Abstract

In this paper, we reported high speed optical test on polymeric optical waveguide array with embedded 45° micro-mirrors on flexible substrate for out-of-plane optical interconnects. The waveguide array was bent with curvature ranging from 61mm to 5mm. As the bending radius decreases, the average insertion loss increases from 3.4dB to 7.7dB for single-mode fiber (SMF) coupling and from 5.5dB to 7.9dB for multi-mode fiber (MMF) coupling, respectively. Eye-diagrams under such bending conditions show that the Q factor decreases from 8.0 to 6.1 and the calculated bit error rate (BER) increases from 10-16 to 10-10 at 10Gbps.

© 2010 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Photolithography-free polymer optical waveguide arrays for optical backplane bus

Xinyuan Dou, Alan X. Wang, Xiaohui Lin, and Ray T. Chen
Opt. Express 19(15) 14403-14410 (2011)

Low bending loss metal waveguide embedded in a free-standing multilayered polymer film

Jong-Moo Lee, Suntak Park, Min-su Kim, Seung Koo Park, Jin Tae Kim, Joong-Seon Choe, Wook-Jae Lee, Myung-Hyun Lee, and Jung Jin Ju
Opt. Express 17(1) 228-234 (2009)

Low bending loss characteristics of hybrid plasmonic waveguide for flexible optical interconnect

Jin Tae Kim, Suntak Park, Jung Jin Ju, Sangjun Lee, and Sangin Kim
Opt. Express 18(23) 24213-24220 (2010)

References

  • View by:
  • |
  • |

  1. O. Ishida and T. Wang, “100 gigabit Ethernet transport,” IEEE Commun. Mag. 48, S4 – S4, (2010).
    [Crossref]
  2. R. T. Chen, L. Lin, C. Choi, Y. Liu, B. Bihari, L. Wu, S. Tang, R. Wickman, B. Picor, M. K. Hibbs-Brenner, J. Bristow, and Y. S. Liu, “Fully Embedded Board level Guided-wave Optoelctronic Interconnects,” Proc. IEEE, 88, 780–793 (2000).
    [Crossref]
  3. F. E. Doany, C. L. Schow, C. W. Baks, D. M. Kuchta, P. Pepeljugoski, L. Schares, R. Budd, F. Libsch, R. Dangel, F. Horst, B. J. Offrein, and J. A. Kash, “160 Gb/s Bidirectional Polymer-Waveguide Board-Level Optical Interconnects Using CMOS-Based Transceivers,” Advanced Packaging, IEEE Transactions on, 32(2),345–359 (2009).
  4. X. Y. Dou, X. L Wang, H. Y. Huang, X. H. Lin, D. Ding, D. Z. Pan, and R. T. Chen, “Polymeric waveguides with embedded micro-mirrors formed by Metallic Hard Mold,” Opt. Express 18, 378–385 (2010).
    [Crossref] [PubMed]
  5. L. Wang, X. Wang, W. Jiang, J. Choi, H. Bi, and R. T. Chen, “45° polymer-based total internal reflection coupling mirrors for fully embedded intraboard guided wave optical interconnects,” Appl. Phys. Lett. 87(14), 141110 (2005).
  6. X. Wang, W. Jiang, L. Wang, H. Bi, and R. T. Chen, “Fully Embedded Board-Level Optical Interconnects From Waveguide Fabrication to Device Integration,” J. Lightwave Technol. 26(2), 243–250 (2008).
    [Crossref]
  7. M. Hikita, R. Yoshimura, M. Usui, S. Tomaru, and S. Imamura, “Polymeric optical waveguides for optical interconnections,” Thin Solid Films, 331(1), 303–308 (1998).
    [Crossref]
  8. F. Wang, F. Liu, and A. Adibi, “45 Degree Polymer Micromirror Integration for Board-Level Three-Dimensional Optical Interconnects,” Opt. Express, 17(13), 10514–10521 (2009).
    [Crossref] [PubMed]
  9. W. J. Lee, S. H. Hwang, J. W. Lim, and B. S. Rho, “Polymeric Waveguide Film With Embedded Mirror for Multilayer Optical Circuits,” IEEE Photon. Technol. Lett. 21(1), 12–14 (2009).
  10. J. Van Erps, N. Hendrickx, C. Debaes, P. Van Daele, and H. Thienpont, “Discrete Out-of-Plane Coupling Components for Printed Circuit Board-Level Optical Interconnections” IEEE Photon. Technol. Lett. 19(21), 1753–1755 (2007).
    [Crossref]
  11. N. Hendrickx, J. Van Erps, E. Bosman, C. Debaes, H. Thienpont, and P. Van Daele, “Embedded Micromirror Inserts for Optical Printed Circuit Boards,” IEEE Photon. Technol. Lett. 20(20), 1727–1729 (2008).
    [Crossref]
  12. B. S. Rho, W. J. Lee, J. W. Lim, G. W. Kim, C. H. Cho, and S. H. Hwang, “High-reliability flexible optical printed circuit board for opto-electric interconnections,” Opt. Eng. 48(1), 015401 (2009).
    [Crossref]
  13. B. Howley, X. L. Wang, Y. H. Chen, and Ray T. Chen, “Experimental evaluation of curved polymer waveguides with air trenches and offsets,” J. Appl. Phys.100, 023114 (2006).

Adibi, A.

F. Wang, F. Liu, and A. Adibi, “45 Degree Polymer Micromirror Integration for Board-Level Three-Dimensional Optical Interconnects,” Opt. Express, 17(13), 10514–10521 (2009).
[Crossref] [PubMed]

Baks, C. W.

F. E. Doany, C. L. Schow, C. W. Baks, D. M. Kuchta, P. Pepeljugoski, L. Schares, R. Budd, F. Libsch, R. Dangel, F. Horst, B. J. Offrein, and J. A. Kash, “160 Gb/s Bidirectional Polymer-Waveguide Board-Level Optical Interconnects Using CMOS-Based Transceivers,” Advanced Packaging, IEEE Transactions on, 32(2),345–359 (2009).

Bi, H.

L. Wang, X. Wang, W. Jiang, J. Choi, H. Bi, and R. T. Chen, “45° polymer-based total internal reflection coupling mirrors for fully embedded intraboard guided wave optical interconnects,” Appl. Phys. Lett. 87(14), 141110 (2005).

X. Wang, W. Jiang, L. Wang, H. Bi, and R. T. Chen, “Fully Embedded Board-Level Optical Interconnects From Waveguide Fabrication to Device Integration,” J. Lightwave Technol. 26(2), 243–250 (2008).
[Crossref]

Bihari, B.

R. T. Chen, L. Lin, C. Choi, Y. Liu, B. Bihari, L. Wu, S. Tang, R. Wickman, B. Picor, M. K. Hibbs-Brenner, J. Bristow, and Y. S. Liu, “Fully Embedded Board level Guided-wave Optoelctronic Interconnects,” Proc. IEEE, 88, 780–793 (2000).
[Crossref]

Bosman, E.

N. Hendrickx, J. Van Erps, E. Bosman, C. Debaes, H. Thienpont, and P. Van Daele, “Embedded Micromirror Inserts for Optical Printed Circuit Boards,” IEEE Photon. Technol. Lett. 20(20), 1727–1729 (2008).
[Crossref]

Bristow, J.

R. T. Chen, L. Lin, C. Choi, Y. Liu, B. Bihari, L. Wu, S. Tang, R. Wickman, B. Picor, M. K. Hibbs-Brenner, J. Bristow, and Y. S. Liu, “Fully Embedded Board level Guided-wave Optoelctronic Interconnects,” Proc. IEEE, 88, 780–793 (2000).
[Crossref]

Budd, R.

F. E. Doany, C. L. Schow, C. W. Baks, D. M. Kuchta, P. Pepeljugoski, L. Schares, R. Budd, F. Libsch, R. Dangel, F. Horst, B. J. Offrein, and J. A. Kash, “160 Gb/s Bidirectional Polymer-Waveguide Board-Level Optical Interconnects Using CMOS-Based Transceivers,” Advanced Packaging, IEEE Transactions on, 32(2),345–359 (2009).

Chen, R. T.

X. Y. Dou, X. L Wang, H. Y. Huang, X. H. Lin, D. Ding, D. Z. Pan, and R. T. Chen, “Polymeric waveguides with embedded micro-mirrors formed by Metallic Hard Mold,” Opt. Express 18, 378–385 (2010).
[Crossref] [PubMed]

R. T. Chen, L. Lin, C. Choi, Y. Liu, B. Bihari, L. Wu, S. Tang, R. Wickman, B. Picor, M. K. Hibbs-Brenner, J. Bristow, and Y. S. Liu, “Fully Embedded Board level Guided-wave Optoelctronic Interconnects,” Proc. IEEE, 88, 780–793 (2000).
[Crossref]

X. Wang, W. Jiang, L. Wang, H. Bi, and R. T. Chen, “Fully Embedded Board-Level Optical Interconnects From Waveguide Fabrication to Device Integration,” J. Lightwave Technol. 26(2), 243–250 (2008).
[Crossref]

L. Wang, X. Wang, W. Jiang, J. Choi, H. Bi, and R. T. Chen, “45° polymer-based total internal reflection coupling mirrors for fully embedded intraboard guided wave optical interconnects,” Appl. Phys. Lett. 87(14), 141110 (2005).

Chen, Ray T.

B. Howley, X. L. Wang, Y. H. Chen, and Ray T. Chen, “Experimental evaluation of curved polymer waveguides with air trenches and offsets,” J. Appl. Phys.100, 023114 (2006).

Chen, Y. H.

B. Howley, X. L. Wang, Y. H. Chen, and Ray T. Chen, “Experimental evaluation of curved polymer waveguides with air trenches and offsets,” J. Appl. Phys.100, 023114 (2006).

Cho, C. H.

B. S. Rho, W. J. Lee, J. W. Lim, G. W. Kim, C. H. Cho, and S. H. Hwang, “High-reliability flexible optical printed circuit board for opto-electric interconnections,” Opt. Eng. 48(1), 015401 (2009).
[Crossref]

Choi, C.

R. T. Chen, L. Lin, C. Choi, Y. Liu, B. Bihari, L. Wu, S. Tang, R. Wickman, B. Picor, M. K. Hibbs-Brenner, J. Bristow, and Y. S. Liu, “Fully Embedded Board level Guided-wave Optoelctronic Interconnects,” Proc. IEEE, 88, 780–793 (2000).
[Crossref]

Choi, J.

L. Wang, X. Wang, W. Jiang, J. Choi, H. Bi, and R. T. Chen, “45° polymer-based total internal reflection coupling mirrors for fully embedded intraboard guided wave optical interconnects,” Appl. Phys. Lett. 87(14), 141110 (2005).

Dangel, R.

F. E. Doany, C. L. Schow, C. W. Baks, D. M. Kuchta, P. Pepeljugoski, L. Schares, R. Budd, F. Libsch, R. Dangel, F. Horst, B. J. Offrein, and J. A. Kash, “160 Gb/s Bidirectional Polymer-Waveguide Board-Level Optical Interconnects Using CMOS-Based Transceivers,” Advanced Packaging, IEEE Transactions on, 32(2),345–359 (2009).

Debaes, C.

N. Hendrickx, J. Van Erps, E. Bosman, C. Debaes, H. Thienpont, and P. Van Daele, “Embedded Micromirror Inserts for Optical Printed Circuit Boards,” IEEE Photon. Technol. Lett. 20(20), 1727–1729 (2008).
[Crossref]

J. Van Erps, N. Hendrickx, C. Debaes, P. Van Daele, and H. Thienpont, “Discrete Out-of-Plane Coupling Components for Printed Circuit Board-Level Optical Interconnections” IEEE Photon. Technol. Lett. 19(21), 1753–1755 (2007).
[Crossref]

Ding, D.

X. Y. Dou, X. L Wang, H. Y. Huang, X. H. Lin, D. Ding, D. Z. Pan, and R. T. Chen, “Polymeric waveguides with embedded micro-mirrors formed by Metallic Hard Mold,” Opt. Express 18, 378–385 (2010).
[Crossref] [PubMed]

Doany, F. E.

F. E. Doany, C. L. Schow, C. W. Baks, D. M. Kuchta, P. Pepeljugoski, L. Schares, R. Budd, F. Libsch, R. Dangel, F. Horst, B. J. Offrein, and J. A. Kash, “160 Gb/s Bidirectional Polymer-Waveguide Board-Level Optical Interconnects Using CMOS-Based Transceivers,” Advanced Packaging, IEEE Transactions on, 32(2),345–359 (2009).

Dou, X. Y.

X. Y. Dou, X. L Wang, H. Y. Huang, X. H. Lin, D. Ding, D. Z. Pan, and R. T. Chen, “Polymeric waveguides with embedded micro-mirrors formed by Metallic Hard Mold,” Opt. Express 18, 378–385 (2010).
[Crossref] [PubMed]

Hendrickx, N.

J. Van Erps, N. Hendrickx, C. Debaes, P. Van Daele, and H. Thienpont, “Discrete Out-of-Plane Coupling Components for Printed Circuit Board-Level Optical Interconnections” IEEE Photon. Technol. Lett. 19(21), 1753–1755 (2007).
[Crossref]

N. Hendrickx, J. Van Erps, E. Bosman, C. Debaes, H. Thienpont, and P. Van Daele, “Embedded Micromirror Inserts for Optical Printed Circuit Boards,” IEEE Photon. Technol. Lett. 20(20), 1727–1729 (2008).
[Crossref]

Hibbs-Brenner, M. K.

R. T. Chen, L. Lin, C. Choi, Y. Liu, B. Bihari, L. Wu, S. Tang, R. Wickman, B. Picor, M. K. Hibbs-Brenner, J. Bristow, and Y. S. Liu, “Fully Embedded Board level Guided-wave Optoelctronic Interconnects,” Proc. IEEE, 88, 780–793 (2000).
[Crossref]

Hikita, M.

M. Hikita, R. Yoshimura, M. Usui, S. Tomaru, and S. Imamura, “Polymeric optical waveguides for optical interconnections,” Thin Solid Films, 331(1), 303–308 (1998).
[Crossref]

Horst, F.

F. E. Doany, C. L. Schow, C. W. Baks, D. M. Kuchta, P. Pepeljugoski, L. Schares, R. Budd, F. Libsch, R. Dangel, F. Horst, B. J. Offrein, and J. A. Kash, “160 Gb/s Bidirectional Polymer-Waveguide Board-Level Optical Interconnects Using CMOS-Based Transceivers,” Advanced Packaging, IEEE Transactions on, 32(2),345–359 (2009).

Howley, B.

B. Howley, X. L. Wang, Y. H. Chen, and Ray T. Chen, “Experimental evaluation of curved polymer waveguides with air trenches and offsets,” J. Appl. Phys.100, 023114 (2006).

Huang, H. Y.

X. Y. Dou, X. L Wang, H. Y. Huang, X. H. Lin, D. Ding, D. Z. Pan, and R. T. Chen, “Polymeric waveguides with embedded micro-mirrors formed by Metallic Hard Mold,” Opt. Express 18, 378–385 (2010).
[Crossref] [PubMed]

Hwang, S. H.

W. J. Lee, S. H. Hwang, J. W. Lim, and B. S. Rho, “Polymeric Waveguide Film With Embedded Mirror for Multilayer Optical Circuits,” IEEE Photon. Technol. Lett. 21(1), 12–14 (2009).

B. S. Rho, W. J. Lee, J. W. Lim, G. W. Kim, C. H. Cho, and S. H. Hwang, “High-reliability flexible optical printed circuit board for opto-electric interconnections,” Opt. Eng. 48(1), 015401 (2009).
[Crossref]

Imamura, S.

M. Hikita, R. Yoshimura, M. Usui, S. Tomaru, and S. Imamura, “Polymeric optical waveguides for optical interconnections,” Thin Solid Films, 331(1), 303–308 (1998).
[Crossref]

Ishida, O.

O. Ishida and T. Wang, “100 gigabit Ethernet transport,” IEEE Commun. Mag. 48, S4 – S4, (2010).
[Crossref]

Jiang, W.

X. Wang, W. Jiang, L. Wang, H. Bi, and R. T. Chen, “Fully Embedded Board-Level Optical Interconnects From Waveguide Fabrication to Device Integration,” J. Lightwave Technol. 26(2), 243–250 (2008).
[Crossref]

L. Wang, X. Wang, W. Jiang, J. Choi, H. Bi, and R. T. Chen, “45° polymer-based total internal reflection coupling mirrors for fully embedded intraboard guided wave optical interconnects,” Appl. Phys. Lett. 87(14), 141110 (2005).

Kash, J. A.

F. E. Doany, C. L. Schow, C. W. Baks, D. M. Kuchta, P. Pepeljugoski, L. Schares, R. Budd, F. Libsch, R. Dangel, F. Horst, B. J. Offrein, and J. A. Kash, “160 Gb/s Bidirectional Polymer-Waveguide Board-Level Optical Interconnects Using CMOS-Based Transceivers,” Advanced Packaging, IEEE Transactions on, 32(2),345–359 (2009).

Kim, G. W.

B. S. Rho, W. J. Lee, J. W. Lim, G. W. Kim, C. H. Cho, and S. H. Hwang, “High-reliability flexible optical printed circuit board for opto-electric interconnections,” Opt. Eng. 48(1), 015401 (2009).
[Crossref]

Kuchta, D. M.

F. E. Doany, C. L. Schow, C. W. Baks, D. M. Kuchta, P. Pepeljugoski, L. Schares, R. Budd, F. Libsch, R. Dangel, F. Horst, B. J. Offrein, and J. A. Kash, “160 Gb/s Bidirectional Polymer-Waveguide Board-Level Optical Interconnects Using CMOS-Based Transceivers,” Advanced Packaging, IEEE Transactions on, 32(2),345–359 (2009).

Lee, W. J.

W. J. Lee, S. H. Hwang, J. W. Lim, and B. S. Rho, “Polymeric Waveguide Film With Embedded Mirror for Multilayer Optical Circuits,” IEEE Photon. Technol. Lett. 21(1), 12–14 (2009).

B. S. Rho, W. J. Lee, J. W. Lim, G. W. Kim, C. H. Cho, and S. H. Hwang, “High-reliability flexible optical printed circuit board for opto-electric interconnections,” Opt. Eng. 48(1), 015401 (2009).
[Crossref]

Libsch, F.

F. E. Doany, C. L. Schow, C. W. Baks, D. M. Kuchta, P. Pepeljugoski, L. Schares, R. Budd, F. Libsch, R. Dangel, F. Horst, B. J. Offrein, and J. A. Kash, “160 Gb/s Bidirectional Polymer-Waveguide Board-Level Optical Interconnects Using CMOS-Based Transceivers,” Advanced Packaging, IEEE Transactions on, 32(2),345–359 (2009).

Lim, J. W.

W. J. Lee, S. H. Hwang, J. W. Lim, and B. S. Rho, “Polymeric Waveguide Film With Embedded Mirror for Multilayer Optical Circuits,” IEEE Photon. Technol. Lett. 21(1), 12–14 (2009).

B. S. Rho, W. J. Lee, J. W. Lim, G. W. Kim, C. H. Cho, and S. H. Hwang, “High-reliability flexible optical printed circuit board for opto-electric interconnections,” Opt. Eng. 48(1), 015401 (2009).
[Crossref]

Lin, L.

R. T. Chen, L. Lin, C. Choi, Y. Liu, B. Bihari, L. Wu, S. Tang, R. Wickman, B. Picor, M. K. Hibbs-Brenner, J. Bristow, and Y. S. Liu, “Fully Embedded Board level Guided-wave Optoelctronic Interconnects,” Proc. IEEE, 88, 780–793 (2000).
[Crossref]

Lin, X. H.

X. Y. Dou, X. L Wang, H. Y. Huang, X. H. Lin, D. Ding, D. Z. Pan, and R. T. Chen, “Polymeric waveguides with embedded micro-mirrors formed by Metallic Hard Mold,” Opt. Express 18, 378–385 (2010).
[Crossref] [PubMed]

Liu, F.

F. Wang, F. Liu, and A. Adibi, “45 Degree Polymer Micromirror Integration for Board-Level Three-Dimensional Optical Interconnects,” Opt. Express, 17(13), 10514–10521 (2009).
[Crossref] [PubMed]

Liu, Y.

R. T. Chen, L. Lin, C. Choi, Y. Liu, B. Bihari, L. Wu, S. Tang, R. Wickman, B. Picor, M. K. Hibbs-Brenner, J. Bristow, and Y. S. Liu, “Fully Embedded Board level Guided-wave Optoelctronic Interconnects,” Proc. IEEE, 88, 780–793 (2000).
[Crossref]

Liu, Y. S.

R. T. Chen, L. Lin, C. Choi, Y. Liu, B. Bihari, L. Wu, S. Tang, R. Wickman, B. Picor, M. K. Hibbs-Brenner, J. Bristow, and Y. S. Liu, “Fully Embedded Board level Guided-wave Optoelctronic Interconnects,” Proc. IEEE, 88, 780–793 (2000).
[Crossref]

Offrein, B. J.

F. E. Doany, C. L. Schow, C. W. Baks, D. M. Kuchta, P. Pepeljugoski, L. Schares, R. Budd, F. Libsch, R. Dangel, F. Horst, B. J. Offrein, and J. A. Kash, “160 Gb/s Bidirectional Polymer-Waveguide Board-Level Optical Interconnects Using CMOS-Based Transceivers,” Advanced Packaging, IEEE Transactions on, 32(2),345–359 (2009).

Pan, D. Z.

X. Y. Dou, X. L Wang, H. Y. Huang, X. H. Lin, D. Ding, D. Z. Pan, and R. T. Chen, “Polymeric waveguides with embedded micro-mirrors formed by Metallic Hard Mold,” Opt. Express 18, 378–385 (2010).
[Crossref] [PubMed]

Pepeljugoski, P.

F. E. Doany, C. L. Schow, C. W. Baks, D. M. Kuchta, P. Pepeljugoski, L. Schares, R. Budd, F. Libsch, R. Dangel, F. Horst, B. J. Offrein, and J. A. Kash, “160 Gb/s Bidirectional Polymer-Waveguide Board-Level Optical Interconnects Using CMOS-Based Transceivers,” Advanced Packaging, IEEE Transactions on, 32(2),345–359 (2009).

Picor, B.

R. T. Chen, L. Lin, C. Choi, Y. Liu, B. Bihari, L. Wu, S. Tang, R. Wickman, B. Picor, M. K. Hibbs-Brenner, J. Bristow, and Y. S. Liu, “Fully Embedded Board level Guided-wave Optoelctronic Interconnects,” Proc. IEEE, 88, 780–793 (2000).
[Crossref]

Rho, B. S.

W. J. Lee, S. H. Hwang, J. W. Lim, and B. S. Rho, “Polymeric Waveguide Film With Embedded Mirror for Multilayer Optical Circuits,” IEEE Photon. Technol. Lett. 21(1), 12–14 (2009).

B. S. Rho, W. J. Lee, J. W. Lim, G. W. Kim, C. H. Cho, and S. H. Hwang, “High-reliability flexible optical printed circuit board for opto-electric interconnections,” Opt. Eng. 48(1), 015401 (2009).
[Crossref]

Schares, L.

F. E. Doany, C. L. Schow, C. W. Baks, D. M. Kuchta, P. Pepeljugoski, L. Schares, R. Budd, F. Libsch, R. Dangel, F. Horst, B. J. Offrein, and J. A. Kash, “160 Gb/s Bidirectional Polymer-Waveguide Board-Level Optical Interconnects Using CMOS-Based Transceivers,” Advanced Packaging, IEEE Transactions on, 32(2),345–359 (2009).

Schow, C. L.

F. E. Doany, C. L. Schow, C. W. Baks, D. M. Kuchta, P. Pepeljugoski, L. Schares, R. Budd, F. Libsch, R. Dangel, F. Horst, B. J. Offrein, and J. A. Kash, “160 Gb/s Bidirectional Polymer-Waveguide Board-Level Optical Interconnects Using CMOS-Based Transceivers,” Advanced Packaging, IEEE Transactions on, 32(2),345–359 (2009).

Tang, S.

R. T. Chen, L. Lin, C. Choi, Y. Liu, B. Bihari, L. Wu, S. Tang, R. Wickman, B. Picor, M. K. Hibbs-Brenner, J. Bristow, and Y. S. Liu, “Fully Embedded Board level Guided-wave Optoelctronic Interconnects,” Proc. IEEE, 88, 780–793 (2000).
[Crossref]

Thienpont, H.

J. Van Erps, N. Hendrickx, C. Debaes, P. Van Daele, and H. Thienpont, “Discrete Out-of-Plane Coupling Components for Printed Circuit Board-Level Optical Interconnections” IEEE Photon. Technol. Lett. 19(21), 1753–1755 (2007).
[Crossref]

N. Hendrickx, J. Van Erps, E. Bosman, C. Debaes, H. Thienpont, and P. Van Daele, “Embedded Micromirror Inserts for Optical Printed Circuit Boards,” IEEE Photon. Technol. Lett. 20(20), 1727–1729 (2008).
[Crossref]

Tomaru, S.

M. Hikita, R. Yoshimura, M. Usui, S. Tomaru, and S. Imamura, “Polymeric optical waveguides for optical interconnections,” Thin Solid Films, 331(1), 303–308 (1998).
[Crossref]

Usui, M.

M. Hikita, R. Yoshimura, M. Usui, S. Tomaru, and S. Imamura, “Polymeric optical waveguides for optical interconnections,” Thin Solid Films, 331(1), 303–308 (1998).
[Crossref]

Van Daele, P.

N. Hendrickx, J. Van Erps, E. Bosman, C. Debaes, H. Thienpont, and P. Van Daele, “Embedded Micromirror Inserts for Optical Printed Circuit Boards,” IEEE Photon. Technol. Lett. 20(20), 1727–1729 (2008).
[Crossref]

J. Van Erps, N. Hendrickx, C. Debaes, P. Van Daele, and H. Thienpont, “Discrete Out-of-Plane Coupling Components for Printed Circuit Board-Level Optical Interconnections” IEEE Photon. Technol. Lett. 19(21), 1753–1755 (2007).
[Crossref]

Van Erps, J.

J. Van Erps, N. Hendrickx, C. Debaes, P. Van Daele, and H. Thienpont, “Discrete Out-of-Plane Coupling Components for Printed Circuit Board-Level Optical Interconnections” IEEE Photon. Technol. Lett. 19(21), 1753–1755 (2007).
[Crossref]

N. Hendrickx, J. Van Erps, E. Bosman, C. Debaes, H. Thienpont, and P. Van Daele, “Embedded Micromirror Inserts for Optical Printed Circuit Boards,” IEEE Photon. Technol. Lett. 20(20), 1727–1729 (2008).
[Crossref]

Wang, F.

F. Wang, F. Liu, and A. Adibi, “45 Degree Polymer Micromirror Integration for Board-Level Three-Dimensional Optical Interconnects,” Opt. Express, 17(13), 10514–10521 (2009).
[Crossref] [PubMed]

Wang, L.

X. Wang, W. Jiang, L. Wang, H. Bi, and R. T. Chen, “Fully Embedded Board-Level Optical Interconnects From Waveguide Fabrication to Device Integration,” J. Lightwave Technol. 26(2), 243–250 (2008).
[Crossref]

L. Wang, X. Wang, W. Jiang, J. Choi, H. Bi, and R. T. Chen, “45° polymer-based total internal reflection coupling mirrors for fully embedded intraboard guided wave optical interconnects,” Appl. Phys. Lett. 87(14), 141110 (2005).

Wang, T.

O. Ishida and T. Wang, “100 gigabit Ethernet transport,” IEEE Commun. Mag. 48, S4 – S4, (2010).
[Crossref]

Wang, X.

L. Wang, X. Wang, W. Jiang, J. Choi, H. Bi, and R. T. Chen, “45° polymer-based total internal reflection coupling mirrors for fully embedded intraboard guided wave optical interconnects,” Appl. Phys. Lett. 87(14), 141110 (2005).

X. Wang, W. Jiang, L. Wang, H. Bi, and R. T. Chen, “Fully Embedded Board-Level Optical Interconnects From Waveguide Fabrication to Device Integration,” J. Lightwave Technol. 26(2), 243–250 (2008).
[Crossref]

Wang, X. L

X. Y. Dou, X. L Wang, H. Y. Huang, X. H. Lin, D. Ding, D. Z. Pan, and R. T. Chen, “Polymeric waveguides with embedded micro-mirrors formed by Metallic Hard Mold,” Opt. Express 18, 378–385 (2010).
[Crossref] [PubMed]

Wang, X. L.

B. Howley, X. L. Wang, Y. H. Chen, and Ray T. Chen, “Experimental evaluation of curved polymer waveguides with air trenches and offsets,” J. Appl. Phys.100, 023114 (2006).

Wickman, R.

R. T. Chen, L. Lin, C. Choi, Y. Liu, B. Bihari, L. Wu, S. Tang, R. Wickman, B. Picor, M. K. Hibbs-Brenner, J. Bristow, and Y. S. Liu, “Fully Embedded Board level Guided-wave Optoelctronic Interconnects,” Proc. IEEE, 88, 780–793 (2000).
[Crossref]

Wu, L.

R. T. Chen, L. Lin, C. Choi, Y. Liu, B. Bihari, L. Wu, S. Tang, R. Wickman, B. Picor, M. K. Hibbs-Brenner, J. Bristow, and Y. S. Liu, “Fully Embedded Board level Guided-wave Optoelctronic Interconnects,” Proc. IEEE, 88, 780–793 (2000).
[Crossref]

Yoshimura, R.

M. Hikita, R. Yoshimura, M. Usui, S. Tomaru, and S. Imamura, “Polymeric optical waveguides for optical interconnections,” Thin Solid Films, 331(1), 303–308 (1998).
[Crossref]

Other (13)

O. Ishida and T. Wang, “100 gigabit Ethernet transport,” IEEE Commun. Mag. 48, S4 – S4, (2010).
[Crossref]

R. T. Chen, L. Lin, C. Choi, Y. Liu, B. Bihari, L. Wu, S. Tang, R. Wickman, B. Picor, M. K. Hibbs-Brenner, J. Bristow, and Y. S. Liu, “Fully Embedded Board level Guided-wave Optoelctronic Interconnects,” Proc. IEEE, 88, 780–793 (2000).
[Crossref]

F. E. Doany, C. L. Schow, C. W. Baks, D. M. Kuchta, P. Pepeljugoski, L. Schares, R. Budd, F. Libsch, R. Dangel, F. Horst, B. J. Offrein, and J. A. Kash, “160 Gb/s Bidirectional Polymer-Waveguide Board-Level Optical Interconnects Using CMOS-Based Transceivers,” Advanced Packaging, IEEE Transactions on, 32(2),345–359 (2009).

X. Y. Dou, X. L Wang, H. Y. Huang, X. H. Lin, D. Ding, D. Z. Pan, and R. T. Chen, “Polymeric waveguides with embedded micro-mirrors formed by Metallic Hard Mold,” Opt. Express 18, 378–385 (2010).
[Crossref] [PubMed]

L. Wang, X. Wang, W. Jiang, J. Choi, H. Bi, and R. T. Chen, “45° polymer-based total internal reflection coupling mirrors for fully embedded intraboard guided wave optical interconnects,” Appl. Phys. Lett. 87(14), 141110 (2005).

X. Wang, W. Jiang, L. Wang, H. Bi, and R. T. Chen, “Fully Embedded Board-Level Optical Interconnects From Waveguide Fabrication to Device Integration,” J. Lightwave Technol. 26(2), 243–250 (2008).
[Crossref]

M. Hikita, R. Yoshimura, M. Usui, S. Tomaru, and S. Imamura, “Polymeric optical waveguides for optical interconnections,” Thin Solid Films, 331(1), 303–308 (1998).
[Crossref]

F. Wang, F. Liu, and A. Adibi, “45 Degree Polymer Micromirror Integration for Board-Level Three-Dimensional Optical Interconnects,” Opt. Express, 17(13), 10514–10521 (2009).
[Crossref] [PubMed]

W. J. Lee, S. H. Hwang, J. W. Lim, and B. S. Rho, “Polymeric Waveguide Film With Embedded Mirror for Multilayer Optical Circuits,” IEEE Photon. Technol. Lett. 21(1), 12–14 (2009).

J. Van Erps, N. Hendrickx, C. Debaes, P. Van Daele, and H. Thienpont, “Discrete Out-of-Plane Coupling Components for Printed Circuit Board-Level Optical Interconnections” IEEE Photon. Technol. Lett. 19(21), 1753–1755 (2007).
[Crossref]

N. Hendrickx, J. Van Erps, E. Bosman, C. Debaes, H. Thienpont, and P. Van Daele, “Embedded Micromirror Inserts for Optical Printed Circuit Boards,” IEEE Photon. Technol. Lett. 20(20), 1727–1729 (2008).
[Crossref]

B. S. Rho, W. J. Lee, J. W. Lim, G. W. Kim, C. H. Cho, and S. H. Hwang, “High-reliability flexible optical printed circuit board for opto-electric interconnections,” Opt. Eng. 48(1), 015401 (2009).
[Crossref]

B. Howley, X. L. Wang, Y. H. Chen, and Ray T. Chen, “Experimental evaluation of curved polymer waveguides with air trenches and offsets,” J. Appl. Phys.100, 023114 (2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic view of the bended waveguide array on a semi-column surface

Fig. 2.
Fig. 2.

Insertion loss measurements for 12 channels at different bending radius (a)flat condition, (b)61.1mm, (c)20.4mm, (d)10.2mm, (e)9.2mm and (f)5.0mm. Red and green bars are for SMF and MMF coupling, respectively.

Fig. 3.
Fig. 3.

Bending radius dependence of (a) average insertion loss measured by SMF coupling (black) and MMF coupling (red) (b) average insertion loss difference measured between SMF and MMF.

Fig. 4.
Fig. 4.

(a) Schematic and (b) actual view of the high speed test setup for the bended waveguide. (c) VCSEL mounted on an evaluation board, with DC bias and signal input connections. (d) Photodiode mounted on an evaluation board, with DC bias and signal output connections.

Fig. 5.
Fig. 5.

Selected eye-diagrams at 10Gbps with bending radii at (a)flat condition, (b)61.1mm, (c)20.4mm, (d)10.2mm and (e)9.2mm, (f)5.0mm

Fig. 6.
Fig. 6.

Q factor and Bit Error Rate(BER) dependence on (a) the bit rate without bending and (b) the bending radius

Metrics