Abstract

We report the results of a multi-day diurnal study in which polarimetric and conventional thermal imagery is recorded in the mid- and long-wave IR to identify and compare the respective time periods in which minimum target contrast is achieved. The data shows that the chief factors affecting polarimetric contrast in both wavebands are the amount of thermal emission from the objects in the scene and the abundance of MWIR and LWIR sources in the optical background. In particular, it has been observed that the MWIR polarimetric contrast was positively correlated to the presence of MWIR sources in the optical background, while the LWIR polarimetric contrast was negatively correlated to the presence of LWIR sources in the optical background.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. L. Shumaker, J. T. Wood, and C. R. Thacker, Infrared Imaging Systems Analysis, (DCS Corporation, Alexandria, 1993), Chap. 2.
  2. J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45(22), 5453–5469 (2006).
    [CrossRef] [PubMed]
  3. J. S. Tyo, B. M. Ratliff, J. K. Boger, W. T. Black, D. L. Bowers, and M. P. Fetrow, “The effects of thermal equilibrium and contrast in LWIR polarimetric images,” Opt. Express 15(23), 15161–15167 (2007).
    [CrossRef] [PubMed]
  4. J. L. Pezzaniti and D. B. Chenault, “A division of aperture MWIR imaging polarimeter,” Proc. SPIE 5888, 239–245 (2005).
  5. J. L. Pezzaniti, B. Hyatt, and J. Reinhardt, “Systems Users Manual: LWIR Rotating Retarder Imaging Polarimeter,” 2008.
  6. W. R. Dillon, and M. Goldstein, Multivariate Analysis: Methods and Applications, (John Wiley & Sons, New York, Chichester, Brisbane, Toronto, and Singapore, 1984), Chap. 1.
  7. M. Felton, K. P. Gurton, D. Ligon, and A. Raglin, “Discrimination of Objects Within Polarimetric Imagery Using Principle Component and Cluster Analysis,” ARL-TR-4216, 2007.
  8. J. A. Shaw, P. W. Nugent, N. J. Pust, B. Thurairajah, and K. Mizutani, “Radiometric cloud imaging with an uncooled microbolometer thermal infrared camera,” Opt. Express 13(15), 5807–5817 (2005).
    [CrossRef] [PubMed]
  9. M. L. Salby, Fundamentals of Atmospheric Physics, (Academic Press, San Diego, New York, Boston, London, Sydney, Tokyo, and Toronto, 1996), Chap. 1 and 8.
  10. J. A. Shaw, “Degree of linear polarization in spectral radiances from water-viewing infrared radiometers,” Appl. Opt. 38(15), 3157–3165 (1999).
    [CrossRef]

2007 (1)

2006 (1)

2005 (2)

1999 (1)

Black, W. T.

Boger, J. K.

Bowers, D. L.

Chenault, D. B.

Fetrow, M. P.

Goldstein, D. L.

Mizutani, K.

Nugent, P. W.

Pezzaniti, J. L.

J. L. Pezzaniti and D. B. Chenault, “A division of aperture MWIR imaging polarimeter,” Proc. SPIE 5888, 239–245 (2005).

Pust, N. J.

Ratliff, B. M.

Shaw, J. A.

Thurairajah, B.

Tyo, J. S.

Appl. Opt. (2)

Opt. Express (2)

Proc. SPIE (1)

J. L. Pezzaniti and D. B. Chenault, “A division of aperture MWIR imaging polarimeter,” Proc. SPIE 5888, 239–245 (2005).

Other (5)

J. L. Pezzaniti, B. Hyatt, and J. Reinhardt, “Systems Users Manual: LWIR Rotating Retarder Imaging Polarimeter,” 2008.

W. R. Dillon, and M. Goldstein, Multivariate Analysis: Methods and Applications, (John Wiley & Sons, New York, Chichester, Brisbane, Toronto, and Singapore, 1984), Chap. 1.

M. Felton, K. P. Gurton, D. Ligon, and A. Raglin, “Discrimination of Objects Within Polarimetric Imagery Using Principle Component and Cluster Analysis,” ARL-TR-4216, 2007.

M. L. Salby, Fundamentals of Atmospheric Physics, (Academic Press, San Diego, New York, Boston, London, Sydney, Tokyo, and Toronto, 1996), Chap. 1 and 8.

D. L. Shumaker, J. T. Wood, and C. R. Thacker, Infrared Imaging Systems Analysis, (DCS Corporation, Alexandria, 1993), Chap. 2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Target site consisting of two military vehicles and a natural background. The test was conducted on May 13-14, 2009.

Fig. 2
Fig. 2

The test target and its natural background. The target, grass, and trees regions of interest correspond to the blue, red, and green boxes, respectively.

Fig. 3
Fig. 3

Example contrast values comparing the target to the grass and the corresponding S0 image taken at a. 07:00, b. 11:00, and c. 19:00.

Fig. 4
Fig. 4

Diurnal contrast between the tank and its background of trees on May 13, 2009.

Fig. 5
Fig. 5

Diurnal contrast between the tank and its background of grass on May 13, 2009.

Fig. 6
Fig. 6

Diurnal contrast between the tank and its background of grass on May 14, 2009.

Fig. 7
Fig. 7

Contrast between the tank and its background of trees on May 14, 2009.

Tables (2)

Tables Icon

Table 1 A summary of the MWIR sensor optical specs

Tables Icon

Table 2 Specifications for the LWIR imaging polarimeter

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

x i j = x i j μ i m a g e σ i m a g e
c o n t r a s t = | μ t μ b |

Metrics