Abstract

Spectrally encoded endoscopy (SEE) uses miniature diffractive optics to encode space with wavelength, allowing video-rate three-dimensional imaging through sub-millimeter, flexible endoscopic probes. Here we present a new approach for SEE in which the illumination and the collection channels are separated in space, and spectral encoding is present only in the collection channel. Bench-top experiments using spatially incoherent white light illumination reveal significant improvement in image quality and considerable reduction of speckle noise compared to conventional techniques, and show that the new system is capable of high sensitivity fluorescence imaging of single cells. The presented new approach would allow improved functionality and usability of SEE.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. I. Hirschowitz, “Endoscopic examination of the stomach and duodenal cap with the fiberscope,” Lancet Infect. Dis. 1, 1074–1078 (1961).
  2. C. Liang, K. B. Sung, R. R. Richards-Kortum, and M. R. Descour, “Design of a high-numerical-aperture miniature microscope objective for an endoscopic fiber confocal reflectance microscope,” Appl. Opt. 41(22), 4603–4610 (2002).
    [CrossRef] [PubMed]
  3. A. F. Gmitro and D. Aziz, “Confocal microscopy through a fiber-optic imaging bundle,” Opt. Lett. 18(8), 565–567 (1993).
    [CrossRef] [PubMed]
  4. M. A. D’Hallewin, S. El Khatib, A. Leroux, L. Bezdetnaya, and F. Guillemin, “Endoscopic confocal fluorescence microscopy of normal and tumor bearing rat bladder,” J. Urol. 174(2), 736–740 (2005).
    [CrossRef] [PubMed]
  5. V. R. Jacobs, M. Kiechle, B. Plattner, T. Fischer, and S. Paepke, “Breast ductoscopy with a 0.55-mm mini-endoscope for direct visualization of intraductal lesions,” J. Minim. Invasive Gynecol. 12(4), 359–364 (2005).
    [CrossRef] [PubMed]
  6. E. R. Sauter, H. Ehya, L. Schlatter, and B. MacGibbon, “Ductoscopic cytology to detect breast cancer,” Cancer J. 10(1), 33–41, discussion 15–16 (2004).
    [CrossRef] [PubMed]
  7. E. A. Reece, “Embryoscopy and early prenatal diagnosis,” Obstet. Gynecol. Clin. North Am. 24, 111–121 (1997).
    [CrossRef] [PubMed]
  8. A. J. Saltzman and S. Waxman, “Angioscopy and ischemic heart disease,” Curr. Opin. Cardiol. 17(6), 633–637 (2002).
    [CrossRef] [PubMed]
  9. C. M. Brown, P. G. Reinhall, S. Karasawa, and E. J. Seibel, “Optomechanical design and fabrication of resonant microscanners for a scanning fiber endoscope,” Opt. Eng. 45(4), 043001 (2006).
    [CrossRef]
  10. D. L. Dickensheets and G. S. Kino, “Micromachined scanning confocal optical microscope,” Opt. Lett. 21(10), 764–766 (1996).
    [CrossRef] [PubMed]
  11. Y. C. Wu, Y. X. Leng, J. F. Xi, and X. D. Li, “Scanning all-fiber-optic endomicroscopy system for 3D nonlinear optical imaging of biological tissues,” Opt. Express 17(10), 7907–7915 (2009).
    [CrossRef] [PubMed]
  12. G. J. Tearney, R. H. Webb, and B. E. Bouma, “Spectrally encoded confocal microscopy,” Opt. Lett. 23(15), 1152–1154 (1998).
    [CrossRef]
  13. D. Yelin, C. Boudoux, B. E. Bouma, and G. J. Tearney, “Large area confocal microscopy,” Opt. Lett. 32(9), 1102–1104 (2007).
    [CrossRef] [PubMed]
  14. C. Boudoux, S. H. Yun, W. Y. Oh, W. M. White, N. V. Iftimia, M. Shishkov, B. E. Bouma, and G. J. Tearney, “Rapid wavelength-swept spectrally encoded confocal microscopy,” Opt. Express 13(20), 8214–8221 (2005).
    [CrossRef] [PubMed]
  15. K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458(7242), 1145–1149 (2009).
    [CrossRef] [PubMed]
  16. L. Froehly, S. N. Martin, T. Lasser, C. Depeursinge, and F. Lang, “Multiplexed 3D imaging using wavelength encoded spectral interferometry: a proof of principle,” Opt. Commun. 222(1-6), 127–136 (2003).
    [CrossRef]
  17. D. Yelin, I. Rizvi, W. M. White, J. T. Motz, T. Hasan, B. E. Bouma, and G. J. Tearney, “Three-dimensional miniature endoscopy,” Nature 443(7113), 765 (2006).
    [CrossRef] [PubMed]
  18. D. Yelin, W. M. White, J. T. Motz, S. H. Yun, B. E. Bouma, and G. J. Tearney, “Spectral-domain spectrally-encoded endoscopy,” Opt. Express 15(5), 2432–2444 (2007).
    [CrossRef] [PubMed]
  19. J. T. Motz, D. Yelin, B. J. Vakoc, B. E. Bouma, and G. J. Tearney, “Spectral- and frequency-encoded fluorescence imaging,” Opt. Lett. 30(20), 2760–2762 (2005).
    [CrossRef] [PubMed]
  20. D. Yelin, B. E. Bouma, S. H. Yun, and G. J. Tearney, “Double-clad fiber for endoscopy,” Opt. Lett. 29(20), 2408–2410 (2004).
    [CrossRef] [PubMed]
  21. M. Merman, A. Abramov, and D. Yelin, “Theoretical analysis of spectrally encoded endoscopy,” Opt. Express 17(26), 24045–24059 (2009).
    [CrossRef]
  22. K. K. Tsia, K. Goda, D. Capewell, and B. Jalali, “Simultaneous mechanical-scan-free confocal microscopy and laser microsurgery,” Opt. Lett. 34(14), 2099–2101 (2009).
    [CrossRef] [PubMed]

2009

2007

2006

C. M. Brown, P. G. Reinhall, S. Karasawa, and E. J. Seibel, “Optomechanical design and fabrication of resonant microscanners for a scanning fiber endoscope,” Opt. Eng. 45(4), 043001 (2006).
[CrossRef]

D. Yelin, I. Rizvi, W. M. White, J. T. Motz, T. Hasan, B. E. Bouma, and G. J. Tearney, “Three-dimensional miniature endoscopy,” Nature 443(7113), 765 (2006).
[CrossRef] [PubMed]

2005

J. T. Motz, D. Yelin, B. J. Vakoc, B. E. Bouma, and G. J. Tearney, “Spectral- and frequency-encoded fluorescence imaging,” Opt. Lett. 30(20), 2760–2762 (2005).
[CrossRef] [PubMed]

C. Boudoux, S. H. Yun, W. Y. Oh, W. M. White, N. V. Iftimia, M. Shishkov, B. E. Bouma, and G. J. Tearney, “Rapid wavelength-swept spectrally encoded confocal microscopy,” Opt. Express 13(20), 8214–8221 (2005).
[CrossRef] [PubMed]

M. A. D’Hallewin, S. El Khatib, A. Leroux, L. Bezdetnaya, and F. Guillemin, “Endoscopic confocal fluorescence microscopy of normal and tumor bearing rat bladder,” J. Urol. 174(2), 736–740 (2005).
[CrossRef] [PubMed]

V. R. Jacobs, M. Kiechle, B. Plattner, T. Fischer, and S. Paepke, “Breast ductoscopy with a 0.55-mm mini-endoscope for direct visualization of intraductal lesions,” J. Minim. Invasive Gynecol. 12(4), 359–364 (2005).
[CrossRef] [PubMed]

2004

E. R. Sauter, H. Ehya, L. Schlatter, and B. MacGibbon, “Ductoscopic cytology to detect breast cancer,” Cancer J. 10(1), 33–41, discussion 15–16 (2004).
[CrossRef] [PubMed]

D. Yelin, B. E. Bouma, S. H. Yun, and G. J. Tearney, “Double-clad fiber for endoscopy,” Opt. Lett. 29(20), 2408–2410 (2004).
[CrossRef] [PubMed]

2003

L. Froehly, S. N. Martin, T. Lasser, C. Depeursinge, and F. Lang, “Multiplexed 3D imaging using wavelength encoded spectral interferometry: a proof of principle,” Opt. Commun. 222(1-6), 127–136 (2003).
[CrossRef]

2002

1998

1996

1993

1961

B. I. Hirschowitz, “Endoscopic examination of the stomach and duodenal cap with the fiberscope,” Lancet Infect. Dis. 1, 1074–1078 (1961).

Abramov, A.

Aziz, D.

Bezdetnaya, L.

M. A. D’Hallewin, S. El Khatib, A. Leroux, L. Bezdetnaya, and F. Guillemin, “Endoscopic confocal fluorescence microscopy of normal and tumor bearing rat bladder,” J. Urol. 174(2), 736–740 (2005).
[CrossRef] [PubMed]

Boudoux, C.

Bouma, B. E.

Brown, C. M.

C. M. Brown, P. G. Reinhall, S. Karasawa, and E. J. Seibel, “Optomechanical design and fabrication of resonant microscanners for a scanning fiber endoscope,” Opt. Eng. 45(4), 043001 (2006).
[CrossRef]

Capewell, D.

D’Hallewin, M. A.

M. A. D’Hallewin, S. El Khatib, A. Leroux, L. Bezdetnaya, and F. Guillemin, “Endoscopic confocal fluorescence microscopy of normal and tumor bearing rat bladder,” J. Urol. 174(2), 736–740 (2005).
[CrossRef] [PubMed]

Depeursinge, C.

L. Froehly, S. N. Martin, T. Lasser, C. Depeursinge, and F. Lang, “Multiplexed 3D imaging using wavelength encoded spectral interferometry: a proof of principle,” Opt. Commun. 222(1-6), 127–136 (2003).
[CrossRef]

Descour, M. R.

Dickensheets, D. L.

Ehya, H.

E. R. Sauter, H. Ehya, L. Schlatter, and B. MacGibbon, “Ductoscopic cytology to detect breast cancer,” Cancer J. 10(1), 33–41, discussion 15–16 (2004).
[CrossRef] [PubMed]

El Khatib, S.

M. A. D’Hallewin, S. El Khatib, A. Leroux, L. Bezdetnaya, and F. Guillemin, “Endoscopic confocal fluorescence microscopy of normal and tumor bearing rat bladder,” J. Urol. 174(2), 736–740 (2005).
[CrossRef] [PubMed]

Fischer, T.

V. R. Jacobs, M. Kiechle, B. Plattner, T. Fischer, and S. Paepke, “Breast ductoscopy with a 0.55-mm mini-endoscope for direct visualization of intraductal lesions,” J. Minim. Invasive Gynecol. 12(4), 359–364 (2005).
[CrossRef] [PubMed]

Froehly, L.

L. Froehly, S. N. Martin, T. Lasser, C. Depeursinge, and F. Lang, “Multiplexed 3D imaging using wavelength encoded spectral interferometry: a proof of principle,” Opt. Commun. 222(1-6), 127–136 (2003).
[CrossRef]

Gmitro, A. F.

Goda, K.

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458(7242), 1145–1149 (2009).
[CrossRef] [PubMed]

K. K. Tsia, K. Goda, D. Capewell, and B. Jalali, “Simultaneous mechanical-scan-free confocal microscopy and laser microsurgery,” Opt. Lett. 34(14), 2099–2101 (2009).
[CrossRef] [PubMed]

Guillemin, F.

M. A. D’Hallewin, S. El Khatib, A. Leroux, L. Bezdetnaya, and F. Guillemin, “Endoscopic confocal fluorescence microscopy of normal and tumor bearing rat bladder,” J. Urol. 174(2), 736–740 (2005).
[CrossRef] [PubMed]

Hasan, T.

D. Yelin, I. Rizvi, W. M. White, J. T. Motz, T. Hasan, B. E. Bouma, and G. J. Tearney, “Three-dimensional miniature endoscopy,” Nature 443(7113), 765 (2006).
[CrossRef] [PubMed]

Hirschowitz, B. I.

B. I. Hirschowitz, “Endoscopic examination of the stomach and duodenal cap with the fiberscope,” Lancet Infect. Dis. 1, 1074–1078 (1961).

Iftimia, N. V.

Jacobs, V. R.

V. R. Jacobs, M. Kiechle, B. Plattner, T. Fischer, and S. Paepke, “Breast ductoscopy with a 0.55-mm mini-endoscope for direct visualization of intraductal lesions,” J. Minim. Invasive Gynecol. 12(4), 359–364 (2005).
[CrossRef] [PubMed]

Jalali, B.

K. K. Tsia, K. Goda, D. Capewell, and B. Jalali, “Simultaneous mechanical-scan-free confocal microscopy and laser microsurgery,” Opt. Lett. 34(14), 2099–2101 (2009).
[CrossRef] [PubMed]

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458(7242), 1145–1149 (2009).
[CrossRef] [PubMed]

Karasawa, S.

C. M. Brown, P. G. Reinhall, S. Karasawa, and E. J. Seibel, “Optomechanical design and fabrication of resonant microscanners for a scanning fiber endoscope,” Opt. Eng. 45(4), 043001 (2006).
[CrossRef]

Kiechle, M.

V. R. Jacobs, M. Kiechle, B. Plattner, T. Fischer, and S. Paepke, “Breast ductoscopy with a 0.55-mm mini-endoscope for direct visualization of intraductal lesions,” J. Minim. Invasive Gynecol. 12(4), 359–364 (2005).
[CrossRef] [PubMed]

Kino, G. S.

Lang, F.

L. Froehly, S. N. Martin, T. Lasser, C. Depeursinge, and F. Lang, “Multiplexed 3D imaging using wavelength encoded spectral interferometry: a proof of principle,” Opt. Commun. 222(1-6), 127–136 (2003).
[CrossRef]

Lasser, T.

L. Froehly, S. N. Martin, T. Lasser, C. Depeursinge, and F. Lang, “Multiplexed 3D imaging using wavelength encoded spectral interferometry: a proof of principle,” Opt. Commun. 222(1-6), 127–136 (2003).
[CrossRef]

Leng, Y. X.

Leroux, A.

M. A. D’Hallewin, S. El Khatib, A. Leroux, L. Bezdetnaya, and F. Guillemin, “Endoscopic confocal fluorescence microscopy of normal and tumor bearing rat bladder,” J. Urol. 174(2), 736–740 (2005).
[CrossRef] [PubMed]

Li, X. D.

Liang, C.

MacGibbon, B.

E. R. Sauter, H. Ehya, L. Schlatter, and B. MacGibbon, “Ductoscopic cytology to detect breast cancer,” Cancer J. 10(1), 33–41, discussion 15–16 (2004).
[CrossRef] [PubMed]

Martin, S. N.

L. Froehly, S. N. Martin, T. Lasser, C. Depeursinge, and F. Lang, “Multiplexed 3D imaging using wavelength encoded spectral interferometry: a proof of principle,” Opt. Commun. 222(1-6), 127–136 (2003).
[CrossRef]

Merman, M.

Motz, J. T.

Oh, W. Y.

Paepke, S.

V. R. Jacobs, M. Kiechle, B. Plattner, T. Fischer, and S. Paepke, “Breast ductoscopy with a 0.55-mm mini-endoscope for direct visualization of intraductal lesions,” J. Minim. Invasive Gynecol. 12(4), 359–364 (2005).
[CrossRef] [PubMed]

Plattner, B.

V. R. Jacobs, M. Kiechle, B. Plattner, T. Fischer, and S. Paepke, “Breast ductoscopy with a 0.55-mm mini-endoscope for direct visualization of intraductal lesions,” J. Minim. Invasive Gynecol. 12(4), 359–364 (2005).
[CrossRef] [PubMed]

Reinhall, P. G.

C. M. Brown, P. G. Reinhall, S. Karasawa, and E. J. Seibel, “Optomechanical design and fabrication of resonant microscanners for a scanning fiber endoscope,” Opt. Eng. 45(4), 043001 (2006).
[CrossRef]

Richards-Kortum, R. R.

Rizvi, I.

D. Yelin, I. Rizvi, W. M. White, J. T. Motz, T. Hasan, B. E. Bouma, and G. J. Tearney, “Three-dimensional miniature endoscopy,” Nature 443(7113), 765 (2006).
[CrossRef] [PubMed]

Saltzman, A. J.

A. J. Saltzman and S. Waxman, “Angioscopy and ischemic heart disease,” Curr. Opin. Cardiol. 17(6), 633–637 (2002).
[CrossRef] [PubMed]

Sauter, E. R.

E. R. Sauter, H. Ehya, L. Schlatter, and B. MacGibbon, “Ductoscopic cytology to detect breast cancer,” Cancer J. 10(1), 33–41, discussion 15–16 (2004).
[CrossRef] [PubMed]

Schlatter, L.

E. R. Sauter, H. Ehya, L. Schlatter, and B. MacGibbon, “Ductoscopic cytology to detect breast cancer,” Cancer J. 10(1), 33–41, discussion 15–16 (2004).
[CrossRef] [PubMed]

Seibel, E. J.

C. M. Brown, P. G. Reinhall, S. Karasawa, and E. J. Seibel, “Optomechanical design and fabrication of resonant microscanners for a scanning fiber endoscope,” Opt. Eng. 45(4), 043001 (2006).
[CrossRef]

Shishkov, M.

Sung, K. B.

Tearney, G. J.

Tsia, K. K.

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458(7242), 1145–1149 (2009).
[CrossRef] [PubMed]

K. K. Tsia, K. Goda, D. Capewell, and B. Jalali, “Simultaneous mechanical-scan-free confocal microscopy and laser microsurgery,” Opt. Lett. 34(14), 2099–2101 (2009).
[CrossRef] [PubMed]

Vakoc, B. J.

Waxman, S.

A. J. Saltzman and S. Waxman, “Angioscopy and ischemic heart disease,” Curr. Opin. Cardiol. 17(6), 633–637 (2002).
[CrossRef] [PubMed]

Webb, R. H.

White, W. M.

Wu, Y. C.

Xi, J. F.

Yelin, D.

Yun, S. H.

Appl. Opt.

Cancer J.

E. R. Sauter, H. Ehya, L. Schlatter, and B. MacGibbon, “Ductoscopic cytology to detect breast cancer,” Cancer J. 10(1), 33–41, discussion 15–16 (2004).
[CrossRef] [PubMed]

Curr. Opin. Cardiol.

A. J. Saltzman and S. Waxman, “Angioscopy and ischemic heart disease,” Curr. Opin. Cardiol. 17(6), 633–637 (2002).
[CrossRef] [PubMed]

J. Minim. Invasive Gynecol.

V. R. Jacobs, M. Kiechle, B. Plattner, T. Fischer, and S. Paepke, “Breast ductoscopy with a 0.55-mm mini-endoscope for direct visualization of intraductal lesions,” J. Minim. Invasive Gynecol. 12(4), 359–364 (2005).
[CrossRef] [PubMed]

J. Urol.

M. A. D’Hallewin, S. El Khatib, A. Leroux, L. Bezdetnaya, and F. Guillemin, “Endoscopic confocal fluorescence microscopy of normal and tumor bearing rat bladder,” J. Urol. 174(2), 736–740 (2005).
[CrossRef] [PubMed]

Lancet Infect. Dis.

B. I. Hirschowitz, “Endoscopic examination of the stomach and duodenal cap with the fiberscope,” Lancet Infect. Dis. 1, 1074–1078 (1961).

Nature

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458(7242), 1145–1149 (2009).
[CrossRef] [PubMed]

D. Yelin, I. Rizvi, W. M. White, J. T. Motz, T. Hasan, B. E. Bouma, and G. J. Tearney, “Three-dimensional miniature endoscopy,” Nature 443(7113), 765 (2006).
[CrossRef] [PubMed]

Opt. Commun.

L. Froehly, S. N. Martin, T. Lasser, C. Depeursinge, and F. Lang, “Multiplexed 3D imaging using wavelength encoded spectral interferometry: a proof of principle,” Opt. Commun. 222(1-6), 127–136 (2003).
[CrossRef]

Opt. Eng.

C. M. Brown, P. G. Reinhall, S. Karasawa, and E. J. Seibel, “Optomechanical design and fabrication of resonant microscanners for a scanning fiber endoscope,” Opt. Eng. 45(4), 043001 (2006).
[CrossRef]

Opt. Express

Opt. Lett.

Other

E. A. Reece, “Embryoscopy and early prenatal diagnosis,” Obstet. Gynecol. Clin. North Am. 24, 111–121 (1997).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Single channel spectral encoding. Schematic drawing of the optical paths in single channel space-to-wavelength encoding, illustrating the collection of a single wavelength from each lateral point on the sample.

Fig. 2
Fig. 2

Schematic drawing of the experimental setups with front, back, and spectrally encoded illumination.

Fig. 3
Fig. 3

Demonstration of different MC-SEE illumination configurations. a. An image of a paper resolution target using front illumination with visible light. b. Same as (a), using back illumination. c. A portion of a coin surface using spectrally encoded spatially coherent illumination in the near infrared (a Ti:sapphire laser). d. Same as (c), using wide field incoherent front illumination. Scale bars correspond to 1mm.

Fig. 4
Fig. 4

Fluorescence imaging using MC-SEE. a. Image of a fluorescence resolution target. b. Image of fluorescent cell culture. c. Epi-fluorescence microscope image of the same field of view as in (b).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

δ x = G f 1 δ λ cos θ 0 ,
S x = 1.029 λ f 1 D ,
N x σ λ G D λ 0 cos θ 0 ,

Metrics