Abstract

We propose and demonstrate a purely optical approach to trap and align particles using the interaction of polarized light with periodic nanostructures to generate enhanced trapping force. With a weakly focused laser beam, we observed efficient trapping and transportation of polystyrene beads with sizes ranging from 10 μm down to 190 nm as well as cancer cell nuclei. In addition, alignment of non-spherical dielectric particles to a 1-D periodic nanostructure was achieved with low laser intensity without attachment to birefringent crystals. Bacterial cells were trapped and aligned with incident optical intensity as low as 17 μW/μm2.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B.-S. Kim, J. Nikolovski, J. Bonadio, and D. J. Mooney, “Cyclic mechanical strain regulates the development of engineered smooth muscle tissue,” Nat. Biotechnol. 17(10), 979–983 (1999).
    [CrossRef] [PubMed]
  2. T. Matsuda and T. Sugawara, “Control of cell adhesion, migration, and orientation on photochemically microprocessed surfaces,” J. Biomed. Mater. Res. 32(2), 165–173 (1996).
    [CrossRef] [PubMed]
  3. S. E. Cross, Y.-S. Jin, J. Rao, and J. K. Gimzewski, “Nanomechanical analysis of cells from cancer patients,” Nat. Nanotechnol. 2(12), 780–783 (2007).
    [CrossRef]
  4. P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5(2), 97–101 (2006).
    [CrossRef] [PubMed]
  5. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
    [CrossRef]
  6. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 21–27 (2003).
    [CrossRef]
  7. K. C. Neumann, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to Escherichia coli in optical traps,” Biophys. J. 70, 1529–1533 (1996).
  8. G. Leitz, E. Fällman, S. Tuck, and O. Axner, “Stress response in Caenorhabditis elegans caused by optical tweezers: wavelength, power, and time dependence,” Biophys. J. 82(4), 2224–2231 (2002).
    [CrossRef] [PubMed]
  9. I. Mori and Y. Ohshima, “Molecular neurogenetics of chemotaxis and thermotaxis in the nematode Caenorhabditis elegans,” Bioessays 19(12), 1055–1064 (1997).
    [CrossRef]
  10. E. J. G. Peterman, F. Gittes, and C. F. Schmidt, “Laser-induced heating in optical traps,” Biophys. J. 84(2), 1308–1316 (2003).
    [CrossRef] [PubMed]
  11. P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
    [CrossRef] [PubMed]
  12. L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79(4), 645–648 (1997).
    [CrossRef]
  13. A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2(6), 365–370 (2008).
    [CrossRef]
  14. L. Huang, S. J. Maerkl, and O. J. F. Martin, “Integration of plasmonic trapping in a microfluidic environment,” Opt. Express 17(8), 6018–6024 (2009).
    [CrossRef] [PubMed]
  15. M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477–480 (2007).
    [CrossRef]
  16. M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. García de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9(10), 3387–3391 (2009).
    [CrossRef] [PubMed]
  17. M. Pelton, M. Liu, H. Y. Kim, G. Smith, P. Guyot-Sionnest, and N. F. Scherer, “Optical trapping and alignment of single gold nanorods by using plasmon resonances,” Opt. Lett. 31(13), 2075–2077 (2006).
    [CrossRef] [PubMed]
  18. M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
    [CrossRef]
  19. X. Miao and L. Y. Lin, “Trapping and manipulation of biological particles through a plasmonic platform,” IEEE J. Sel. Top. Quant. Electron.: Special Issue on Biophotonics 13(6), 1655–1662 (2007).
    [CrossRef]
  20. X. Miao, B. K. Wilson, S. H. Pun, and L. Y. Lin, “Optical manipulation of micron/submicron sized particles and biomolecules through plasmonics,” Opt. Express 16(18), 13517–13525 (2008).
    [CrossRef] [PubMed]
  21. V. Bingelyte, J. Leach, J. Courtial, and M. J. Padgett, “Optically controlled three-dimensional rotation of microscopic objects,” Appl. Phys. Lett. 82(5), 829–831 (2003).
    [CrossRef]
  22. L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292(5518), 912–914 (2001).
    [CrossRef] [PubMed]
  23. M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinzstein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394(6691), 348–350 (1998).
    [CrossRef]
  24. W. A. Shelton, K. D. Bonin, and T. G. Walker, “Nonlinear motion of optically torqued nanorods,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2A), 036204 (2005).
    [CrossRef] [PubMed]
  25. G. Volpe, R. Quidant, G. Badenes, and D. Petrov, “Surface plasmon radiation forces,” Phys. Rev. Lett. 96(23), 238101 (2006).
    [CrossRef] [PubMed]
  26. R. A. Weinberg, The Biology of Cancer (Garland Science, 2006).

2009

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. García de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9(10), 3387–3391 (2009).
[CrossRef] [PubMed]

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[CrossRef]

L. Huang, S. J. Maerkl, and O. J. F. Martin, “Integration of plasmonic trapping in a microfluidic environment,” Opt. Express 17(8), 6018–6024 (2009).
[CrossRef] [PubMed]

2008

X. Miao, B. K. Wilson, S. H. Pun, and L. Y. Lin, “Optical manipulation of micron/submicron sized particles and biomolecules through plasmonics,” Opt. Express 16(18), 13517–13525 (2008).
[CrossRef] [PubMed]

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2(6), 365–370 (2008).
[CrossRef]

2007

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477–480 (2007).
[CrossRef]

X. Miao and L. Y. Lin, “Trapping and manipulation of biological particles through a plasmonic platform,” IEEE J. Sel. Top. Quant. Electron.: Special Issue on Biophotonics 13(6), 1655–1662 (2007).
[CrossRef]

S. E. Cross, Y.-S. Jin, J. Rao, and J. K. Gimzewski, “Nanomechanical analysis of cells from cancer patients,” Nat. Nanotechnol. 2(12), 780–783 (2007).
[CrossRef]

2006

P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5(2), 97–101 (2006).
[CrossRef] [PubMed]

G. Volpe, R. Quidant, G. Badenes, and D. Petrov, “Surface plasmon radiation forces,” Phys. Rev. Lett. 96(23), 238101 (2006).
[CrossRef] [PubMed]

M. Pelton, M. Liu, H. Y. Kim, G. Smith, P. Guyot-Sionnest, and N. F. Scherer, “Optical trapping and alignment of single gold nanorods by using plasmon resonances,” Opt. Lett. 31(13), 2075–2077 (2006).
[CrossRef] [PubMed]

2005

W. A. Shelton, K. D. Bonin, and T. G. Walker, “Nonlinear motion of optically torqued nanorods,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2A), 036204 (2005).
[CrossRef] [PubMed]

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
[CrossRef] [PubMed]

2003

V. Bingelyte, J. Leach, J. Courtial, and M. J. Padgett, “Optically controlled three-dimensional rotation of microscopic objects,” Appl. Phys. Lett. 82(5), 829–831 (2003).
[CrossRef]

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 21–27 (2003).
[CrossRef]

E. J. G. Peterman, F. Gittes, and C. F. Schmidt, “Laser-induced heating in optical traps,” Biophys. J. 84(2), 1308–1316 (2003).
[CrossRef] [PubMed]

2002

G. Leitz, E. Fällman, S. Tuck, and O. Axner, “Stress response in Caenorhabditis elegans caused by optical tweezers: wavelength, power, and time dependence,” Biophys. J. 82(4), 2224–2231 (2002).
[CrossRef] [PubMed]

2001

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292(5518), 912–914 (2001).
[CrossRef] [PubMed]

1999

B.-S. Kim, J. Nikolovski, J. Bonadio, and D. J. Mooney, “Cyclic mechanical strain regulates the development of engineered smooth muscle tissue,” Nat. Biotechnol. 17(10), 979–983 (1999).
[CrossRef] [PubMed]

1998

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinzstein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394(6691), 348–350 (1998).
[CrossRef]

1997

L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79(4), 645–648 (1997).
[CrossRef]

I. Mori and Y. Ohshima, “Molecular neurogenetics of chemotaxis and thermotaxis in the nematode Caenorhabditis elegans,” Bioessays 19(12), 1055–1064 (1997).
[CrossRef]

1996

K. C. Neumann, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to Escherichia coli in optical traps,” Biophys. J. 70, 1529–1533 (1996).

T. Matsuda and T. Sugawara, “Control of cell adhesion, migration, and orientation on photochemically microprocessed surfaces,” J. Biomed. Mater. Res. 32(2), 165–173 (1996).
[CrossRef] [PubMed]

1970

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[CrossRef]

Arlt, J.

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292(5518), 912–914 (2001).
[CrossRef] [PubMed]

Ashkin, A.

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[CrossRef]

Axner, O.

G. Leitz, E. Fällman, S. Tuck, and O. Axner, “Stress response in Caenorhabditis elegans caused by optical tweezers: wavelength, power, and time dependence,” Biophys. J. 82(4), 2224–2231 (2002).
[CrossRef] [PubMed]

Badenes, G.

G. Volpe, R. Quidant, G. Badenes, and D. Petrov, “Surface plasmon radiation forces,” Phys. Rev. Lett. 96(23), 238101 (2006).
[CrossRef] [PubMed]

Bergman, K.

K. C. Neumann, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to Escherichia coli in optical traps,” Biophys. J. 70, 1529–1533 (1996).

Bian, R. X.

L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79(4), 645–648 (1997).
[CrossRef]

Bingelyte, V.

V. Bingelyte, J. Leach, J. Courtial, and M. J. Padgett, “Optically controlled three-dimensional rotation of microscopic objects,” Appl. Phys. Lett. 82(5), 829–831 (2003).
[CrossRef]

Block, S. M.

K. C. Neumann, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to Escherichia coli in optical traps,” Biophys. J. 70, 1529–1533 (1996).

Bonadio, J.

B.-S. Kim, J. Nikolovski, J. Bonadio, and D. J. Mooney, “Cyclic mechanical strain regulates the development of engineered smooth muscle tissue,” Nat. Biotechnol. 17(10), 979–983 (1999).
[CrossRef] [PubMed]

Bonin, K. D.

W. A. Shelton, K. D. Bonin, and T. G. Walker, “Nonlinear motion of optically torqued nanorods,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2A), 036204 (2005).
[CrossRef] [PubMed]

Bryant, P. E.

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292(5518), 912–914 (2001).
[CrossRef] [PubMed]

Chadd, E. H.

K. C. Neumann, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to Escherichia coli in optical traps,” Biophys. J. 70, 1529–1533 (1996).

Cherukulappurath, S.

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. García de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9(10), 3387–3391 (2009).
[CrossRef] [PubMed]

Chiou, P. Y.

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
[CrossRef] [PubMed]

Courtial, J.

V. Bingelyte, J. Leach, J. Courtial, and M. J. Padgett, “Optically controlled three-dimensional rotation of microscopic objects,” Appl. Phys. Lett. 82(5), 829–831 (2003).
[CrossRef]

Cross, S. E.

S. E. Cross, Y.-S. Jin, J. Rao, and J. K. Gimzewski, “Nanomechanical analysis of cells from cancer patients,” Nat. Nanotechnol. 2(12), 780–783 (2007).
[CrossRef]

Dholakia, K.

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292(5518), 912–914 (2001).
[CrossRef] [PubMed]

Dickinson, M. R.

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2(6), 365–370 (2008).
[CrossRef]

Eftekhari, F.

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[CrossRef]

Fällman, E.

G. Leitz, E. Fällman, S. Tuck, and O. Axner, “Stress response in Caenorhabditis elegans caused by optical tweezers: wavelength, power, and time dependence,” Biophys. J. 82(4), 2224–2231 (2002).
[CrossRef] [PubMed]

Friese, M. E. J.

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinzstein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394(6691), 348–350 (1998).
[CrossRef]

García de Abajo, F. J.

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. García de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9(10), 3387–3391 (2009).
[CrossRef] [PubMed]

Ghenuche, P.

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. García de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9(10), 3387–3391 (2009).
[CrossRef] [PubMed]

Gimzewski, J. K.

S. E. Cross, Y.-S. Jin, J. Rao, and J. K. Gimzewski, “Nanomechanical analysis of cells from cancer patients,” Nat. Nanotechnol. 2(12), 780–783 (2007).
[CrossRef]

Girard, C.

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477–480 (2007).
[CrossRef]

Gittes, F.

E. J. G. Peterman, F. Gittes, and C. F. Schmidt, “Laser-induced heating in optical traps,” Biophys. J. 84(2), 1308–1316 (2003).
[CrossRef] [PubMed]

Gordon, R.

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[CrossRef]

Grier, D. G.

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 21–27 (2003).
[CrossRef]

Grigorenko, A. N.

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2(6), 365–370 (2008).
[CrossRef]

Guyot-Sionnest, P.

Heckenberg, N. R.

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinzstein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394(6691), 348–350 (1998).
[CrossRef]

Huang, L.

Jin, Y.-S.

S. E. Cross, Y.-S. Jin, J. Rao, and J. K. Gimzewski, “Nanomechanical analysis of cells from cancer patients,” Nat. Nanotechnol. 2(12), 780–783 (2007).
[CrossRef]

Juan, M. L.

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[CrossRef]

Kim, B.-S.

B.-S. Kim, J. Nikolovski, J. Bonadio, and D. J. Mooney, “Cyclic mechanical strain regulates the development of engineered smooth muscle tissue,” Nat. Biotechnol. 17(10), 979–983 (1999).
[CrossRef] [PubMed]

Kim, H. Y.

Leach, J.

V. Bingelyte, J. Leach, J. Courtial, and M. J. Padgett, “Optically controlled three-dimensional rotation of microscopic objects,” Appl. Phys. Lett. 82(5), 829–831 (2003).
[CrossRef]

Leitz, G.

G. Leitz, E. Fällman, S. Tuck, and O. Axner, “Stress response in Caenorhabditis elegans caused by optical tweezers: wavelength, power, and time dependence,” Biophys. J. 82(4), 2224–2231 (2002).
[CrossRef] [PubMed]

Lin, L. Y.

X. Miao, B. K. Wilson, S. H. Pun, and L. Y. Lin, “Optical manipulation of micron/submicron sized particles and biomolecules through plasmonics,” Opt. Express 16(18), 13517–13525 (2008).
[CrossRef] [PubMed]

X. Miao and L. Y. Lin, “Trapping and manipulation of biological particles through a plasmonic platform,” IEEE J. Sel. Top. Quant. Electron.: Special Issue on Biophotonics 13(6), 1655–1662 (2007).
[CrossRef]

Liou, G. F.

K. C. Neumann, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to Escherichia coli in optical traps,” Biophys. J. 70, 1529–1533 (1996).

Liphardt, J.

P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5(2), 97–101 (2006).
[CrossRef] [PubMed]

Liu, M.

MacDonald, M. P.

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292(5518), 912–914 (2001).
[CrossRef] [PubMed]

Maerkl, S. J.

Martin, O. J. F.

Matsuda, T.

T. Matsuda and T. Sugawara, “Control of cell adhesion, migration, and orientation on photochemically microprocessed surfaces,” J. Biomed. Mater. Res. 32(2), 165–173 (1996).
[CrossRef] [PubMed]

Miao, X.

X. Miao, B. K. Wilson, S. H. Pun, and L. Y. Lin, “Optical manipulation of micron/submicron sized particles and biomolecules through plasmonics,” Opt. Express 16(18), 13517–13525 (2008).
[CrossRef] [PubMed]

X. Miao and L. Y. Lin, “Trapping and manipulation of biological particles through a plasmonic platform,” IEEE J. Sel. Top. Quant. Electron.: Special Issue on Biophotonics 13(6), 1655–1662 (2007).
[CrossRef]

Mooney, D. J.

B.-S. Kim, J. Nikolovski, J. Bonadio, and D. J. Mooney, “Cyclic mechanical strain regulates the development of engineered smooth muscle tissue,” Nat. Biotechnol. 17(10), 979–983 (1999).
[CrossRef] [PubMed]

Mori, I.

I. Mori and Y. Ohshima, “Molecular neurogenetics of chemotaxis and thermotaxis in the nematode Caenorhabditis elegans,” Bioessays 19(12), 1055–1064 (1997).
[CrossRef]

Myroshnychenko, V.

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. García de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9(10), 3387–3391 (2009).
[CrossRef] [PubMed]

Neumann, K. C.

K. C. Neumann, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to Escherichia coli in optical traps,” Biophys. J. 70, 1529–1533 (1996).

Nieminen, T. A.

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinzstein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394(6691), 348–350 (1998).
[CrossRef]

Nikolovski, J.

B.-S. Kim, J. Nikolovski, J. Bonadio, and D. J. Mooney, “Cyclic mechanical strain regulates the development of engineered smooth muscle tissue,” Nat. Biotechnol. 17(10), 979–983 (1999).
[CrossRef] [PubMed]

Novotny, L.

L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79(4), 645–648 (1997).
[CrossRef]

Ohshima, Y.

I. Mori and Y. Ohshima, “Molecular neurogenetics of chemotaxis and thermotaxis in the nematode Caenorhabditis elegans,” Bioessays 19(12), 1055–1064 (1997).
[CrossRef]

Ohta, A. T.

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
[CrossRef] [PubMed]

Padgett, M. J.

V. Bingelyte, J. Leach, J. Courtial, and M. J. Padgett, “Optically controlled three-dimensional rotation of microscopic objects,” Appl. Phys. Lett. 82(5), 829–831 (2003).
[CrossRef]

Pang, Y.

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[CrossRef]

Paterson, L.

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292(5518), 912–914 (2001).
[CrossRef] [PubMed]

Pauzauskie, P. J.

P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5(2), 97–101 (2006).
[CrossRef] [PubMed]

Pelton, M.

Peterman, E. J. G.

E. J. G. Peterman, F. Gittes, and C. F. Schmidt, “Laser-induced heating in optical traps,” Biophys. J. 84(2), 1308–1316 (2003).
[CrossRef] [PubMed]

Petrov, D.

G. Volpe, R. Quidant, G. Badenes, and D. Petrov, “Surface plasmon radiation forces,” Phys. Rev. Lett. 96(23), 238101 (2006).
[CrossRef] [PubMed]

Pun, S. H.

Quidant, R.

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. García de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9(10), 3387–3391 (2009).
[CrossRef] [PubMed]

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[CrossRef]

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477–480 (2007).
[CrossRef]

G. Volpe, R. Quidant, G. Badenes, and D. Petrov, “Surface plasmon radiation forces,” Phys. Rev. Lett. 96(23), 238101 (2006).
[CrossRef] [PubMed]

Radenovic, A.

P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5(2), 97–101 (2006).
[CrossRef] [PubMed]

Rao, J.

S. E. Cross, Y.-S. Jin, J. Rao, and J. K. Gimzewski, “Nanomechanical analysis of cells from cancer patients,” Nat. Nanotechnol. 2(12), 780–783 (2007).
[CrossRef]

Righini, M.

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. García de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9(10), 3387–3391 (2009).
[CrossRef] [PubMed]

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477–480 (2007).
[CrossRef]

Roberts, N. W.

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2(6), 365–370 (2008).
[CrossRef]

Rubinzstein-Dunlop, H.

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinzstein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394(6691), 348–350 (1998).
[CrossRef]

Scherer, N. F.

Schmidt, C. F.

E. J. G. Peterman, F. Gittes, and C. F. Schmidt, “Laser-induced heating in optical traps,” Biophys. J. 84(2), 1308–1316 (2003).
[CrossRef] [PubMed]

Shelton, W. A.

W. A. Shelton, K. D. Bonin, and T. G. Walker, “Nonlinear motion of optically torqued nanorods,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2A), 036204 (2005).
[CrossRef] [PubMed]

Shroff, H.

P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5(2), 97–101 (2006).
[CrossRef] [PubMed]

Sibbett, W.

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292(5518), 912–914 (2001).
[CrossRef] [PubMed]

Smith, G.

Sugawara, T.

T. Matsuda and T. Sugawara, “Control of cell adhesion, migration, and orientation on photochemically microprocessed surfaces,” J. Biomed. Mater. Res. 32(2), 165–173 (1996).
[CrossRef] [PubMed]

Trepagnier, E.

P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5(2), 97–101 (2006).
[CrossRef] [PubMed]

Tuck, S.

G. Leitz, E. Fällman, S. Tuck, and O. Axner, “Stress response in Caenorhabditis elegans caused by optical tweezers: wavelength, power, and time dependence,” Biophys. J. 82(4), 2224–2231 (2002).
[CrossRef] [PubMed]

Volpe, G.

G. Volpe, R. Quidant, G. Badenes, and D. Petrov, “Surface plasmon radiation forces,” Phys. Rev. Lett. 96(23), 238101 (2006).
[CrossRef] [PubMed]

Walker, T. G.

W. A. Shelton, K. D. Bonin, and T. G. Walker, “Nonlinear motion of optically torqued nanorods,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2A), 036204 (2005).
[CrossRef] [PubMed]

Wilson, B. K.

Wu, M. C.

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
[CrossRef] [PubMed]

Xie, X. S.

L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79(4), 645–648 (1997).
[CrossRef]

Yang, P.

P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5(2), 97–101 (2006).
[CrossRef] [PubMed]

Zelenina, A. S.

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477–480 (2007).
[CrossRef]

Zhang, Y.

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2(6), 365–370 (2008).
[CrossRef]

Appl. Phys. Lett.

V. Bingelyte, J. Leach, J. Courtial, and M. J. Padgett, “Optically controlled three-dimensional rotation of microscopic objects,” Appl. Phys. Lett. 82(5), 829–831 (2003).
[CrossRef]

Bioessays

I. Mori and Y. Ohshima, “Molecular neurogenetics of chemotaxis and thermotaxis in the nematode Caenorhabditis elegans,” Bioessays 19(12), 1055–1064 (1997).
[CrossRef]

Biophys. J.

E. J. G. Peterman, F. Gittes, and C. F. Schmidt, “Laser-induced heating in optical traps,” Biophys. J. 84(2), 1308–1316 (2003).
[CrossRef] [PubMed]

K. C. Neumann, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to Escherichia coli in optical traps,” Biophys. J. 70, 1529–1533 (1996).

G. Leitz, E. Fällman, S. Tuck, and O. Axner, “Stress response in Caenorhabditis elegans caused by optical tweezers: wavelength, power, and time dependence,” Biophys. J. 82(4), 2224–2231 (2002).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quant. Electron.: Special Issue on Biophotonics

X. Miao and L. Y. Lin, “Trapping and manipulation of biological particles through a plasmonic platform,” IEEE J. Sel. Top. Quant. Electron.: Special Issue on Biophotonics 13(6), 1655–1662 (2007).
[CrossRef]

J. Biomed. Mater. Res.

T. Matsuda and T. Sugawara, “Control of cell adhesion, migration, and orientation on photochemically microprocessed surfaces,” J. Biomed. Mater. Res. 32(2), 165–173 (1996).
[CrossRef] [PubMed]

Nano Lett.

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. García de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9(10), 3387–3391 (2009).
[CrossRef] [PubMed]

Nat. Biotechnol.

B.-S. Kim, J. Nikolovski, J. Bonadio, and D. J. Mooney, “Cyclic mechanical strain regulates the development of engineered smooth muscle tissue,” Nat. Biotechnol. 17(10), 979–983 (1999).
[CrossRef] [PubMed]

Nat. Mater.

P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5(2), 97–101 (2006).
[CrossRef] [PubMed]

Nat. Nanotechnol.

S. E. Cross, Y.-S. Jin, J. Rao, and J. K. Gimzewski, “Nanomechanical analysis of cells from cancer patients,” Nat. Nanotechnol. 2(12), 780–783 (2007).
[CrossRef]

Nat. Photonics

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2(6), 365–370 (2008).
[CrossRef]

Nat. Phys.

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477–480 (2007).
[CrossRef]

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[CrossRef]

Nature

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
[CrossRef] [PubMed]

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 21–27 (2003).
[CrossRef]

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinzstein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394(6691), 348–350 (1998).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. E Stat. Nonlin. Soft Matter Phys.

W. A. Shelton, K. D. Bonin, and T. G. Walker, “Nonlinear motion of optically torqued nanorods,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2A), 036204 (2005).
[CrossRef] [PubMed]

Phys. Rev. Lett.

G. Volpe, R. Quidant, G. Badenes, and D. Petrov, “Surface plasmon radiation forces,” Phys. Rev. Lett. 96(23), 238101 (2006).
[CrossRef] [PubMed]

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[CrossRef]

L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79(4), 645–648 (1997).
[CrossRef]

Science

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292(5518), 912–914 (2001).
[CrossRef] [PubMed]

Other

R. A. Weinberg, The Biology of Cancer (Garland Science, 2006).

Supplementary Material (2)

» Media 1: MOV (968 KB)     
» Media 2: MOV (3755 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic drawing of the enhanced optical trapping utilizing 1-D periodic nanostructures. The incident beam is diffracted by the periodic nanostructure at far field. (b) The intensity distribution of light with two orthogonal polarizations at the surface of an aluminum grating with a 417 nm period obtained using FDTD simulations. The distribution is normalized to the intensity on a flat aluminum surface. (c) and (d) Trapping potential for particles directly above the grating surface versus location of the particle for (c) a 350 nm polystyrene bead and (d) a 1 μm polystyrene bead. The white circles illustrate the sizes of the particles. Insets show the trapping potential above a flat aluminum surface for the same particle size as comparisons. The values are normalized for each particle size. For all FDTD simulation figures the field of view is 10 × 8 μm2.

Fig. 2
Fig. 2

(a) Trap efficiency and minimum trapping intensity measured for polystyrene beads of various sizes with beam polarization perpendicular to grating lines. Inset shows trap asymmetry in trapping efficiency for translating a 3.87 um polystyrene bead perpendicular and parallel to the rules of the grating. The solid line (large asymmetry) is obtained with incident light polarized perpendicular to the grating, and the dash line (small asymmetry) is obtained with incident light polarized parallel to the grating. The unit is in (pN[mW/μm2]−1). (b)-(d) Trapping demonstration of a fluorescent 590 nm polystyrene bead. The red circle indicates the position of the laser spot as the laser light was too dim to be seen. At first the particle is trapped within the spot at higher power, as the power is lowered the Brownian motion of the particle overcomes the trapping force, allowing the particle to escape. (e)-(g) Trapping demonstration of a fluorescent ovarian cancer cell nucleus. The minimum intensity required to initiate trapping was 16 μW/μm2 obtained using a 20x objective lens.

Fig. 3
Fig. 3

Snapshots of trap asymmetry experiment (Media 1). When the spot approaches an oblong polystyrene bead from the direction along the axis of the diffracted mode (horizontal), the bead is repelled from the laser spot and up away from the surface ((a)-(d)). When the beam approaches from the direction perpendicular to the axis of the diffracted mode, the bead is trapped normally ((e)-(g)). The time interval between shots is approximately 0.5 seconds. The grating rules are oriented vertically. The optical beam polarization is perpendicular to grating rules. The images were recorded under an objective lens with 50x magnification.

Fig. 4
Fig. 4

(a)-(c) Alignment of an oblong polystyrene particle on an aluminum grating under the illumination of a laser beam polarized perpendicular to the grating rules. The laser beam was polarized horizontally and focused with a 50x objective lens (Media 2). (d)-(f) The oblong polystyrene particle was aligned with its long axis perpendicular to the grating rules after being illuminated by the polarized laser beam. The focusing of the laser beam and image-taking was through a 10x objective lens. (g) Characterization of rotation speed during alignment versus optical intensity. Rotation speed approaching 35 degree/sec can be achieved with sufficient laser intensity.

Fig. 5
Fig. 5

Characterization of Listeria cell (inset) alignment. The orientation angle of the Listeria cell was recorded as the laser intensity was adjusted. As laser power increases the cells are more stiffly aligned perpendicular to the grating lines. This measurement was performed using a 50x objective lens. The cell could be aligned to within ± 10° when the laser intensity exceeds 40 μW/μm2.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

U g r a d ( x , y , z ) = n 2 2 n 1 2 16 π v | E ( x , y , z ) | 2 d v ,
F g r a d ( x , y , z ) = U g r a d ( x , y , z ) .

Metrics