Abstract

By comparing the spatially resolved unpolarized, polarized reflectance and Mueller matrix elements of skeletal muscle with a scattering medium containing polystyrene microspheres and silk fibers, we demonstrate that the sphere-cylinder scattering model (SCSM) can reproduce the characteristic features of skeletal muscle. Both experiments and polarization sensitive Monte Carlo simulation provide evidences that SCSM may be used to characterize the structural and optical properties of skeletal muscle.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. S. Saladin, Anatomy and Physiology (Watnick, New York, 2010).
  2. A. F. Huxley and R. Niedergerke, “Measurement of the striations of isolated muscle fibres with the interference microscope,” J. Physiol. 144(3), 403–425 (1958).
    [PubMed]
  3. R. Rüdel and F. Zite-Ferenczy, “Interpretation of light diffraction by cross-striated muscle as Bragg reflexion of light by the lattice of contractile proteins,” J. Physiol. 290(2), 317–330 (1979).
    [PubMed]
  4. R. A. Thornhill, N. Thomas, and N. Berovic, “Optical diffraction by well-ordered muscle fibres,” Eur. Biophys. J. 20(2), 87–99 (1991).
    [CrossRef] [PubMed]
  5. E. Sidick, A. Knoesen, J. K. Xian, Y. Yeh, and R. J. Baskin, “Rigorous analysis of light diffraction by a striated muscle fibre,” Proc. Biol. Sci. 249(1326), 247–257 (1992).
    [CrossRef] [PubMed]
  6. J. Xia, A. Weaver, D. E. Gerrard, and G. Yao, “Monitoring sarcomere structure changes in whole muscle using diffuse light reflectance,” J. Biomed. Opt. 11(4), 040504 (2006).
    [CrossRef] [PubMed]
  7. J. Ranasinghesagara and G. Yao, “Imaging 2D optical diffuse reflectance in skeletal muscle,” Opt. Express 15(7), 3998–4007 (2007).
    [CrossRef] [PubMed]
  8. X. Li, J. C. Ranasinghesagara, and G. Yao, “Polarization-sensitive reflectance imaging in skeletal muscle,” Opt. Express 16(13), 9927–9935 (2008).
    [CrossRef] [PubMed]
  9. X. Li and G. Yao, “Mueller matrix decomposition of diffuse reflectance imaging in skeletal muscle,” Appl. Opt. 48(14), 2625–2631 (2009).
    [CrossRef] [PubMed]
  10. A. Kienle, F. K. Forster, and R. Hibst, “Anisotropy of light propagation in biological tissue,” Opt. Lett. 29(22), 2617–2619 (2004).
    [CrossRef] [PubMed]
  11. A. Kienle and R. Hibst, “Light guiding in biological tissue due to scattering,” Phys. Rev. Lett. 97(1), 018104 (2006).
    [CrossRef] [PubMed]
  12. A. Kienle, C. D’Andrea, F. Foschum, P. Taroni, and A. Pifferi, “Light propagation in dry and wet softwood,” Opt. Express 16(13), 9895–9906 (2008).
    [CrossRef] [PubMed]
  13. T. L. Yun, N. Zeng, W. Li, D. Z. Li, X. Y. Jiang, and H. Ma, “Monte Carlo simulation of polarized photon scattering in anisotropic media,” Opt. Express 17(19), 16590–16602 (2009).
    [CrossRef] [PubMed]
  14. Z. Nan, J. Xiaoyu, G. Qiang, H. Yonghong, and M. Hui, “Linear polarization difference imaging and its potential applications,” Appl. Opt. 48(35), 6734–6739 (2009).
    [CrossRef] [PubMed]
  15. N. Ghosh, H. S. Patel, and P. K. Gupta, “Depolarization of light in tissue phantoms - effect of a distribution in the size of scatterers,” Opt. Express 11(18), 2198–2205 (2003).
    [CrossRef] [PubMed]
  16. C. F. Bohren, and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley and Sons, New York, 1983).
  17. B. D. Cameron, M. J. Rakovic, M. Mehrübeoglu, G. W. Kattawar, S. Rastegar, L. V. Wang, and G. L. Coté, “Measurement and calculation of the two-dimensional backscattering Mueller matrix of a turbid medium,” Opt. Lett. 23(7), 485–487 (1998).
    [CrossRef]

2009 (3)

2008 (2)

2007 (1)

2006 (2)

J. Xia, A. Weaver, D. E. Gerrard, and G. Yao, “Monitoring sarcomere structure changes in whole muscle using diffuse light reflectance,” J. Biomed. Opt. 11(4), 040504 (2006).
[CrossRef] [PubMed]

A. Kienle and R. Hibst, “Light guiding in biological tissue due to scattering,” Phys. Rev. Lett. 97(1), 018104 (2006).
[CrossRef] [PubMed]

2004 (1)

2003 (1)

1998 (1)

1992 (1)

E. Sidick, A. Knoesen, J. K. Xian, Y. Yeh, and R. J. Baskin, “Rigorous analysis of light diffraction by a striated muscle fibre,” Proc. Biol. Sci. 249(1326), 247–257 (1992).
[CrossRef] [PubMed]

1991 (1)

R. A. Thornhill, N. Thomas, and N. Berovic, “Optical diffraction by well-ordered muscle fibres,” Eur. Biophys. J. 20(2), 87–99 (1991).
[CrossRef] [PubMed]

1979 (1)

R. Rüdel and F. Zite-Ferenczy, “Interpretation of light diffraction by cross-striated muscle as Bragg reflexion of light by the lattice of contractile proteins,” J. Physiol. 290(2), 317–330 (1979).
[PubMed]

1958 (1)

A. F. Huxley and R. Niedergerke, “Measurement of the striations of isolated muscle fibres with the interference microscope,” J. Physiol. 144(3), 403–425 (1958).
[PubMed]

Baskin, R. J.

E. Sidick, A. Knoesen, J. K. Xian, Y. Yeh, and R. J. Baskin, “Rigorous analysis of light diffraction by a striated muscle fibre,” Proc. Biol. Sci. 249(1326), 247–257 (1992).
[CrossRef] [PubMed]

Berovic, N.

R. A. Thornhill, N. Thomas, and N. Berovic, “Optical diffraction by well-ordered muscle fibres,” Eur. Biophys. J. 20(2), 87–99 (1991).
[CrossRef] [PubMed]

Cameron, B. D.

Coté, G. L.

D’Andrea, C.

Forster, F. K.

Foschum, F.

Gerrard, D. E.

J. Xia, A. Weaver, D. E. Gerrard, and G. Yao, “Monitoring sarcomere structure changes in whole muscle using diffuse light reflectance,” J. Biomed. Opt. 11(4), 040504 (2006).
[CrossRef] [PubMed]

Ghosh, N.

Gupta, P. K.

Hibst, R.

A. Kienle and R. Hibst, “Light guiding in biological tissue due to scattering,” Phys. Rev. Lett. 97(1), 018104 (2006).
[CrossRef] [PubMed]

A. Kienle, F. K. Forster, and R. Hibst, “Anisotropy of light propagation in biological tissue,” Opt. Lett. 29(22), 2617–2619 (2004).
[CrossRef] [PubMed]

Hui, M.

Huxley, A. F.

A. F. Huxley and R. Niedergerke, “Measurement of the striations of isolated muscle fibres with the interference microscope,” J. Physiol. 144(3), 403–425 (1958).
[PubMed]

Jiang, X. Y.

Kattawar, G. W.

Kienle, A.

Knoesen, A.

E. Sidick, A. Knoesen, J. K. Xian, Y. Yeh, and R. J. Baskin, “Rigorous analysis of light diffraction by a striated muscle fibre,” Proc. Biol. Sci. 249(1326), 247–257 (1992).
[CrossRef] [PubMed]

Li, D. Z.

Li, W.

Li, X.

Ma, H.

Mehrübeoglu, M.

Nan, Z.

Niedergerke, R.

A. F. Huxley and R. Niedergerke, “Measurement of the striations of isolated muscle fibres with the interference microscope,” J. Physiol. 144(3), 403–425 (1958).
[PubMed]

Patel, H. S.

Pifferi, A.

Qiang, G.

Rakovic, M. J.

Ranasinghesagara, J.

Ranasinghesagara, J. C.

Rastegar, S.

Rüdel, R.

R. Rüdel and F. Zite-Ferenczy, “Interpretation of light diffraction by cross-striated muscle as Bragg reflexion of light by the lattice of contractile proteins,” J. Physiol. 290(2), 317–330 (1979).
[PubMed]

Sidick, E.

E. Sidick, A. Knoesen, J. K. Xian, Y. Yeh, and R. J. Baskin, “Rigorous analysis of light diffraction by a striated muscle fibre,” Proc. Biol. Sci. 249(1326), 247–257 (1992).
[CrossRef] [PubMed]

Taroni, P.

Thomas, N.

R. A. Thornhill, N. Thomas, and N. Berovic, “Optical diffraction by well-ordered muscle fibres,” Eur. Biophys. J. 20(2), 87–99 (1991).
[CrossRef] [PubMed]

Thornhill, R. A.

R. A. Thornhill, N. Thomas, and N. Berovic, “Optical diffraction by well-ordered muscle fibres,” Eur. Biophys. J. 20(2), 87–99 (1991).
[CrossRef] [PubMed]

Wang, L. V.

Weaver, A.

J. Xia, A. Weaver, D. E. Gerrard, and G. Yao, “Monitoring sarcomere structure changes in whole muscle using diffuse light reflectance,” J. Biomed. Opt. 11(4), 040504 (2006).
[CrossRef] [PubMed]

Xia, J.

J. Xia, A. Weaver, D. E. Gerrard, and G. Yao, “Monitoring sarcomere structure changes in whole muscle using diffuse light reflectance,” J. Biomed. Opt. 11(4), 040504 (2006).
[CrossRef] [PubMed]

Xian, J. K.

E. Sidick, A. Knoesen, J. K. Xian, Y. Yeh, and R. J. Baskin, “Rigorous analysis of light diffraction by a striated muscle fibre,” Proc. Biol. Sci. 249(1326), 247–257 (1992).
[CrossRef] [PubMed]

Xiaoyu, J.

Yao, G.

Yeh, Y.

E. Sidick, A. Knoesen, J. K. Xian, Y. Yeh, and R. J. Baskin, “Rigorous analysis of light diffraction by a striated muscle fibre,” Proc. Biol. Sci. 249(1326), 247–257 (1992).
[CrossRef] [PubMed]

Yonghong, H.

Yun, T. L.

Zeng, N.

Zite-Ferenczy, F.

R. Rüdel and F. Zite-Ferenczy, “Interpretation of light diffraction by cross-striated muscle as Bragg reflexion of light by the lattice of contractile proteins,” J. Physiol. 290(2), 317–330 (1979).
[PubMed]

Appl. Opt. (2)

Eur. Biophys. J. (1)

R. A. Thornhill, N. Thomas, and N. Berovic, “Optical diffraction by well-ordered muscle fibres,” Eur. Biophys. J. 20(2), 87–99 (1991).
[CrossRef] [PubMed]

J. Biomed. Opt. (1)

J. Xia, A. Weaver, D. E. Gerrard, and G. Yao, “Monitoring sarcomere structure changes in whole muscle using diffuse light reflectance,” J. Biomed. Opt. 11(4), 040504 (2006).
[CrossRef] [PubMed]

J. Physiol. (2)

A. F. Huxley and R. Niedergerke, “Measurement of the striations of isolated muscle fibres with the interference microscope,” J. Physiol. 144(3), 403–425 (1958).
[PubMed]

R. Rüdel and F. Zite-Ferenczy, “Interpretation of light diffraction by cross-striated muscle as Bragg reflexion of light by the lattice of contractile proteins,” J. Physiol. 290(2), 317–330 (1979).
[PubMed]

Opt. Express (5)

Opt. Lett. (2)

Phys. Rev. Lett. (1)

A. Kienle and R. Hibst, “Light guiding in biological tissue due to scattering,” Phys. Rev. Lett. 97(1), 018104 (2006).
[CrossRef] [PubMed]

Proc. Biol. Sci. (1)

E. Sidick, A. Knoesen, J. K. Xian, Y. Yeh, and R. J. Baskin, “Rigorous analysis of light diffraction by a striated muscle fibre,” Proc. Biol. Sci. 249(1326), 247–257 (1992).
[CrossRef] [PubMed]

Other (2)

C. F. Bohren, and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley and Sons, New York, 1983).

K. S. Saladin, Anatomy and Physiology (Watnick, New York, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematics of the three-layer microsphere-silk sample. The first and third layers are 0.2µm diameter polystyrene microsphere in water. The second layer is 1.5µm diameter well aligned silk fibers in water. Total thickness of the sample is 2cm. Thickness of the first and third layers is adjustable, and of the second layer is 3mm.

Fig. 2.
Fig. 2.

A schematic of the experimental setup. F: filter; M: mirror; L: lens; P: polarizer; QW: quarter wave plate.

Fig. 3.
Fig. 3.

The reflectance images of (a) fresh skeletal muscle, (b) microsphere-silk sample; (c) 0.2µm diameter polystyrene microsphere solution. Images were displayed in pseudo color which represented the pixel intensity in 10-based Logarithm. The artifact on the upper left corner of (b) is due to a clip which holds the fibers.

Fig. 4.
Fig. 4.

Polarized reflectance images of (a) fresh skeletal muscle and (b) microsphere-silk sample. The image size is 1.4cm × 1.27cm. The muscle fibers and silk fibers are along the vertical direction.

Fig. 5.
Fig. 5.

(a) from left to right: HH for sphere-only medium; HH for skeletal muscle, (b) from left to right: VV for sphere-only medium; VV for skeletal muscle, (c) comparison of the HH images of different samples, dependence of x/y to the normalized intensity.

Fig. 6.
Fig. 6.

The Mueller matrix images in (a) fresh skeletal muscle and (b) microsphere-silk sample. The image size is 1.4cm × 1.27cm. The muscle fibers and silk fibers are along the vertical direction (y-axis).

Fig. 7.
Fig. 7.

From left to right: The contour of M22 from fresh skeletal muscle and; three-layer Monte Carlo simulation; homogeneous Monte Carlo simulation. The image size is 0.8cm × 0.8cm. The muscle fibers are along the vertical direction (y-axis).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

M = ( M 11 M 12 M 13 M 21 M 22 M 23 M 31 M 32 M 33 )
= 1 2 ( HH + HV + VH + VV HH + HV VH VV 2 PH + 2 PV M 11 HH HV + VH VV HH HV VH + VV 2 PH 2 PV M 21 2 HP + 2 VP M 11 2 HP 2 VP M 12 4 PP 2 PH 2 PV M 31 )

Metrics