Abstract

We report the near-field nanofocusing through a plasmonic lens containing a Bragg reflector and a converging lens, which consist of semitransparent annular grooves milled into a gold film with different periods along the radial direction. By illuminating the structure with a linearly polarized light, two tightly focal spots were detected by scanning near-field optical microscope. This plasmonic lens has considerably reduced direct light transmission, making the focal spots obvious. By raising the radius of half of every groove, one single spot was obtained. Furthermore, theoretical simulations prove that the light intensity of the focal spots can be doubled through adding the Bragg reflector surrounding the converging lens.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
    [CrossRef] [PubMed]
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [CrossRef] [PubMed]
  3. E. Ozbay, “Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions,” Science 311(5758), 189–193 (2006).
    [CrossRef] [PubMed]
  4. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
    [CrossRef] [PubMed]
  5. Z. Y. Fang, C. F. Lin, R. M. Ma, S. Huang, and X. Zhu, “Planar plasmonic focusing and optical transport using CdS nanoribbon,” ACS Nano 4(1), 75–82 (2010).
    [CrossRef]
  6. B. Rothenhäusler and W. Knoll, “Surface–plasmon microscopy,” Nature 332(6165), 615–617 (1988).
    [CrossRef]
  7. Z. Y. Fang, F. Lin, S. Huang, W. T. Song, and X. Zhu, “Focusing surface plasmon polariton trapping of colloidal particles,” Appl. Phys. Lett. 94(6), 063306 (2009).
    [CrossRef]
  8. Z. W. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
    [CrossRef] [PubMed]
  9. G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic Lens Illuminated with Radially Polarized Light,” Nano Lett. 9(5), 2139–2143 (2009).
    [CrossRef] [PubMed]
  10. W. B. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. W. Zhan, “Plasmonic lens made of multiple concentric metallic rings under radially polarized illumination,” Nano Lett. 9(12), 4320–4325 (2009).
    [CrossRef] [PubMed]
  11. Z. Y. Fang, S. Huang, F. Lin, and X. Zhu, “Color-tuning and switching optical transport through CdS hybrid plasmonic waveguide,” Opt. Express 17(22), 20327–20332 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-17-22-20327 .
    [CrossRef] [PubMed]
  12. Z. Y. Fang, X. J. Zhang, D. Liu, and X. Zhu, “Excitation of dielectric-loaded surface plasmon polariton observed by using near-field optical microscopy,” Appl. Phys. Lett. 93(7), 073306 (2008).
    [CrossRef]
  13. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
    [CrossRef]
  14. D. Peyrade, E. Silberstein, P. Lalanne, A. Talneau, and Y. Chen, “Short Bragg mirrors with adiabatic modal conversion,” Appl. Phys. Lett. 81(5), 829–831 (2002).
    [CrossRef]
  15. J. R. Krenn, H. Ditlbacher, G. Schider, A. Hohenau, A. Leitner, and F. R. Aussenegg, “Surface plasmon micro- and nano-optics,” J. Microsc. 209(Pt 3), 167–172 (2003).
    [CrossRef] [PubMed]
  16. J. C. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, M. U. González, and A. L. Baudrion, “Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides,” Phys. Rev. 70, 1–12 (2004).
  17. M. U. Gonzalez, J. C. Weeber, A. L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45° surface-plasmon Bragg mirrors,” Phys. Rev. 73, 1–13 (2006).
  18. Z. Y. Fang, Y. W. Lu, L. R. Fan, C. F. Lin, and X. Zhu, “Surface Plasmon Polariton Enhancement in Silver Nanowire–Nanoantenna Structure,” Plasmonics 5(1), 57–62 (2010).
    [CrossRef]
  19. A. Bouhelier, F. Ignatovich, A. Bruyant, C. Huang, G. Colas des Francs, J. C. Weeber, A. Dereux, G. P. Wiederrecht, and L. Novotny, “Surface plasmon interference excited by tightly focused laser beams,” Opt. Lett. 32(17), 2535–2537 (2007).
    [CrossRef] [PubMed]
  20. L. Novotny, and B. Hecht, Principles of nano-optics; (Cambridge Univ. Press: Cambridge, MA, 2006).

2010

Z. Y. Fang, C. F. Lin, R. M. Ma, S. Huang, and X. Zhu, “Planar plasmonic focusing and optical transport using CdS nanoribbon,” ACS Nano 4(1), 75–82 (2010).
[CrossRef]

Z. Y. Fang, Y. W. Lu, L. R. Fan, C. F. Lin, and X. Zhu, “Surface Plasmon Polariton Enhancement in Silver Nanowire–Nanoantenna Structure,” Plasmonics 5(1), 57–62 (2010).
[CrossRef]

2009

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic Lens Illuminated with Radially Polarized Light,” Nano Lett. 9(5), 2139–2143 (2009).
[CrossRef] [PubMed]

W. B. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. W. Zhan, “Plasmonic lens made of multiple concentric metallic rings under radially polarized illumination,” Nano Lett. 9(12), 4320–4325 (2009).
[CrossRef] [PubMed]

Z. Y. Fang, F. Lin, S. Huang, W. T. Song, and X. Zhu, “Focusing surface plasmon polariton trapping of colloidal particles,” Appl. Phys. Lett. 94(6), 063306 (2009).
[CrossRef]

Z. Y. Fang, S. Huang, F. Lin, and X. Zhu, “Color-tuning and switching optical transport through CdS hybrid plasmonic waveguide,” Opt. Express 17(22), 20327–20332 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-17-22-20327 .
[CrossRef] [PubMed]

2008

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[CrossRef] [PubMed]

Z. Y. Fang, X. J. Zhang, D. Liu, and X. Zhu, “Excitation of dielectric-loaded surface plasmon polariton observed by using near-field optical microscopy,” Appl. Phys. Lett. 93(7), 073306 (2008).
[CrossRef]

2007

2006

E. Ozbay, “Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions,” Science 311(5758), 189–193 (2006).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

M. U. Gonzalez, J. C. Weeber, A. L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45° surface-plasmon Bragg mirrors,” Phys. Rev. 73, 1–13 (2006).

2005

Z. W. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[CrossRef] [PubMed]

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[CrossRef]

2004

J. C. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, M. U. González, and A. L. Baudrion, “Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides,” Phys. Rev. 70, 1–12 (2004).

2003

J. R. Krenn, H. Ditlbacher, G. Schider, A. Hohenau, A. Leitner, and F. R. Aussenegg, “Surface plasmon micro- and nano-optics,” J. Microsc. 209(Pt 3), 167–172 (2003).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

2002

D. Peyrade, E. Silberstein, P. Lalanne, A. Talneau, and Y. Chen, “Short Bragg mirrors with adiabatic modal conversion,” Appl. Phys. Lett. 81(5), 829–831 (2002).
[CrossRef]

1988

B. Rothenhäusler and W. Knoll, “Surface–plasmon microscopy,” Nature 332(6165), 615–617 (1988).
[CrossRef]

Abeysinghe, D. C.

W. B. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. W. Zhan, “Plasmonic lens made of multiple concentric metallic rings under radially polarized illumination,” Nano Lett. 9(12), 4320–4325 (2009).
[CrossRef] [PubMed]

Aussenegg, F. R.

J. R. Krenn, H. Ditlbacher, G. Schider, A. Hohenau, A. Leitner, and F. R. Aussenegg, “Surface plasmon micro- and nano-optics,” J. Microsc. 209(Pt 3), 167–172 (2003).
[CrossRef] [PubMed]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Baudrion, A. L.

M. U. Gonzalez, J. C. Weeber, A. L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45° surface-plasmon Bragg mirrors,” Phys. Rev. 73, 1–13 (2006).

J. C. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, M. U. González, and A. L. Baudrion, “Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides,” Phys. Rev. 70, 1–12 (2004).

Bouhelier, A.

Bozhevolnyi, S. I.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Bruyant, A.

Chen, W. B.

W. B. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. W. Zhan, “Plasmonic lens made of multiple concentric metallic rings under radially polarized illumination,” Nano Lett. 9(12), 4320–4325 (2009).
[CrossRef] [PubMed]

Chen, Y.

D. Peyrade, E. Silberstein, P. Lalanne, A. Talneau, and Y. Chen, “Short Bragg mirrors with adiabatic modal conversion,” Appl. Phys. Lett. 81(5), 829–831 (2002).
[CrossRef]

Colas des Francs, G.

Dereux, A.

A. Bouhelier, F. Ignatovich, A. Bruyant, C. Huang, G. Colas des Francs, J. C. Weeber, A. Dereux, G. P. Wiederrecht, and L. Novotny, “Surface plasmon interference excited by tightly focused laser beams,” Opt. Lett. 32(17), 2535–2537 (2007).
[CrossRef] [PubMed]

M. U. Gonzalez, J. C. Weeber, A. L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45° surface-plasmon Bragg mirrors,” Phys. Rev. 73, 1–13 (2006).

J. C. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, M. U. González, and A. L. Baudrion, “Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides,” Phys. Rev. 70, 1–12 (2004).

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Devaux, E.

M. U. Gonzalez, J. C. Weeber, A. L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45° surface-plasmon Bragg mirrors,” Phys. Rev. 73, 1–13 (2006).

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

J. C. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, M. U. González, and A. L. Baudrion, “Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides,” Phys. Rev. 70, 1–12 (2004).

Ditlbacher, H.

J. R. Krenn, H. Ditlbacher, G. Schider, A. Hohenau, A. Leitner, and F. R. Aussenegg, “Surface plasmon micro- and nano-optics,” J. Microsc. 209(Pt 3), 167–172 (2003).
[CrossRef] [PubMed]

Ebbesen, T.

J. C. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, M. U. González, and A. L. Baudrion, “Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides,” Phys. Rev. 70, 1–12 (2004).

Ebbesen, T. W.

M. U. Gonzalez, J. C. Weeber, A. L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45° surface-plasmon Bragg mirrors,” Phys. Rev. 73, 1–13 (2006).

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Fan, L. R.

Z. Y. Fang, Y. W. Lu, L. R. Fan, C. F. Lin, and X. Zhu, “Surface Plasmon Polariton Enhancement in Silver Nanowire–Nanoantenna Structure,” Plasmonics 5(1), 57–62 (2010).
[CrossRef]

Fang, Z. Y.

Z. Y. Fang, Y. W. Lu, L. R. Fan, C. F. Lin, and X. Zhu, “Surface Plasmon Polariton Enhancement in Silver Nanowire–Nanoantenna Structure,” Plasmonics 5(1), 57–62 (2010).
[CrossRef]

Z. Y. Fang, C. F. Lin, R. M. Ma, S. Huang, and X. Zhu, “Planar plasmonic focusing and optical transport using CdS nanoribbon,” ACS Nano 4(1), 75–82 (2010).
[CrossRef]

Z. Y. Fang, F. Lin, S. Huang, W. T. Song, and X. Zhu, “Focusing surface plasmon polariton trapping of colloidal particles,” Appl. Phys. Lett. 94(6), 063306 (2009).
[CrossRef]

Z. Y. Fang, S. Huang, F. Lin, and X. Zhu, “Color-tuning and switching optical transport through CdS hybrid plasmonic waveguide,” Opt. Express 17(22), 20327–20332 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-17-22-20327 .
[CrossRef] [PubMed]

Z. Y. Fang, X. J. Zhang, D. Liu, and X. Zhu, “Excitation of dielectric-loaded surface plasmon polariton observed by using near-field optical microscopy,” Appl. Phys. Lett. 93(7), 073306 (2008).
[CrossRef]

Girard, C.

J. C. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, M. U. González, and A. L. Baudrion, “Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides,” Phys. Rev. 70, 1–12 (2004).

Gonzalez, M. U.

M. U. Gonzalez, J. C. Weeber, A. L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45° surface-plasmon Bragg mirrors,” Phys. Rev. 73, 1–13 (2006).

González, M. U.

J. C. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, M. U. González, and A. L. Baudrion, “Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides,” Phys. Rev. 70, 1–12 (2004).

Hohenau, A.

J. R. Krenn, H. Ditlbacher, G. Schider, A. Hohenau, A. Leitner, and F. R. Aussenegg, “Surface plasmon micro- and nano-optics,” J. Microsc. 209(Pt 3), 167–172 (2003).
[CrossRef] [PubMed]

Huang, C.

Huang, S.

Z. Y. Fang, C. F. Lin, R. M. Ma, S. Huang, and X. Zhu, “Planar plasmonic focusing and optical transport using CdS nanoribbon,” ACS Nano 4(1), 75–82 (2010).
[CrossRef]

Z. Y. Fang, F. Lin, S. Huang, W. T. Song, and X. Zhu, “Focusing surface plasmon polariton trapping of colloidal particles,” Appl. Phys. Lett. 94(6), 063306 (2009).
[CrossRef]

Z. Y. Fang, S. Huang, F. Lin, and X. Zhu, “Color-tuning and switching optical transport through CdS hybrid plasmonic waveguide,” Opt. Express 17(22), 20327–20332 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-17-22-20327 .
[CrossRef] [PubMed]

Ignatovich, F.

Jin, J.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[CrossRef] [PubMed]

Kim, S.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[CrossRef] [PubMed]

Kim, S. W.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[CrossRef] [PubMed]

Kim, Y.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[CrossRef] [PubMed]

Kim, Y. J.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[CrossRef] [PubMed]

Knoll, W.

B. Rothenhäusler and W. Knoll, “Surface–plasmon microscopy,” Nature 332(6165), 615–617 (1988).
[CrossRef]

Krenn, J. R.

M. U. Gonzalez, J. C. Weeber, A. L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45° surface-plasmon Bragg mirrors,” Phys. Rev. 73, 1–13 (2006).

J. R. Krenn, H. Ditlbacher, G. Schider, A. Hohenau, A. Leitner, and F. R. Aussenegg, “Surface plasmon micro- and nano-optics,” J. Microsc. 209(Pt 3), 167–172 (2003).
[CrossRef] [PubMed]

Lacroute, Y.

J. C. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, M. U. González, and A. L. Baudrion, “Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides,” Phys. Rev. 70, 1–12 (2004).

Lalanne, P.

D. Peyrade, E. Silberstein, P. Lalanne, A. Talneau, and Y. Chen, “Short Bragg mirrors with adiabatic modal conversion,” Appl. Phys. Lett. 81(5), 829–831 (2002).
[CrossRef]

Laluet, J. Y.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Leitner, A.

J. R. Krenn, H. Ditlbacher, G. Schider, A. Hohenau, A. Leitner, and F. R. Aussenegg, “Surface plasmon micro- and nano-optics,” J. Microsc. 209(Pt 3), 167–172 (2003).
[CrossRef] [PubMed]

Lerman, G. M.

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic Lens Illuminated with Radially Polarized Light,” Nano Lett. 9(5), 2139–2143 (2009).
[CrossRef] [PubMed]

Levy, U.

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic Lens Illuminated with Radially Polarized Light,” Nano Lett. 9(5), 2139–2143 (2009).
[CrossRef] [PubMed]

Lin, C. F.

Z. Y. Fang, Y. W. Lu, L. R. Fan, C. F. Lin, and X. Zhu, “Surface Plasmon Polariton Enhancement in Silver Nanowire–Nanoantenna Structure,” Plasmonics 5(1), 57–62 (2010).
[CrossRef]

Z. Y. Fang, C. F. Lin, R. M. Ma, S. Huang, and X. Zhu, “Planar plasmonic focusing and optical transport using CdS nanoribbon,” ACS Nano 4(1), 75–82 (2010).
[CrossRef]

Lin, F.

Liu, D.

Z. Y. Fang, X. J. Zhang, D. Liu, and X. Zhu, “Excitation of dielectric-loaded surface plasmon polariton observed by using near-field optical microscopy,” Appl. Phys. Lett. 93(7), 073306 (2008).
[CrossRef]

Liu, Z. W.

Z. W. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[CrossRef] [PubMed]

Lu, Y. W.

Z. Y. Fang, Y. W. Lu, L. R. Fan, C. F. Lin, and X. Zhu, “Surface Plasmon Polariton Enhancement in Silver Nanowire–Nanoantenna Structure,” Plasmonics 5(1), 57–62 (2010).
[CrossRef]

Ma, R. M.

Z. Y. Fang, C. F. Lin, R. M. Ma, S. Huang, and X. Zhu, “Planar plasmonic focusing and optical transport using CdS nanoribbon,” ACS Nano 4(1), 75–82 (2010).
[CrossRef]

Maradudin, A. A.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[CrossRef]

Nelson, R. L.

W. B. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. W. Zhan, “Plasmonic lens made of multiple concentric metallic rings under radially polarized illumination,” Nano Lett. 9(12), 4320–4325 (2009).
[CrossRef] [PubMed]

Novotny, L.

Ozbay, E.

E. Ozbay, “Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions,” Science 311(5758), 189–193 (2006).
[CrossRef] [PubMed]

Park, I. Y.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[CrossRef] [PubMed]

Peyrade, D.

D. Peyrade, E. Silberstein, P. Lalanne, A. Talneau, and Y. Chen, “Short Bragg mirrors with adiabatic modal conversion,” Appl. Phys. Lett. 81(5), 829–831 (2002).
[CrossRef]

Pikus, Y.

Z. W. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[CrossRef] [PubMed]

Rothenhäusler, B.

B. Rothenhäusler and W. Knoll, “Surface–plasmon microscopy,” Nature 332(6165), 615–617 (1988).
[CrossRef]

Schider, G.

J. R. Krenn, H. Ditlbacher, G. Schider, A. Hohenau, A. Leitner, and F. R. Aussenegg, “Surface plasmon micro- and nano-optics,” J. Microsc. 209(Pt 3), 167–172 (2003).
[CrossRef] [PubMed]

Silberstein, E.

D. Peyrade, E. Silberstein, P. Lalanne, A. Talneau, and Y. Chen, “Short Bragg mirrors with adiabatic modal conversion,” Appl. Phys. Lett. 81(5), 829–831 (2002).
[CrossRef]

Smolyaninov, I. I.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[CrossRef]

Song, W. T.

Z. Y. Fang, F. Lin, S. Huang, W. T. Song, and X. Zhu, “Focusing surface plasmon polariton trapping of colloidal particles,” Appl. Phys. Lett. 94(6), 063306 (2009).
[CrossRef]

Srituravanich, W.

Z. W. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[CrossRef] [PubMed]

Steele, J. M.

Z. W. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[CrossRef] [PubMed]

Stepanov, A. L.

M. U. Gonzalez, J. C. Weeber, A. L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45° surface-plasmon Bragg mirrors,” Phys. Rev. 73, 1–13 (2006).

Sun, C.

Z. W. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[CrossRef] [PubMed]

Talneau, A.

D. Peyrade, E. Silberstein, P. Lalanne, A. Talneau, and Y. Chen, “Short Bragg mirrors with adiabatic modal conversion,” Appl. Phys. Lett. 81(5), 829–831 (2002).
[CrossRef]

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Weeber, J. C.

A. Bouhelier, F. Ignatovich, A. Bruyant, C. Huang, G. Colas des Francs, J. C. Weeber, A. Dereux, G. P. Wiederrecht, and L. Novotny, “Surface plasmon interference excited by tightly focused laser beams,” Opt. Lett. 32(17), 2535–2537 (2007).
[CrossRef] [PubMed]

M. U. Gonzalez, J. C. Weeber, A. L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45° surface-plasmon Bragg mirrors,” Phys. Rev. 73, 1–13 (2006).

J. C. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, M. U. González, and A. L. Baudrion, “Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides,” Phys. Rev. 70, 1–12 (2004).

Wiederrecht, G. P.

Yanai, A.

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic Lens Illuminated with Radially Polarized Light,” Nano Lett. 9(5), 2139–2143 (2009).
[CrossRef] [PubMed]

Zayats, A. V.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[CrossRef]

Zhan, Q. W.

W. B. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. W. Zhan, “Plasmonic lens made of multiple concentric metallic rings under radially polarized illumination,” Nano Lett. 9(12), 4320–4325 (2009).
[CrossRef] [PubMed]

Zhang, X.

Z. W. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[CrossRef] [PubMed]

Zhang, X. J.

Z. Y. Fang, X. J. Zhang, D. Liu, and X. Zhu, “Excitation of dielectric-loaded surface plasmon polariton observed by using near-field optical microscopy,” Appl. Phys. Lett. 93(7), 073306 (2008).
[CrossRef]

Zhu, X.

Z. Y. Fang, Y. W. Lu, L. R. Fan, C. F. Lin, and X. Zhu, “Surface Plasmon Polariton Enhancement in Silver Nanowire–Nanoantenna Structure,” Plasmonics 5(1), 57–62 (2010).
[CrossRef]

Z. Y. Fang, C. F. Lin, R. M. Ma, S. Huang, and X. Zhu, “Planar plasmonic focusing and optical transport using CdS nanoribbon,” ACS Nano 4(1), 75–82 (2010).
[CrossRef]

Z. Y. Fang, F. Lin, S. Huang, W. T. Song, and X. Zhu, “Focusing surface plasmon polariton trapping of colloidal particles,” Appl. Phys. Lett. 94(6), 063306 (2009).
[CrossRef]

Z. Y. Fang, S. Huang, F. Lin, and X. Zhu, “Color-tuning and switching optical transport through CdS hybrid plasmonic waveguide,” Opt. Express 17(22), 20327–20332 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-17-22-20327 .
[CrossRef] [PubMed]

Z. Y. Fang, X. J. Zhang, D. Liu, and X. Zhu, “Excitation of dielectric-loaded surface plasmon polariton observed by using near-field optical microscopy,” Appl. Phys. Lett. 93(7), 073306 (2008).
[CrossRef]

ACS Nano

Z. Y. Fang, C. F. Lin, R. M. Ma, S. Huang, and X. Zhu, “Planar plasmonic focusing and optical transport using CdS nanoribbon,” ACS Nano 4(1), 75–82 (2010).
[CrossRef]

Appl. Phys. Lett.

Z. Y. Fang, F. Lin, S. Huang, W. T. Song, and X. Zhu, “Focusing surface plasmon polariton trapping of colloidal particles,” Appl. Phys. Lett. 94(6), 063306 (2009).
[CrossRef]

D. Peyrade, E. Silberstein, P. Lalanne, A. Talneau, and Y. Chen, “Short Bragg mirrors with adiabatic modal conversion,” Appl. Phys. Lett. 81(5), 829–831 (2002).
[CrossRef]

Z. Y. Fang, X. J. Zhang, D. Liu, and X. Zhu, “Excitation of dielectric-loaded surface plasmon polariton observed by using near-field optical microscopy,” Appl. Phys. Lett. 93(7), 073306 (2008).
[CrossRef]

J. Microsc.

J. R. Krenn, H. Ditlbacher, G. Schider, A. Hohenau, A. Leitner, and F. R. Aussenegg, “Surface plasmon micro- and nano-optics,” J. Microsc. 209(Pt 3), 167–172 (2003).
[CrossRef] [PubMed]

Nano Lett.

Z. W. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[CrossRef] [PubMed]

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic Lens Illuminated with Radially Polarized Light,” Nano Lett. 9(5), 2139–2143 (2009).
[CrossRef] [PubMed]

W. B. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. W. Zhan, “Plasmonic lens made of multiple concentric metallic rings under radially polarized illumination,” Nano Lett. 9(12), 4320–4325 (2009).
[CrossRef] [PubMed]

Nature

B. Rothenhäusler and W. Knoll, “Surface–plasmon microscopy,” Nature 332(6165), 615–617 (1988).
[CrossRef]

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rep.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[CrossRef]

Phys. Rev.

J. C. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, M. U. González, and A. L. Baudrion, “Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides,” Phys. Rev. 70, 1–12 (2004).

M. U. Gonzalez, J. C. Weeber, A. L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45° surface-plasmon Bragg mirrors,” Phys. Rev. 73, 1–13 (2006).

Plasmonics

Z. Y. Fang, Y. W. Lu, L. R. Fan, C. F. Lin, and X. Zhu, “Surface Plasmon Polariton Enhancement in Silver Nanowire–Nanoantenna Structure,” Plasmonics 5(1), 57–62 (2010).
[CrossRef]

Science

E. Ozbay, “Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions,” Science 311(5758), 189–193 (2006).
[CrossRef] [PubMed]

Other

L. Novotny, and B. Hecht, Principles of nano-optics; (Cambridge Univ. Press: Cambridge, MA, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic diagram of the experimental setup. Vertical arrows at the bottom points the incident direction of the illuminating light, the horizontal arrow points the polarized direction of the incident light; (b) Scanning electronic microscope image of the plasmonic lens; (c) Scanning electronic microscope image of the phase delayed plasmonic lens.

Fig. 2
Fig. 2

(a) Atomic force microscopy (AFM) image of the plasmonic lens. (b) Cross-section image of the lens along the dash line in (a), indicating the depth of the grooves.

Fig. 3
Fig. 3

(a) SNOM image in near-field of the area with periodic grooves, bright regions correspond to high intensity. (b) Electric field distribution of the plane about 80-nm above the plasmonic lens on a thickened substrate. (c) Normalized experimental and theoretical cross sections through the center of the plasmonic lens along the polarized direction. The solid line indicates the experimental results. The dash line indicates the numerical results.

Fig. 4
Fig. 4

(a) SNOM image in near-field of the area with periodic grooves, bright regions correspond to high intensity; (b) SNOM image of the white square region in (a); (c) Electric field distribution of the plane about 80-nm above the phase delayed plasmonic lens; (d) Normalized experimental and theoretical cross sections through the center of the plasmonic lens along the polarized direction. The solid line indicates the experimental results. The dash line indicates the numerical results.

Fig. 5
Fig. 5

Intensity distribution of |Ez | 2 along the polarization direction through the center of the plasmonic lens at 80-nm height above the structure; Solid line and dash circle line are calculated above the plasmonic lens with and without Bragg reflector of SPPs surrounding, respectively. The lines are shown with the same coordinatometer; the maximum intensities of each line are 1.0 and 0.51, respectively.

Metrics