision Res. 48(16), 1681–1694 (2008).
[CrossRef] [PubMed]

Papas, E. B.

R. C. Bakaraju, K. Ehrmann, A. Ho, and E. B. Papas, “Pantoscopic tilt in spectacle-corrected myopia and its effect on peripheral refraction,” Ophthalmic Physiol. Opt. 28(6), 538–549 (2008).
[CrossRef] [PubMed]

Parent, M.

I. Brunette, J. M. Bueno, M. Parent, H. Hamam, and P. Simonet, “Monochromatic aberrations as a function of age, from childhood to advanced age,” Invest. Ophthalmol. Vis. Sci. 44(12), 5438–5446 (2003).
[CrossRef] [PubMed]

Patel, S.

S. Patel, M. Fakhry, and J. L. Alió, “Objective assessment of aberrations induced by multifocal contact lenses in vivo,” CLAO J. 28(4), 196–201 (2002).
[PubMed]

Pieh, S.

S. Pieh, W. Fiala, A. Malz, and W. Stork, “In vitro strehl ratios with spherical, aberration-free, average, and customized spherical aberration-correcting intraocular lenses,” Invest. Ophthalmol. Vis. Sci. 50(3), 1264–1270 (2008).
[CrossRef] [PubMed]

Piers, P.

Plainis, S.

S. Plainis, H. S. Ginis, and A. Pallikaris, “The effect of ocular aberrations on steady-state errors of accommodative response,” J. Vis. 5(5), 466–477 (2005).
[CrossRef] [PubMed]

Pope, J. M.

G. Smith, D. A. Atchison, D. R. Iskander, C. E. Jones, and J. M. Pope, “Mathematical models for describing the shape of the in vitro unstretched human crystalline lens,” Vision Res. 49(20), 2442–2452 (2009).
[CrossRef] [PubMed]

D. A. Atchison, E. L. Markwell, S. Kasthurirangan, J. M. Pope, G. Smith, and P. G. Swann, “Age-related changes in optical and biometric characteristics of emmetropic eyes,” J. Vis. 8(4), 29–1–20 (2008).
[CrossRef] [PubMed]

C. E. Jones, D. A. Atchison, R. Meder, and J. M. Pope, “Refractive index distribution and optical properties of the isolated human lens measured using magnetic resonance imaging (MRI),” Vision Res. 45(18), 2352–2366 (2005).
[CrossRef] [PubMed]

Pritchard, N.

D. A. Atchison, N. Pritchard, S. D. White, and A. M. Griffiths, “Influence of age on peripheral refraction,” Vision Res. 45(6), 715–720 (2005).
[CrossRef] [PubMed]

Radhakrishnan, H.

R. Calver, H. Radhakrishnan, E. Osuobeni, and D. O’Leary, “Peripheral refraction for distance and near vision in emmetropes and myopes,” Ophthalmic Physiol. Opt. 27(6), 584–593 (2007).
[CrossRef] [PubMed]

H. Radhakrishnan and W. N. Charman, “Age-related changes in ocular aberrations with accommodation,” J. Vis. 7(7), 11–21, 1–21 (2007).
[CrossRef] [PubMed]

Read, S. A.

S. A. Read, M. J. Collins, L. G. Carney, and R. J. Franklin, “The topography of the central and peripheral cornea,” Invest. Ophthalmol. Vis. Sci. 47(4), 1404–1415 (2006).
[CrossRef] [PubMed]

Roorda, A.

H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, and A. Roorda, “A population study on changes in wave aberrations with accommodation,” J. Vis. 4(4), 272–280 (2004).
[CrossRef] [PubMed]

Schaeffel, F.

J. Tabernero and F. Schaeffel, “Fast scanning photoretinoscope for measuring peripheral refraction as a function of accommodation,” J. Opt. Soc. Am. A 26(10), 2206–2210 (2009).
[CrossRef]

J. Tabernero, D. Vazquez, A. Seidemann, D. Uttenweiler, and F. Schaeffel, “Effects of myopic spectacle correction and radial refractive gradient spectacles on peripheral refraction,” Vision Res. 49(17), 2176–2186 (2009).
[CrossRef] [PubMed]

Seidemann, A.

J. Tabernero, D. Vazquez, A. Seidemann, D. Uttenweiler, and F. Schaeffel, “Effects of myopic spectacle correction and radial refractive gradient spectacles on peripheral refraction,” Vision Res. 49(17), 2176–2186 (2009).
[CrossRef] [PubMed]

Sheehan, M. T.

Shen, J.

J. Shen and L. N. Thibos, “Measuring ocular aberrations and image quality in peripheral vision with a clinical wavefront aberrometer,” Clin. Exp. Optom. 92(3), 212–222 (2009).
[CrossRef] [PubMed]

Sicam, V. A.

M. Dubbelman, V. A. Sicam, and G. L. Van der Heijde, “The shape of the anterior and posterior surface of the aging human cornea,” Vision Res. 46(6-7), 993–1001 (2006).
[CrossRef]

V. A. Sicam, M. Dubbelman, and R. G. van der Heijde, “Spherical aberration of the anterior and posterior surfaces of the human cornea,” J. Opt. Soc. Am. A 23(3), 544–549 (2006).
[CrossRef]

Simonet, P.

I. Brunette, J. M. Bueno, M. Parent, H. Hamam, and P. Simonet, “Monochromatic aberrations as a function of age, from childhood to advanced age,” Invest. Ophthalmol. Vis. Sci. 44(12), 5438–5446 (2003).
[CrossRef] [PubMed]

Smith, G.

G. Smith, D. A. Atchison, D. R. Iskander, C. E. Jones, and J. M. Pope, “Mathematical models for describing the shape of the in vitro unstretched human crystalline lens,” Vision Res. 49(20), 2442–2452 (2009).
[CrossRef] [PubMed]

D. A. Atchison, E. L. Markwell, S. Kasthurirangan, J. M. Pope, G. Smith, and P. G. Swann, “Age-related changes in optical and biometric characteristics of emmetropic eyes,” J. Vis. 8(4), 29–1–20 (2008).
[CrossRef] [PubMed]

Stork, W.

S. Pieh, W. Fiala, A. Malz, and W. Stork, “In vitro strehl ratios with spherical, aberration-free, average, and customized spherical aberration-correcting intraocular lenses,” Invest. Ophthalmol. Vis. Sci. 50(3), 1264–1270 (2008).
[CrossRef] [PubMed]

Swann, P. G.

D. A. Atchison, E. L. Markwell, S. Kasthurirangan, J. M. Pope, G. Smith, and P. G. Swann, “Age-related changes in optical and biometric characteristics of emmetropic eyes,” J. Vis. 8(4), 29–1–20 (2008).
[CrossRef] [PubMed]

Tabernero, J.

J. Tabernero, D. Vazquez, A. Seidemann, D. Uttenweiler, and F. Schaeffel, “Effects of myopic spectacle correction and radial refractive gradient spectacles on peripheral refraction,” Vision Res. 49(17), 2176–2186 (2009).
[CrossRef] [PubMed]

J. Tabernero and F. Schaeffel, “Fast scanning photoretinoscope for measuring peripheral refraction as a function of accommodation,” J. Opt. Soc. Am. A 26(10), 2206–2210 (2009).
[CrossRef]

Thibos, L. N.

Uttenweiler, D.

J. Tabernero, D. Vazquez, A. Seidemann, D. Uttenweiler, and F. Schaeffel, “Effects of myopic spectacle correction and radial refractive gradient spectacles on peripheral refraction,” Vision Res. 49(17), 2176–2186 (2009).
[CrossRef] [PubMed]

Van der Heijde, G. L.

M. Dubbelman, V. A. Sicam, and G. L. Van der Heijde, “The shape of the anterior and posterior surface of the aging human cornea,” Vision Res. 46(6-7), 993–1001 (2006).
[CrossRef]

M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res. 45(1), 117–132 (2005).
[CrossRef]

M. Dubbelman, G. L. Van der Heijde, H. A. Weeber, and G. F. Vrensen, “Changes in the internal structure of the human crystalline lens with age and accommodation,” Vision Res. 43(22), 2363–2375 (2003).
[CrossRef] [PubMed]

M. Dubbelman, G. L. van der Heijde, and H. A. Weeber, “The thickness of the aging human lens obtained from corrected Scheimpflug images,” Optom. Vis. Sci. 78(6), 411–416 (2001).
[CrossRef] [PubMed]

M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res. 41(14), 1867–1877 (2001).
[CrossRef] [PubMed]

van der Heijde, R. G.

van der Mooren, M.

Vazquez, D.

J. Tabernero, D. Vazquez, A. Seidemann, D. Uttenweiler, and F. Schaeffel, “Effects of myopic spectacle correction and radial refractive gradient spectacles on peripheral refraction,” Vision Res. 49(17), 2176–2186 (2009).
[CrossRef] [PubMed]

Vilupuru, A. S.

H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, and A. Roorda, “A population study on changes in wave aberrations with accommodation,” J. Vis. 4(4), 272–280 (2004).
[CrossRef] [PubMed]

Völker-Dieben, H. J.

M. Dubbelman, H. A. Weeber, R. G. van der Heijde, and H. J. Völker-Dieben, “Radius and asphericity of the posterior corneal surface determined by corrected Scheimpflug photography,” Acta Ophthalmol. Scand. 80(4), 379–383 (2002).
[CrossRef] [PubMed]

Vrensen, G. F.

M. Dubbelman, G. L. Van der Heijde, H. A. Weeber, and G. F. Vrensen, “Changes in the internal structure of the human crystalline lens with age and accommodation,” Vision Res. 43(22), 2363–2375 (2003).
[CrossRef] [PubMed]

Weeber, H. A.

M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res. 45(1), 117–132 (2005).
[CrossRef]

M. Dubbelman, R. G. van der Heijde, and H. A. Weeber, “Comment on “Scheimpflug and high-resolution magnetic resonance imaging of the anterior segment: a comparative study”,” J. Opt. Soc. Am. A 22(6), 1216–1218, discussion 1219–1220 (2005).
[CrossRef]

M. Dubbelman, G. L. Van der Heijde, H. A. Weeber, and G. F. Vrensen, “Changes in the internal structure of the human crystalline lens with age and accommodation,” Vision Res. 43(22), 2363–2375 (2003).
[CrossRef] [PubMed]

M. Dubbelman, H. A. Weeber, R. G. van der Heijde, and H. J. Völker-Dieben, “Radius and asphericity of the posterior corneal surface determined by corrected Scheimpflug photography,” Acta Ophthalmol. Scand. 80(4), 379–383 (2002).
[CrossRef] [PubMed]

M. Dubbelman, G. L. van der Heijde, and H. A. Weeber, “The thickness of the aging human lens obtained from corrected Scheimpflug images,” Optom. Vis. Sci. 78(6), 411–416 (2001).
[CrossRef] [PubMed]

White, S. D.

D. A. Atchison, N. Pritchard, S. D. White, and A. M. Griffiths, “Influence of age on peripheral refraction,” Vision Res. 45(6), 715–720 (2005).
[CrossRef] [PubMed]

Wyszecki, G.

Ye, M.

Zhang, X.

Acta Ophthalmol. Scand. (1)

M. Dubbelman, H. A. Weeber, R. G. van der Heijde, and H. J. Völker-Dieben, “Radius and asphericity of the posterior corneal surface determined by corrected Scheimpflug photography,” Acta Ophthalmol. Scand. 80(4), 379–383 (2002).
[CrossRef] [PubMed]

Appl. Opt. (2)

CLAO J. (1)

S. Patel, M. Fakhry, and J. L. Alió, “Objective assessment of aberrations induced by multifocal contact lenses in vivo,” CLAO J. 28(4), 196–201 (2002).
[PubMed]

Clin. Exp. Optom. (2)

J. Shen and L. N. Thibos, “Measuring ocular aberrations and image quality in peripheral vision with a clinical wavefront aberrometer,” Clin. Exp. Optom. 92(3), 212–222 (2009).
[CrossRef] [PubMed]

E. S. Bennett, “Contact lens correction of presbyopia,” Clin. Exp. Optom. 91(3), 265–278 (2008).
[CrossRef] [PubMed]

Invest. Ophthalmol. Vis. Sci. (5)

N. López-Gil, V. Fernández-Sánchez, R. Legras, R. Montés-Micó, F. Lara, and J. L. Nguyen-Khoa, “Accommodation-related changes in monochromatic aberrations of the human eye as a function of age,” Invest. Ophthalmol. Vis. Sci. 49(4), 1736–1743 (2008).
[CrossRef] [PubMed]

I. Brunette, J. M. Bueno, M. Parent, H. Hamam, and P. Simonet, “Monochromatic aberrations as a function of age, from childhood to advanced age,” Invest. Ophthalmol. Vis. Sci. 44(12), 5438–5446 (2003).
[CrossRef] [PubMed]

N. A. McBrien and D. W. Adams, “A longitudinal investigation of adult-onset and adult-progression of myopia in an occupational group. Refractive and biometric findings,” Invest. Ophthalmol. Vis. Sci. 38(2), 321–333 (1997).
[PubMed]

S. A. Read, M. J. Collins, L. G. Carney, and R. J. Franklin, “The topography of the central and peripheral cornea,” Invest. Ophthalmol. Vis. Sci. 47(4), 1404–1415 (2006).
[CrossRef] [PubMed]

S. Pieh, W. Fiala, A. Malz, and W. Stork, “In vitro strehl ratios with spherical, aberration-free, average, and customized spherical aberration-correcting intraocular lenses,” Invest. Ophthalmol. Vis. Sci. 50(3), 1264–1270 (2008).
[CrossRef] [PubMed]

J. Cataract Refract. Surg. (1)

P. G. Gobbi, F. Fasce, S. Bozza, and R. Brancato, “Optomechanical eye model with imaging capabilities for objective evaluation of intraocular lenses,” J. Cataract Refract. Surg. 32(4), 643–651 (2006).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (8)

E. Dalimier and C. Dainty, “Use of a customized vision model to analyze the effects of higher-order ocular aberrations and neural filtering on contrast threshold performance,” J. Opt. Soc. Am. A 25(8), 2078–2087 (2008).
[CrossRef]

J. Tabernero and F. Schaeffel, “Fast scanning photoretinoscope for measuring peripheral refraction as a function of accommodation,” J. Opt. Soc. Am. A 26(10), 2206–2210 (2009).
[CrossRef]

H. L. Liou and N. A. Brennan, “Anatomically accurate, finite model eye for optical modeling,” J. Opt. Soc. Am. A 14(8), 1684–1695 (1997).
[CrossRef]

I. Escudero-Sanz and R. Navarro, “Off-axis aberrations of a wide-angle schematic eye model,” J. Opt. Soc. Am. A 16(8), 1881–1891 (1999).
[CrossRef]

A. V. Goncharov and C. Dainty, “Wide-field schematic eye models with gradient-index lens,” J. Opt. Soc. Am. A 24(8), 2157–2174 (2007).
[CrossRef]

L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A 19(12), 2329–2348 (2002).
[CrossRef]

M. Dubbelman, R. G. van der Heijde, and H. A. Weeber, “Comment on “Scheimpflug and high-resolution magnetic resonance imaging of the anterior segment: a comparative study”,” J. Opt. Soc. Am. A 22(6), 1216–1218, discussion 1219–1220 (2005).
[CrossRef]

V. A. Sicam, M. Dubbelman, and R. G. van der Heijde, “Spherical aberration of the anterior and posterior surfaces of the human cornea,” J. Opt. Soc. Am. A 23(3), 544–549 (2006).
[CrossRef]

J. Refract. Surg. (1)

W. Donnelly, “The Advanced Human Eye Model (AHEM): a personal binocular eye modeling system inclusive of refraction, diffraction, and scatter,” J. Refract. Surg. 24(9), 976–983 (2008).
[PubMed]

J. Vis. (4)

S. Plainis, H. S. Ginis, and A. Pallikaris, “The effect of ocular aberrations on steady-state errors of accommodative response,” J. Vis. 5(5), 466–477 (2005).
[CrossRef] [PubMed]

D. A. Atchison, E. L. Markwell, S. Kasthurirangan, J. M. Pope, G. Smith, and P. G. Swann, “Age-related changes in optical and biometric characteristics of emmetropic eyes,” J. Vis. 8(4), 29–1–20 (2008).
[CrossRef] [PubMed]

H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, and A. Roorda, “A population study on changes in wave aberrations with accommodation,” J. Vis. 4(4), 272–280 (2004).
[CrossRef] [PubMed]

H. Radhakrishnan and W. N. Charman, “Age-related changes in ocular aberrations with accommodation,” J. Vis. 7(7), 11–21, 1–21 (2007).
[CrossRef] [PubMed]

Ophthalmic Physiol. Opt. (3)

R. C. Bakaraju, K. Ehrmann, A. Ho, and E. B. Papas, “Pantoscopic tilt in spectacle-corrected myopia and its effect on peripheral refraction,” Ophthalmic Physiol. Opt. 28(6), 538–549 (2008).
[CrossRef] [PubMed]

R. Calver, H. Radhakrishnan, E. Osuobeni, and D. O’Leary, “Peripheral refraction for distance and near vision in emmetropes and myopes,” Ophthalmic Physiol. Opt. 27(6), 584–593 (2007).
[CrossRef] [PubMed]

W. N. Charman and J. A. Jennings, “Longitudinal changes in peripheral refraction with age,” Ophthalmic Physiol. Opt. 26(5), 447–455 (2006).
[CrossRef] [PubMed]

Opt. Express (1)

Optom. Vis. Sci. (2)

M. Dubbelman, G. L. van der Heijde, and H. A. Weeber, “The thickness of the aging human lens obtained from corrected Scheimpflug images,” Optom. Vis. Sci. 78(6), 411–416 (2001).
[CrossRef] [PubMed]

W. N. Charman, J. Mountford, D. A. Atchison, and E. L. Markwell, “Peripheral refraction in orthokeratology patients,” Optom. Vis. Sci. 83(9), 641–648 (2006).
[CrossRef] [PubMed]

Vision Res. (10)

J. Tabernero, D. Vazquez, A. Seidemann, D. Uttenweiler, and F. Schaeffel, “Effects of myopic spectacle correction and radial refractive gradient spectacles on peripheral refraction,” Vision Res. 49(17), 2176–2186 (2009).
[CrossRef] [PubMed]

D. A. Atchison, N. Pritchard, S. D. White, and A. M. Griffiths, “Influence of age on peripheral refraction,” Vision Res. 45(6), 715–720 (2005).
[CrossRef] [PubMed]

M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res. 45(1), 117–132 (2005).
[CrossRef]

M. Dubbelman, G. L. Van der Heijde, H. A. Weeber, and G. F. Vrensen, “Changes in the internal structure of the human crystalline lens with age and accommodation,” Vision Res. 43(22), 2363–2375 (2003).
[CrossRef] [PubMed]

C. E. Jones, D. A. Atchison, R. Meder, and J. M. Pope, “Refractive index distribution and optical properties of the isolated human lens measured using magnetic resonance imaging (MRI),” Vision Res. 45(18), 2352–2366 (2005).
[CrossRef] [PubMed]

G. Smith, D. A. Atchison, D. R. Iskander, C. E. Jones, and J. M. Pope, “Mathematical models for describing the shape of the in vitro unstretched human crystalline lens,” Vision Res. 49(20), 2442–2452 (2009).
[CrossRef] [PubMed]

M. Dubbelman, V. A. Sicam, and G. L. Van der Heijde, “The shape of the anterior and posterior surface of the aging human cornea,” Vision Res. 46(6-7), 993–1001 (2006).
[CrossRef]

M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res. 41(14), 1867–1877 (2001).
[CrossRef] [PubMed]

D. A. Atchison, “Optical models for human myopic eyes,” Vision Res. 46(14), 2236–2250 (2006).
[CrossRef] [PubMed]

R. C. Bakaraju, K. Ehrmann, E. Papas, and A. Ho, “Finite schematic eye models and their accuracy to in-vivo data,” Vision Res. 48(16), 1681–1694 (2008).
[CrossRef] [PubMed]

Other (4)

ISO11979–2, “Ophthalmic implants-Intraocular lenses-Part 2: optical properties and test methods,” (International Organization for Standardization, 1999).

ZEMAX, “Focus Software Inc,” (Bellevue, WA, USA, 2009).

C. W. Oyster, The Human Eye; Structure and Function (Sinauer Associates, Sunderland, MA 1999).
[PubMed]

D. A. Atchison, and G. Smith, Optics of the Human Eye (Butterworth-Heinemann, Oxford, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

A simplified mechanical layout of the developed physical model eye presented with three test channels. Channel 1 includes a moveable visual display unit. Channel 2 consists of optical bench set-up for single-pass measurements. The light is first attenuated with neutral density filter (ND), further spatially filtered using a microscopic objective (SF) (8mm EFL), and 50µm pinhole; and collimated with achromatic doublet L1 (250mm EFL). Channel 3 is used for double-pass measurements via COAS aberrometer. A relay system consisting L2 and L3, 125mm EFL each, is used to increase the working distance of aberrometer.

Fig. 2
Fig. 2

A snapshot of the constructed physical model eye. A magnified overview of the anterior chamber of the model eye shows the humidity chamber, cornea and sclera. The individual elements including cornea and crystalline lens are also shown in highlighted subsection.

Fig. 3
Fig. 3

Wavefront aberration contour plots of a subset configuration a) the expected model eye and b) the actual physical model eye built.

Fig. 4
Fig. 4

Chromatic shifts in refraction (D) relative to a reference wavelength of 580 nm for the physical model eye, selected schematic models and real eyes.

Fig. 5
Fig. 5

Through-focus point spread functions captured at the retinal plane by photoactive sensor and their respective radially averaged modulation transfer functions of one subset configuration of the model eye (unaccommodated 25 year old), at 4 mm pupil diameter.

Fig. 6
Fig. 6

Point spread functions of the 25-year old unaccommodated model eye configuration captured in the ‘virtual’ retinal space (imaged by photoactive sensor) for retinal eccentricities from 0° to 30°, at 5mm pupil diameter.

Fig. 7
Fig. 7

Radially averaged modulation transfer functions of the 25-year old unaccommodated model eye configuration calculated in the ‘virtual’ retinal space for retinal eccentricities from 0° to 30°, at 5mm pupil diameter.

Fig. 8
Fig. 8

Images of the visual acuity charts presented at 40 cm, captured at the retinal plane of the model eye configured as a −2.00 D (myope with no accommodation) with 4-mm pupil diameter. The first column (A) of the image montage was obtained from the uncorrected myopic model; while the rest were obtained via CL correction (B) well-centered single vision CL (−2.00 D) (C) well centered, center-near, high-add ( + 2.50 D) multifocal CL 2 (D) well centered, center-near, high-add ( + 2.50 D) multifocal CL 3 (E) a center-distant, high-add ( + 2.50 D) multifocal CL 4, decentered by 0.50 mm.

Tables (1)

Tables Icon

Table 1 Physical model eye configurations as a function of accommodation (A) and refractive error (RE), in diopters.

Metrics