Abstract

Inserting a coverslip into half of a Gaussian laser beam at a suitable tilting angle can make the single-mode laser beam become closely spaced dual light spots at the laser focus. In this way, we can reform the conventional single-beam optical tweezers easily and construct a set of dual-mode split-beam optical tweezers, which can be used to manually rotate a trapped and twisted red blood cell around the optical axis. Furthermore, we demonstrate that the split-beam optical tweezers can also stably trap and orient a birefringent polystyrene micro strip particle, which otherwise will self rotate at a varying speed along the structural principal axes, fast spin about the optical axis in a tilting pose, or precess like a gyroscope, in the original linearly polarized single-beam optical tweezers.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
    [CrossRef] [PubMed]
  2. A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330(6150), 769–771 (1987).
    [CrossRef] [PubMed]
  3. M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394(6691), 348–350 (1998).
    [CrossRef]
  4. K. Bonin, B. Kourmanov, and T. Walker, “Light torque nanocontrol, nanomotors and nanorockers,” Opt. Express 10(19), 984–989 (2002).
    [PubMed]
  5. P. Galajda and P. Ormos, “Orientation of flat particles in optical tweezers by linearly polarized light,” Opt. Express 11(5), 446–451 (2003).
    [CrossRef] [PubMed]
  6. J. Dharmadhikari, S. Roy, A. Dharmadhikari, S. Sharma, and D. Mathur, “Torque-generating malaria-infected red blood cells in an optical trap,” Opt. Express 12(6), 1179–1184 (2004).
    [CrossRef] [PubMed]
  7. A. La Porta and M. D. Wang, “Optical torque wrench: angular trapping, rotation, and torque detection of quartz microparticles,” Phys. Rev. Lett. 92(19), 190801 (2004).
    [CrossRef] [PubMed]
  8. W. Singer, H. Rubinsztein-Dunlop, and U. Gibson, “Manipulation and growth of birefringent protein crystals in optical tweezers,” Opt. Express 12(26), 6440–6445 (2004).
    [CrossRef] [PubMed]
  9. W. Singer, T. A. Nieminen, U. J. Gibson, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Orientation of optically trapped nonspherical birefringent particles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(2), 021911 (2006).
    [CrossRef] [PubMed]
  10. S. H. Simpson, D. C. Benito, and S. Hanna, “Polarization-induced torque in optical traps,” Phys. Rev. A 76(4), 043408 (2007).
    [CrossRef]
  11. S. J. Parkin, R. Vogel, M. Persson, M. Funk, V. L. Loke, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Highly birefringent vaterite microspheres: production, characterization and applications for optical micromanipulation,” Opt. Express 17(24), 21944–21955 (2009).
    [CrossRef] [PubMed]
  12. A. A. Neves, A. Camposeo, S. Pagliara, R. Saija, F. Borghese, P. Denti, M. A. Iatì, R. Cingolani, O. M. Maragò, and D. Pisignano, “Rotational dynamics of optically trapped nanofibers,” Opt. Express 18(2), 822–830 (2010).
    [CrossRef] [PubMed]
  13. M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical torque controlled by elliptical polarization,” Opt. Lett. 23(1), 1–3 (1998).
    [CrossRef]
  14. A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical microrheology using rotating laser-trapped particles,” Phys. Rev. Lett. 92(19), 198104 (2004).
    [CrossRef] [PubMed]
  15. J. A. Dharmadhikari, S. Roy, A. K. Dharmadhikari, S. Sharma, and D. Mathur, “Naturally occurring, optically driven, cellular rotor,” Appl. Phys. Lett. 85(24), 6048 (2004).
    [CrossRef]
  16. K. D. Wulff, D. G. Cole, and R. L. Clark, “Controlled rotation of birefringent particles in an optical trap,” Appl. Opt. 47(34), 6428–6433 (2008).
    [CrossRef] [PubMed]
  17. M. Rodriguez-Otazo, A. Augier-Calderin, J.-P. Galaup, J.-F. Lamère, and S. Fery-Forgues, “High rotation speed of single molecular microcrystals in an optical trap with elliptically polarized light,” Appl. Opt. 48(14), 2720–2730 (2009).
    [CrossRef] [PubMed]
  18. M. Rothmayer, D. Tierney, E. Frins, W. Dultz, and H. Schmitzer, “Irregular spin angular momentum transfer from light to small birefringent particles,” Phys. Rev. A 80(4), 043801 (2009).
    [CrossRef]
  19. V. Bingelyte, J. Leach, J. Courtial, and M. J. Padgett, “Optically controlled three-dimensional rotation of microscopic objects,” Appl. Phys. Lett. 82(5), 829–831 (2003).
    [CrossRef]
  20. D. Preece, S. Keen, E. Botvinick, R. Bowman, M. Padgett, and J. Leach, “Independent polarisation control of multiple optical traps,” Opt. Express 16(20), 15897–15902 (2008).
    [CrossRef] [PubMed]
  21. L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292(5518), 912–914 (2001).
    [CrossRef] [PubMed]
  22. M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, “Creation and manipulation of three-dimensional optically trapped structures,” Science 296(5570), 1101–1103 (2002).
    [CrossRef] [PubMed]
  23. D. McGloin, V. Garcés-Chávez, and K. Dholakia, “Interfering Bessel beams for optical micromanipulation,” Opt. Lett. 28(8), 657–659 (2003).
    [CrossRef] [PubMed]
  24. A. T. O’Neil and M. J. Padgett, “Rotational control within optical tweezers by use of a rotating aperture,” Opt. Lett. 27(9), 743–745 (2002).
    [CrossRef]
  25. R. Dasgupta, S. K. Mohanty, and P. K. Gupta, “Controlled rotation of biological microscopic objects using optical line tweezers,” Biotechnol. Lett. 25(19), 1625–1628 (2003).
    [CrossRef] [PubMed]
  26. S. L. Mohanty, R. Dasgupta, and P. K. Gupta, “Three-dimensional orientation of microscopic objects using combined elliptical and point optical tweezers,” Appl. Phys. B 81(8), 1063–1066 (2005).
    [CrossRef]
  27. S. K. Mohanty, R. S. Verma, and P. K. Gupta, “Trapping and controlled rotation of low-refractive-index particles using dual line optical tweezers,” Appl. Phys. B 87(2), 211–215 (2007).
    [CrossRef]
  28. M. K. Kreysing, T. Kieβling, A. Fritsch, C. Dietrich, J. R. Guck, and J. A. Käs, “The optical cell rotator,” Opt. Express 16(21), 16984 (2008).
    [CrossRef] [PubMed]
  29. S. K. Mohanty, K. D. Rao, and P. K. Gupta, “Optical trap with spatially varying polarization: application in controlled orientation of birefringent microscopic particle(s),” Appl. Phys. B 80(6), 631–634 (2005).
    [CrossRef]
  30. H. Kobayashi, I. Ishimaru, R. Hyodo, T. Yasokawa, K. Ishizaki, S. Kuriyama, T. Masaki, S. Nakai, K. Takegawa, and N. Tanaka, “A precise method for rotating single cells,” Appl. Phys. Lett. 88(13), 131103 (2006).
    [CrossRef]
  31. K. Mohanty, S. Mohanty, S. Monajembashi, and K. O. Greulich, “Orientation of erythrocytes in optical trap revealed by confocal fluorescence microscopy,” J. Biomed. Opt. 12(6), 060506 (2007).
    [CrossRef]
  32. E. Higurashi, H. Ukita, H. Tanaka, and O. Ohguchi, “Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining,” Appl. Phys. Lett. 64(17), 2209–2210 (1994).
    [CrossRef]
  33. E. Higurashi, R. Sawada, and T. Ito, “Optically induced rotation of a trapped micro-object about an axis perpendicular to the laser beam axis,” Appl. Phys. Lett. 72(23), 2951 (1998).
    [CrossRef]
  34. V. Garcés-Chávez, K. Volke-Sepulveda, S. Chávez-Cerda, W. Sibbett, and K. Dholakia, “Transfer of orbital angular momentum to an optically trapped low-index particle,” Phys. Rev. A 66(6), 063402 (2002).
    [CrossRef]
  35. S. L. Mohanty and P. K. Gupta, “Laser-assisted three-dimensional rotation of microscopic objects,” Rev. Sci. Instrum. 75(7), 2320–2322 (2004).
    [CrossRef]
  36. S. Mohanty, K. Mohanty, and P. Gupta, “Dynamics of Interaction of RBC with optical tweezers,” Opt. Express 13(12), 4745–4751 (2005).
    [CrossRef] [PubMed]
  37. J. R. Robbins, D. A. Tierney, and H. Schmitzer, “Optically driven bacterial screw of Archimedes,” Appl. Phys. Lett. 88(2), 023901 (2006).
    [CrossRef]
  38. M. Gu, S. Kuriakose, and X. Gan, “A single beam near-field laser trap for optical stretching, folding and rotation of erythrocytes,” Opt. Express 15(3), 1369–1375 (2007).
    [CrossRef] [PubMed]
  39. M. Ichikawa, K. Kubo, K. Yoshikawa, and Y. Kimura, “Tilt control in optical tweezers,” J. Biomed. Opt. 13(1), 010503 (2008).
    [CrossRef] [PubMed]
  40. M. Funk, S. J. Parkin, A. B. Stilgoe, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Constant power optical tweezers with controllable torque,” Opt. Lett. 34(2), 139–141 (2009).
    [CrossRef] [PubMed]
  41. M.-C. Zhong, J.-H. Zhou, Y.-X. Ren, Y.-M. Li, and Z.-Q. Wang, “Rotation of birefringent particles in optical tweezers with spherical aberration,” Appl. Opt. 48(22), 4397–4402 (2009).
    [CrossRef] [PubMed]
  42. T. Carmon, C. Anastassiou, S. Lan, D. Kip, Z. H. Musslimani, M. Segev, and D. Christodoulides, “Observation of two-dimensional multimode solitons,” Opt. Lett. 25(15), 1113–1115 (2000).
    [CrossRef]
  43. M.-F. Shih and F.-W. Sheu, “Dynamic soliton-like modes,” Phys. Rev. Lett. 86(11), 2281–2284 (2001).
    [CrossRef] [PubMed]

2010 (1)

2009 (5)

2008 (4)

2007 (4)

S. K. Mohanty, R. S. Verma, and P. K. Gupta, “Trapping and controlled rotation of low-refractive-index particles using dual line optical tweezers,” Appl. Phys. B 87(2), 211–215 (2007).
[CrossRef]

K. Mohanty, S. Mohanty, S. Monajembashi, and K. O. Greulich, “Orientation of erythrocytes in optical trap revealed by confocal fluorescence microscopy,” J. Biomed. Opt. 12(6), 060506 (2007).
[CrossRef]

S. H. Simpson, D. C. Benito, and S. Hanna, “Polarization-induced torque in optical traps,” Phys. Rev. A 76(4), 043408 (2007).
[CrossRef]

M. Gu, S. Kuriakose, and X. Gan, “A single beam near-field laser trap for optical stretching, folding and rotation of erythrocytes,” Opt. Express 15(3), 1369–1375 (2007).
[CrossRef] [PubMed]

2006 (3)

J. R. Robbins, D. A. Tierney, and H. Schmitzer, “Optically driven bacterial screw of Archimedes,” Appl. Phys. Lett. 88(2), 023901 (2006).
[CrossRef]

W. Singer, T. A. Nieminen, U. J. Gibson, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Orientation of optically trapped nonspherical birefringent particles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(2), 021911 (2006).
[CrossRef] [PubMed]

H. Kobayashi, I. Ishimaru, R. Hyodo, T. Yasokawa, K. Ishizaki, S. Kuriyama, T. Masaki, S. Nakai, K. Takegawa, and N. Tanaka, “A precise method for rotating single cells,” Appl. Phys. Lett. 88(13), 131103 (2006).
[CrossRef]

2005 (3)

S. K. Mohanty, K. D. Rao, and P. K. Gupta, “Optical trap with spatially varying polarization: application in controlled orientation of birefringent microscopic particle(s),” Appl. Phys. B 80(6), 631–634 (2005).
[CrossRef]

S. L. Mohanty, R. Dasgupta, and P. K. Gupta, “Three-dimensional orientation of microscopic objects using combined elliptical and point optical tweezers,” Appl. Phys. B 81(8), 1063–1066 (2005).
[CrossRef]

S. Mohanty, K. Mohanty, and P. Gupta, “Dynamics of Interaction of RBC with optical tweezers,” Opt. Express 13(12), 4745–4751 (2005).
[CrossRef] [PubMed]

2004 (6)

S. L. Mohanty and P. K. Gupta, “Laser-assisted three-dimensional rotation of microscopic objects,” Rev. Sci. Instrum. 75(7), 2320–2322 (2004).
[CrossRef]

J. Dharmadhikari, S. Roy, A. Dharmadhikari, S. Sharma, and D. Mathur, “Torque-generating malaria-infected red blood cells in an optical trap,” Opt. Express 12(6), 1179–1184 (2004).
[CrossRef] [PubMed]

A. La Porta and M. D. Wang, “Optical torque wrench: angular trapping, rotation, and torque detection of quartz microparticles,” Phys. Rev. Lett. 92(19), 190801 (2004).
[CrossRef] [PubMed]

W. Singer, H. Rubinsztein-Dunlop, and U. Gibson, “Manipulation and growth of birefringent protein crystals in optical tweezers,” Opt. Express 12(26), 6440–6445 (2004).
[CrossRef] [PubMed]

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical microrheology using rotating laser-trapped particles,” Phys. Rev. Lett. 92(19), 198104 (2004).
[CrossRef] [PubMed]

J. A. Dharmadhikari, S. Roy, A. K. Dharmadhikari, S. Sharma, and D. Mathur, “Naturally occurring, optically driven, cellular rotor,” Appl. Phys. Lett. 85(24), 6048 (2004).
[CrossRef]

2003 (4)

V. Bingelyte, J. Leach, J. Courtial, and M. J. Padgett, “Optically controlled three-dimensional rotation of microscopic objects,” Appl. Phys. Lett. 82(5), 829–831 (2003).
[CrossRef]

P. Galajda and P. Ormos, “Orientation of flat particles in optical tweezers by linearly polarized light,” Opt. Express 11(5), 446–451 (2003).
[CrossRef] [PubMed]

R. Dasgupta, S. K. Mohanty, and P. K. Gupta, “Controlled rotation of biological microscopic objects using optical line tweezers,” Biotechnol. Lett. 25(19), 1625–1628 (2003).
[CrossRef] [PubMed]

D. McGloin, V. Garcés-Chávez, and K. Dholakia, “Interfering Bessel beams for optical micromanipulation,” Opt. Lett. 28(8), 657–659 (2003).
[CrossRef] [PubMed]

2002 (4)

A. T. O’Neil and M. J. Padgett, “Rotational control within optical tweezers by use of a rotating aperture,” Opt. Lett. 27(9), 743–745 (2002).
[CrossRef]

M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, “Creation and manipulation of three-dimensional optically trapped structures,” Science 296(5570), 1101–1103 (2002).
[CrossRef] [PubMed]

V. Garcés-Chávez, K. Volke-Sepulveda, S. Chávez-Cerda, W. Sibbett, and K. Dholakia, “Transfer of orbital angular momentum to an optically trapped low-index particle,” Phys. Rev. A 66(6), 063402 (2002).
[CrossRef]

K. Bonin, B. Kourmanov, and T. Walker, “Light torque nanocontrol, nanomotors and nanorockers,” Opt. Express 10(19), 984–989 (2002).
[PubMed]

2001 (2)

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292(5518), 912–914 (2001).
[CrossRef] [PubMed]

M.-F. Shih and F.-W. Sheu, “Dynamic soliton-like modes,” Phys. Rev. Lett. 86(11), 2281–2284 (2001).
[CrossRef] [PubMed]

2000 (1)

1998 (3)

E. Higurashi, R. Sawada, and T. Ito, “Optically induced rotation of a trapped micro-object about an axis perpendicular to the laser beam axis,” Appl. Phys. Lett. 72(23), 2951 (1998).
[CrossRef]

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394(6691), 348–350 (1998).
[CrossRef]

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical torque controlled by elliptical polarization,” Opt. Lett. 23(1), 1–3 (1998).
[CrossRef]

1994 (1)

E. Higurashi, H. Ukita, H. Tanaka, and O. Ohguchi, “Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining,” Appl. Phys. Lett. 64(17), 2209–2210 (1994).
[CrossRef]

1987 (1)

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330(6150), 769–771 (1987).
[CrossRef] [PubMed]

1986 (1)

Anastassiou, C.

Arlt, J.

M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, “Creation and manipulation of three-dimensional optically trapped structures,” Science 296(5570), 1101–1103 (2002).
[CrossRef] [PubMed]

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292(5518), 912–914 (2001).
[CrossRef] [PubMed]

Ashkin, A.

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330(6150), 769–771 (1987).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
[CrossRef] [PubMed]

Augier-Calderin, A.

Benito, D. C.

S. H. Simpson, D. C. Benito, and S. Hanna, “Polarization-induced torque in optical traps,” Phys. Rev. A 76(4), 043408 (2007).
[CrossRef]

Bingelyte, V.

V. Bingelyte, J. Leach, J. Courtial, and M. J. Padgett, “Optically controlled three-dimensional rotation of microscopic objects,” Appl. Phys. Lett. 82(5), 829–831 (2003).
[CrossRef]

Bishop, A. I.

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical microrheology using rotating laser-trapped particles,” Phys. Rev. Lett. 92(19), 198104 (2004).
[CrossRef] [PubMed]

Bjorkholm, J. E.

Bonin, K.

Borghese, F.

Botvinick, E.

Bowman, R.

Bryant, P. E.

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292(5518), 912–914 (2001).
[CrossRef] [PubMed]

Camposeo, A.

Carmon, T.

Chávez-Cerda, S.

V. Garcés-Chávez, K. Volke-Sepulveda, S. Chávez-Cerda, W. Sibbett, and K. Dholakia, “Transfer of orbital angular momentum to an optically trapped low-index particle,” Phys. Rev. A 66(6), 063402 (2002).
[CrossRef]

Christodoulides, D.

Chu, S.

Cingolani, R.

Clark, R. L.

Cole, D. G.

Courtial, J.

V. Bingelyte, J. Leach, J. Courtial, and M. J. Padgett, “Optically controlled three-dimensional rotation of microscopic objects,” Appl. Phys. Lett. 82(5), 829–831 (2003).
[CrossRef]

Dasgupta, R.

S. L. Mohanty, R. Dasgupta, and P. K. Gupta, “Three-dimensional orientation of microscopic objects using combined elliptical and point optical tweezers,” Appl. Phys. B 81(8), 1063–1066 (2005).
[CrossRef]

R. Dasgupta, S. K. Mohanty, and P. K. Gupta, “Controlled rotation of biological microscopic objects using optical line tweezers,” Biotechnol. Lett. 25(19), 1625–1628 (2003).
[CrossRef] [PubMed]

Denti, P.

Dharmadhikari, A.

Dharmadhikari, A. K.

J. A. Dharmadhikari, S. Roy, A. K. Dharmadhikari, S. Sharma, and D. Mathur, “Naturally occurring, optically driven, cellular rotor,” Appl. Phys. Lett. 85(24), 6048 (2004).
[CrossRef]

Dharmadhikari, J.

Dharmadhikari, J. A.

J. A. Dharmadhikari, S. Roy, A. K. Dharmadhikari, S. Sharma, and D. Mathur, “Naturally occurring, optically driven, cellular rotor,” Appl. Phys. Lett. 85(24), 6048 (2004).
[CrossRef]

Dholakia, K.

D. McGloin, V. Garcés-Chávez, and K. Dholakia, “Interfering Bessel beams for optical micromanipulation,” Opt. Lett. 28(8), 657–659 (2003).
[CrossRef] [PubMed]

V. Garcés-Chávez, K. Volke-Sepulveda, S. Chávez-Cerda, W. Sibbett, and K. Dholakia, “Transfer of orbital angular momentum to an optically trapped low-index particle,” Phys. Rev. A 66(6), 063402 (2002).
[CrossRef]

M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, “Creation and manipulation of three-dimensional optically trapped structures,” Science 296(5570), 1101–1103 (2002).
[CrossRef] [PubMed]

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292(5518), 912–914 (2001).
[CrossRef] [PubMed]

Dietrich, C.

Dultz, W.

M. Rothmayer, D. Tierney, E. Frins, W. Dultz, and H. Schmitzer, “Irregular spin angular momentum transfer from light to small birefringent particles,” Phys. Rev. A 80(4), 043801 (2009).
[CrossRef]

Dziedzic, J. M.

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330(6150), 769–771 (1987).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
[CrossRef] [PubMed]

Fery-Forgues, S.

Friese, M. E. J.

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical torque controlled by elliptical polarization,” Opt. Lett. 23(1), 1–3 (1998).
[CrossRef]

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394(6691), 348–350 (1998).
[CrossRef]

Frins, E.

M. Rothmayer, D. Tierney, E. Frins, W. Dultz, and H. Schmitzer, “Irregular spin angular momentum transfer from light to small birefringent particles,” Phys. Rev. A 80(4), 043801 (2009).
[CrossRef]

Fritsch, A.

Funk, M.

Galajda, P.

Galaup, J.-P.

Gan, X.

Garcés-Chávez, V.

D. McGloin, V. Garcés-Chávez, and K. Dholakia, “Interfering Bessel beams for optical micromanipulation,” Opt. Lett. 28(8), 657–659 (2003).
[CrossRef] [PubMed]

V. Garcés-Chávez, K. Volke-Sepulveda, S. Chávez-Cerda, W. Sibbett, and K. Dholakia, “Transfer of orbital angular momentum to an optically trapped low-index particle,” Phys. Rev. A 66(6), 063402 (2002).
[CrossRef]

Gibson, U.

Gibson, U. J.

W. Singer, T. A. Nieminen, U. J. Gibson, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Orientation of optically trapped nonspherical birefringent particles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(2), 021911 (2006).
[CrossRef] [PubMed]

Greulich, K. O.

K. Mohanty, S. Mohanty, S. Monajembashi, and K. O. Greulich, “Orientation of erythrocytes in optical trap revealed by confocal fluorescence microscopy,” J. Biomed. Opt. 12(6), 060506 (2007).
[CrossRef]

Gu, M.

Guck, J. R.

Gupta, P.

Gupta, P. K.

S. K. Mohanty, R. S. Verma, and P. K. Gupta, “Trapping and controlled rotation of low-refractive-index particles using dual line optical tweezers,” Appl. Phys. B 87(2), 211–215 (2007).
[CrossRef]

S. K. Mohanty, K. D. Rao, and P. K. Gupta, “Optical trap with spatially varying polarization: application in controlled orientation of birefringent microscopic particle(s),” Appl. Phys. B 80(6), 631–634 (2005).
[CrossRef]

S. L. Mohanty, R. Dasgupta, and P. K. Gupta, “Three-dimensional orientation of microscopic objects using combined elliptical and point optical tweezers,” Appl. Phys. B 81(8), 1063–1066 (2005).
[CrossRef]

S. L. Mohanty and P. K. Gupta, “Laser-assisted three-dimensional rotation of microscopic objects,” Rev. Sci. Instrum. 75(7), 2320–2322 (2004).
[CrossRef]

R. Dasgupta, S. K. Mohanty, and P. K. Gupta, “Controlled rotation of biological microscopic objects using optical line tweezers,” Biotechnol. Lett. 25(19), 1625–1628 (2003).
[CrossRef] [PubMed]

Hanna, S.

S. H. Simpson, D. C. Benito, and S. Hanna, “Polarization-induced torque in optical traps,” Phys. Rev. A 76(4), 043408 (2007).
[CrossRef]

Heckenberg, N. R.

M. Funk, S. J. Parkin, A. B. Stilgoe, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Constant power optical tweezers with controllable torque,” Opt. Lett. 34(2), 139–141 (2009).
[CrossRef] [PubMed]

S. J. Parkin, R. Vogel, M. Persson, M. Funk, V. L. Loke, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Highly birefringent vaterite microspheres: production, characterization and applications for optical micromanipulation,” Opt. Express 17(24), 21944–21955 (2009).
[CrossRef] [PubMed]

W. Singer, T. A. Nieminen, U. J. Gibson, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Orientation of optically trapped nonspherical birefringent particles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(2), 021911 (2006).
[CrossRef] [PubMed]

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical microrheology using rotating laser-trapped particles,” Phys. Rev. Lett. 92(19), 198104 (2004).
[CrossRef] [PubMed]

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394(6691), 348–350 (1998).
[CrossRef]

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical torque controlled by elliptical polarization,” Opt. Lett. 23(1), 1–3 (1998).
[CrossRef]

Higurashi, E.

E. Higurashi, R. Sawada, and T. Ito, “Optically induced rotation of a trapped micro-object about an axis perpendicular to the laser beam axis,” Appl. Phys. Lett. 72(23), 2951 (1998).
[CrossRef]

E. Higurashi, H. Ukita, H. Tanaka, and O. Ohguchi, “Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining,” Appl. Phys. Lett. 64(17), 2209–2210 (1994).
[CrossRef]

Hyodo, R.

H. Kobayashi, I. Ishimaru, R. Hyodo, T. Yasokawa, K. Ishizaki, S. Kuriyama, T. Masaki, S. Nakai, K. Takegawa, and N. Tanaka, “A precise method for rotating single cells,” Appl. Phys. Lett. 88(13), 131103 (2006).
[CrossRef]

Iatì, M. A.

Ichikawa, M.

M. Ichikawa, K. Kubo, K. Yoshikawa, and Y. Kimura, “Tilt control in optical tweezers,” J. Biomed. Opt. 13(1), 010503 (2008).
[CrossRef] [PubMed]

Ishimaru, I.

H. Kobayashi, I. Ishimaru, R. Hyodo, T. Yasokawa, K. Ishizaki, S. Kuriyama, T. Masaki, S. Nakai, K. Takegawa, and N. Tanaka, “A precise method for rotating single cells,” Appl. Phys. Lett. 88(13), 131103 (2006).
[CrossRef]

Ishizaki, K.

H. Kobayashi, I. Ishimaru, R. Hyodo, T. Yasokawa, K. Ishizaki, S. Kuriyama, T. Masaki, S. Nakai, K. Takegawa, and N. Tanaka, “A precise method for rotating single cells,” Appl. Phys. Lett. 88(13), 131103 (2006).
[CrossRef]

Ito, T.

E. Higurashi, R. Sawada, and T. Ito, “Optically induced rotation of a trapped micro-object about an axis perpendicular to the laser beam axis,” Appl. Phys. Lett. 72(23), 2951 (1998).
[CrossRef]

Käs, J. A.

Keen, S.

Kießling, T.

Kimura, Y.

M. Ichikawa, K. Kubo, K. Yoshikawa, and Y. Kimura, “Tilt control in optical tweezers,” J. Biomed. Opt. 13(1), 010503 (2008).
[CrossRef] [PubMed]

Kip, D.

Kobayashi, H.

H. Kobayashi, I. Ishimaru, R. Hyodo, T. Yasokawa, K. Ishizaki, S. Kuriyama, T. Masaki, S. Nakai, K. Takegawa, and N. Tanaka, “A precise method for rotating single cells,” Appl. Phys. Lett. 88(13), 131103 (2006).
[CrossRef]

Kourmanov, B.

Kreysing, M. K.

Kubo, K.

M. Ichikawa, K. Kubo, K. Yoshikawa, and Y. Kimura, “Tilt control in optical tweezers,” J. Biomed. Opt. 13(1), 010503 (2008).
[CrossRef] [PubMed]

Kuriakose, S.

Kuriyama, S.

H. Kobayashi, I. Ishimaru, R. Hyodo, T. Yasokawa, K. Ishizaki, S. Kuriyama, T. Masaki, S. Nakai, K. Takegawa, and N. Tanaka, “A precise method for rotating single cells,” Appl. Phys. Lett. 88(13), 131103 (2006).
[CrossRef]

La Porta, A.

A. La Porta and M. D. Wang, “Optical torque wrench: angular trapping, rotation, and torque detection of quartz microparticles,” Phys. Rev. Lett. 92(19), 190801 (2004).
[CrossRef] [PubMed]

Lamère, J.-F.

Lan, S.

Leach, J.

D. Preece, S. Keen, E. Botvinick, R. Bowman, M. Padgett, and J. Leach, “Independent polarisation control of multiple optical traps,” Opt. Express 16(20), 15897–15902 (2008).
[CrossRef] [PubMed]

V. Bingelyte, J. Leach, J. Courtial, and M. J. Padgett, “Optically controlled three-dimensional rotation of microscopic objects,” Appl. Phys. Lett. 82(5), 829–831 (2003).
[CrossRef]

Li, Y.-M.

Loke, V. L.

MacDonald, M. P.

M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, “Creation and manipulation of three-dimensional optically trapped structures,” Science 296(5570), 1101–1103 (2002).
[CrossRef] [PubMed]

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292(5518), 912–914 (2001).
[CrossRef] [PubMed]

Maragò, O. M.

Masaki, T.

H. Kobayashi, I. Ishimaru, R. Hyodo, T. Yasokawa, K. Ishizaki, S. Kuriyama, T. Masaki, S. Nakai, K. Takegawa, and N. Tanaka, “A precise method for rotating single cells,” Appl. Phys. Lett. 88(13), 131103 (2006).
[CrossRef]

Mathur, D.

J. A. Dharmadhikari, S. Roy, A. K. Dharmadhikari, S. Sharma, and D. Mathur, “Naturally occurring, optically driven, cellular rotor,” Appl. Phys. Lett. 85(24), 6048 (2004).
[CrossRef]

J. Dharmadhikari, S. Roy, A. Dharmadhikari, S. Sharma, and D. Mathur, “Torque-generating malaria-infected red blood cells in an optical trap,” Opt. Express 12(6), 1179–1184 (2004).
[CrossRef] [PubMed]

McGloin, D.

Mohanty, K.

K. Mohanty, S. Mohanty, S. Monajembashi, and K. O. Greulich, “Orientation of erythrocytes in optical trap revealed by confocal fluorescence microscopy,” J. Biomed. Opt. 12(6), 060506 (2007).
[CrossRef]

S. Mohanty, K. Mohanty, and P. Gupta, “Dynamics of Interaction of RBC with optical tweezers,” Opt. Express 13(12), 4745–4751 (2005).
[CrossRef] [PubMed]

Mohanty, S.

K. Mohanty, S. Mohanty, S. Monajembashi, and K. O. Greulich, “Orientation of erythrocytes in optical trap revealed by confocal fluorescence microscopy,” J. Biomed. Opt. 12(6), 060506 (2007).
[CrossRef]

S. Mohanty, K. Mohanty, and P. Gupta, “Dynamics of Interaction of RBC with optical tweezers,” Opt. Express 13(12), 4745–4751 (2005).
[CrossRef] [PubMed]

Mohanty, S. K.

S. K. Mohanty, R. S. Verma, and P. K. Gupta, “Trapping and controlled rotation of low-refractive-index particles using dual line optical tweezers,” Appl. Phys. B 87(2), 211–215 (2007).
[CrossRef]

S. K. Mohanty, K. D. Rao, and P. K. Gupta, “Optical trap with spatially varying polarization: application in controlled orientation of birefringent microscopic particle(s),” Appl. Phys. B 80(6), 631–634 (2005).
[CrossRef]

R. Dasgupta, S. K. Mohanty, and P. K. Gupta, “Controlled rotation of biological microscopic objects using optical line tweezers,” Biotechnol. Lett. 25(19), 1625–1628 (2003).
[CrossRef] [PubMed]

Mohanty, S. L.

S. L. Mohanty, R. Dasgupta, and P. K. Gupta, “Three-dimensional orientation of microscopic objects using combined elliptical and point optical tweezers,” Appl. Phys. B 81(8), 1063–1066 (2005).
[CrossRef]

S. L. Mohanty and P. K. Gupta, “Laser-assisted three-dimensional rotation of microscopic objects,” Rev. Sci. Instrum. 75(7), 2320–2322 (2004).
[CrossRef]

Monajembashi, S.

K. Mohanty, S. Mohanty, S. Monajembashi, and K. O. Greulich, “Orientation of erythrocytes in optical trap revealed by confocal fluorescence microscopy,” J. Biomed. Opt. 12(6), 060506 (2007).
[CrossRef]

Musslimani, Z. H.

Nakai, S.

H. Kobayashi, I. Ishimaru, R. Hyodo, T. Yasokawa, K. Ishizaki, S. Kuriyama, T. Masaki, S. Nakai, K. Takegawa, and N. Tanaka, “A precise method for rotating single cells,” Appl. Phys. Lett. 88(13), 131103 (2006).
[CrossRef]

Neves, A. A.

Nieminen, T. A.

M. Funk, S. J. Parkin, A. B. Stilgoe, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Constant power optical tweezers with controllable torque,” Opt. Lett. 34(2), 139–141 (2009).
[CrossRef] [PubMed]

S. J. Parkin, R. Vogel, M. Persson, M. Funk, V. L. Loke, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Highly birefringent vaterite microspheres: production, characterization and applications for optical micromanipulation,” Opt. Express 17(24), 21944–21955 (2009).
[CrossRef] [PubMed]

W. Singer, T. A. Nieminen, U. J. Gibson, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Orientation of optically trapped nonspherical birefringent particles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(2), 021911 (2006).
[CrossRef] [PubMed]

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical microrheology using rotating laser-trapped particles,” Phys. Rev. Lett. 92(19), 198104 (2004).
[CrossRef] [PubMed]

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394(6691), 348–350 (1998).
[CrossRef]

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical torque controlled by elliptical polarization,” Opt. Lett. 23(1), 1–3 (1998).
[CrossRef]

O’Neil, A. T.

Ohguchi, O.

E. Higurashi, H. Ukita, H. Tanaka, and O. Ohguchi, “Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining,” Appl. Phys. Lett. 64(17), 2209–2210 (1994).
[CrossRef]

Ormos, P.

Padgett, M.

Padgett, M. J.

V. Bingelyte, J. Leach, J. Courtial, and M. J. Padgett, “Optically controlled three-dimensional rotation of microscopic objects,” Appl. Phys. Lett. 82(5), 829–831 (2003).
[CrossRef]

A. T. O’Neil and M. J. Padgett, “Rotational control within optical tweezers by use of a rotating aperture,” Opt. Lett. 27(9), 743–745 (2002).
[CrossRef]

Pagliara, S.

Parkin, S. J.

Paterson, L.

M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, “Creation and manipulation of three-dimensional optically trapped structures,” Science 296(5570), 1101–1103 (2002).
[CrossRef] [PubMed]

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292(5518), 912–914 (2001).
[CrossRef] [PubMed]

Persson, M.

Pisignano, D.

Preece, D.

Rao, K. D.

S. K. Mohanty, K. D. Rao, and P. K. Gupta, “Optical trap with spatially varying polarization: application in controlled orientation of birefringent microscopic particle(s),” Appl. Phys. B 80(6), 631–634 (2005).
[CrossRef]

Ren, Y.-X.

Robbins, J. R.

J. R. Robbins, D. A. Tierney, and H. Schmitzer, “Optically driven bacterial screw of Archimedes,” Appl. Phys. Lett. 88(2), 023901 (2006).
[CrossRef]

Rodriguez-Otazo, M.

Rothmayer, M.

M. Rothmayer, D. Tierney, E. Frins, W. Dultz, and H. Schmitzer, “Irregular spin angular momentum transfer from light to small birefringent particles,” Phys. Rev. A 80(4), 043801 (2009).
[CrossRef]

Roy, S.

J. A. Dharmadhikari, S. Roy, A. K. Dharmadhikari, S. Sharma, and D. Mathur, “Naturally occurring, optically driven, cellular rotor,” Appl. Phys. Lett. 85(24), 6048 (2004).
[CrossRef]

J. Dharmadhikari, S. Roy, A. Dharmadhikari, S. Sharma, and D. Mathur, “Torque-generating malaria-infected red blood cells in an optical trap,” Opt. Express 12(6), 1179–1184 (2004).
[CrossRef] [PubMed]

Rubinsztein-Dunlop, H.

S. J. Parkin, R. Vogel, M. Persson, M. Funk, V. L. Loke, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Highly birefringent vaterite microspheres: production, characterization and applications for optical micromanipulation,” Opt. Express 17(24), 21944–21955 (2009).
[CrossRef] [PubMed]

M. Funk, S. J. Parkin, A. B. Stilgoe, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Constant power optical tweezers with controllable torque,” Opt. Lett. 34(2), 139–141 (2009).
[CrossRef] [PubMed]

W. Singer, T. A. Nieminen, U. J. Gibson, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Orientation of optically trapped nonspherical birefringent particles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(2), 021911 (2006).
[CrossRef] [PubMed]

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical microrheology using rotating laser-trapped particles,” Phys. Rev. Lett. 92(19), 198104 (2004).
[CrossRef] [PubMed]

W. Singer, H. Rubinsztein-Dunlop, and U. Gibson, “Manipulation and growth of birefringent protein crystals in optical tweezers,” Opt. Express 12(26), 6440–6445 (2004).
[CrossRef] [PubMed]

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical torque controlled by elliptical polarization,” Opt. Lett. 23(1), 1–3 (1998).
[CrossRef]

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394(6691), 348–350 (1998).
[CrossRef]

Saija, R.

Sawada, R.

E. Higurashi, R. Sawada, and T. Ito, “Optically induced rotation of a trapped micro-object about an axis perpendicular to the laser beam axis,” Appl. Phys. Lett. 72(23), 2951 (1998).
[CrossRef]

Schmitzer, H.

M. Rothmayer, D. Tierney, E. Frins, W. Dultz, and H. Schmitzer, “Irregular spin angular momentum transfer from light to small birefringent particles,” Phys. Rev. A 80(4), 043801 (2009).
[CrossRef]

J. R. Robbins, D. A. Tierney, and H. Schmitzer, “Optically driven bacterial screw of Archimedes,” Appl. Phys. Lett. 88(2), 023901 (2006).
[CrossRef]

Segev, M.

Sharma, S.

J. Dharmadhikari, S. Roy, A. Dharmadhikari, S. Sharma, and D. Mathur, “Torque-generating malaria-infected red blood cells in an optical trap,” Opt. Express 12(6), 1179–1184 (2004).
[CrossRef] [PubMed]

J. A. Dharmadhikari, S. Roy, A. K. Dharmadhikari, S. Sharma, and D. Mathur, “Naturally occurring, optically driven, cellular rotor,” Appl. Phys. Lett. 85(24), 6048 (2004).
[CrossRef]

Sheu, F.-W.

M.-F. Shih and F.-W. Sheu, “Dynamic soliton-like modes,” Phys. Rev. Lett. 86(11), 2281–2284 (2001).
[CrossRef] [PubMed]

Shih, M.-F.

M.-F. Shih and F.-W. Sheu, “Dynamic soliton-like modes,” Phys. Rev. Lett. 86(11), 2281–2284 (2001).
[CrossRef] [PubMed]

Sibbett, W.

M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, “Creation and manipulation of three-dimensional optically trapped structures,” Science 296(5570), 1101–1103 (2002).
[CrossRef] [PubMed]

V. Garcés-Chávez, K. Volke-Sepulveda, S. Chávez-Cerda, W. Sibbett, and K. Dholakia, “Transfer of orbital angular momentum to an optically trapped low-index particle,” Phys. Rev. A 66(6), 063402 (2002).
[CrossRef]

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292(5518), 912–914 (2001).
[CrossRef] [PubMed]

Simpson, S. H.

S. H. Simpson, D. C. Benito, and S. Hanna, “Polarization-induced torque in optical traps,” Phys. Rev. A 76(4), 043408 (2007).
[CrossRef]

Singer, W.

W. Singer, T. A. Nieminen, U. J. Gibson, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Orientation of optically trapped nonspherical birefringent particles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(2), 021911 (2006).
[CrossRef] [PubMed]

W. Singer, H. Rubinsztein-Dunlop, and U. Gibson, “Manipulation and growth of birefringent protein crystals in optical tweezers,” Opt. Express 12(26), 6440–6445 (2004).
[CrossRef] [PubMed]

Stilgoe, A. B.

Takegawa, K.

H. Kobayashi, I. Ishimaru, R. Hyodo, T. Yasokawa, K. Ishizaki, S. Kuriyama, T. Masaki, S. Nakai, K. Takegawa, and N. Tanaka, “A precise method for rotating single cells,” Appl. Phys. Lett. 88(13), 131103 (2006).
[CrossRef]

Tanaka, H.

E. Higurashi, H. Ukita, H. Tanaka, and O. Ohguchi, “Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining,” Appl. Phys. Lett. 64(17), 2209–2210 (1994).
[CrossRef]

Tanaka, N.

H. Kobayashi, I. Ishimaru, R. Hyodo, T. Yasokawa, K. Ishizaki, S. Kuriyama, T. Masaki, S. Nakai, K. Takegawa, and N. Tanaka, “A precise method for rotating single cells,” Appl. Phys. Lett. 88(13), 131103 (2006).
[CrossRef]

Tierney, D.

M. Rothmayer, D. Tierney, E. Frins, W. Dultz, and H. Schmitzer, “Irregular spin angular momentum transfer from light to small birefringent particles,” Phys. Rev. A 80(4), 043801 (2009).
[CrossRef]

Tierney, D. A.

J. R. Robbins, D. A. Tierney, and H. Schmitzer, “Optically driven bacterial screw of Archimedes,” Appl. Phys. Lett. 88(2), 023901 (2006).
[CrossRef]

Ukita, H.

E. Higurashi, H. Ukita, H. Tanaka, and O. Ohguchi, “Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining,” Appl. Phys. Lett. 64(17), 2209–2210 (1994).
[CrossRef]

Verma, R. S.

S. K. Mohanty, R. S. Verma, and P. K. Gupta, “Trapping and controlled rotation of low-refractive-index particles using dual line optical tweezers,” Appl. Phys. B 87(2), 211–215 (2007).
[CrossRef]

Vogel, R.

Volke-Sepulveda, K.

M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, “Creation and manipulation of three-dimensional optically trapped structures,” Science 296(5570), 1101–1103 (2002).
[CrossRef] [PubMed]

V. Garcés-Chávez, K. Volke-Sepulveda, S. Chávez-Cerda, W. Sibbett, and K. Dholakia, “Transfer of orbital angular momentum to an optically trapped low-index particle,” Phys. Rev. A 66(6), 063402 (2002).
[CrossRef]

Walker, T.

Wang, M. D.

A. La Porta and M. D. Wang, “Optical torque wrench: angular trapping, rotation, and torque detection of quartz microparticles,” Phys. Rev. Lett. 92(19), 190801 (2004).
[CrossRef] [PubMed]

Wang, Z.-Q.

Wulff, K. D.

Yamane, T.

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330(6150), 769–771 (1987).
[CrossRef] [PubMed]

Yasokawa, T.

H. Kobayashi, I. Ishimaru, R. Hyodo, T. Yasokawa, K. Ishizaki, S. Kuriyama, T. Masaki, S. Nakai, K. Takegawa, and N. Tanaka, “A precise method for rotating single cells,” Appl. Phys. Lett. 88(13), 131103 (2006).
[CrossRef]

Yoshikawa, K.

M. Ichikawa, K. Kubo, K. Yoshikawa, and Y. Kimura, “Tilt control in optical tweezers,” J. Biomed. Opt. 13(1), 010503 (2008).
[CrossRef] [PubMed]

Zhong, M.-C.

Zhou, J.-H.

Appl. Opt. (3)

Appl. Phys. B (3)

S. L. Mohanty, R. Dasgupta, and P. K. Gupta, “Three-dimensional orientation of microscopic objects using combined elliptical and point optical tweezers,” Appl. Phys. B 81(8), 1063–1066 (2005).
[CrossRef]

S. K. Mohanty, R. S. Verma, and P. K. Gupta, “Trapping and controlled rotation of low-refractive-index particles using dual line optical tweezers,” Appl. Phys. B 87(2), 211–215 (2007).
[CrossRef]

S. K. Mohanty, K. D. Rao, and P. K. Gupta, “Optical trap with spatially varying polarization: application in controlled orientation of birefringent microscopic particle(s),” Appl. Phys. B 80(6), 631–634 (2005).
[CrossRef]

Appl. Phys. Lett. (6)

H. Kobayashi, I. Ishimaru, R. Hyodo, T. Yasokawa, K. Ishizaki, S. Kuriyama, T. Masaki, S. Nakai, K. Takegawa, and N. Tanaka, “A precise method for rotating single cells,” Appl. Phys. Lett. 88(13), 131103 (2006).
[CrossRef]

J. R. Robbins, D. A. Tierney, and H. Schmitzer, “Optically driven bacterial screw of Archimedes,” Appl. Phys. Lett. 88(2), 023901 (2006).
[CrossRef]

E. Higurashi, H. Ukita, H. Tanaka, and O. Ohguchi, “Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining,” Appl. Phys. Lett. 64(17), 2209–2210 (1994).
[CrossRef]

E. Higurashi, R. Sawada, and T. Ito, “Optically induced rotation of a trapped micro-object about an axis perpendicular to the laser beam axis,” Appl. Phys. Lett. 72(23), 2951 (1998).
[CrossRef]

J. A. Dharmadhikari, S. Roy, A. K. Dharmadhikari, S. Sharma, and D. Mathur, “Naturally occurring, optically driven, cellular rotor,” Appl. Phys. Lett. 85(24), 6048 (2004).
[CrossRef]

V. Bingelyte, J. Leach, J. Courtial, and M. J. Padgett, “Optically controlled three-dimensional rotation of microscopic objects,” Appl. Phys. Lett. 82(5), 829–831 (2003).
[CrossRef]

Biotechnol. Lett. (1)

R. Dasgupta, S. K. Mohanty, and P. K. Gupta, “Controlled rotation of biological microscopic objects using optical line tweezers,” Biotechnol. Lett. 25(19), 1625–1628 (2003).
[CrossRef] [PubMed]

J. Biomed. Opt. (2)

K. Mohanty, S. Mohanty, S. Monajembashi, and K. O. Greulich, “Orientation of erythrocytes in optical trap revealed by confocal fluorescence microscopy,” J. Biomed. Opt. 12(6), 060506 (2007).
[CrossRef]

M. Ichikawa, K. Kubo, K. Yoshikawa, and Y. Kimura, “Tilt control in optical tweezers,” J. Biomed. Opt. 13(1), 010503 (2008).
[CrossRef] [PubMed]

Nature (2)

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330(6150), 769–771 (1987).
[CrossRef] [PubMed]

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394(6691), 348–350 (1998).
[CrossRef]

Opt. Express (10)

K. Bonin, B. Kourmanov, and T. Walker, “Light torque nanocontrol, nanomotors and nanorockers,” Opt. Express 10(19), 984–989 (2002).
[PubMed]

P. Galajda and P. Ormos, “Orientation of flat particles in optical tweezers by linearly polarized light,” Opt. Express 11(5), 446–451 (2003).
[CrossRef] [PubMed]

J. Dharmadhikari, S. Roy, A. Dharmadhikari, S. Sharma, and D. Mathur, “Torque-generating malaria-infected red blood cells in an optical trap,” Opt. Express 12(6), 1179–1184 (2004).
[CrossRef] [PubMed]

W. Singer, H. Rubinsztein-Dunlop, and U. Gibson, “Manipulation and growth of birefringent protein crystals in optical tweezers,” Opt. Express 12(26), 6440–6445 (2004).
[CrossRef] [PubMed]

D. Preece, S. Keen, E. Botvinick, R. Bowman, M. Padgett, and J. Leach, “Independent polarisation control of multiple optical traps,” Opt. Express 16(20), 15897–15902 (2008).
[CrossRef] [PubMed]

S. J. Parkin, R. Vogel, M. Persson, M. Funk, V. L. Loke, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Highly birefringent vaterite microspheres: production, characterization and applications for optical micromanipulation,” Opt. Express 17(24), 21944–21955 (2009).
[CrossRef] [PubMed]

A. A. Neves, A. Camposeo, S. Pagliara, R. Saija, F. Borghese, P. Denti, M. A. Iatì, R. Cingolani, O. M. Maragò, and D. Pisignano, “Rotational dynamics of optically trapped nanofibers,” Opt. Express 18(2), 822–830 (2010).
[CrossRef] [PubMed]

M. Gu, S. Kuriakose, and X. Gan, “A single beam near-field laser trap for optical stretching, folding and rotation of erythrocytes,” Opt. Express 15(3), 1369–1375 (2007).
[CrossRef] [PubMed]

M. K. Kreysing, T. Kieβling, A. Fritsch, C. Dietrich, J. R. Guck, and J. A. Käs, “The optical cell rotator,” Opt. Express 16(21), 16984 (2008).
[CrossRef] [PubMed]

S. Mohanty, K. Mohanty, and P. Gupta, “Dynamics of Interaction of RBC with optical tweezers,” Opt. Express 13(12), 4745–4751 (2005).
[CrossRef] [PubMed]

Opt. Lett. (6)

Phys. Rev. A (3)

S. H. Simpson, D. C. Benito, and S. Hanna, “Polarization-induced torque in optical traps,” Phys. Rev. A 76(4), 043408 (2007).
[CrossRef]

M. Rothmayer, D. Tierney, E. Frins, W. Dultz, and H. Schmitzer, “Irregular spin angular momentum transfer from light to small birefringent particles,” Phys. Rev. A 80(4), 043801 (2009).
[CrossRef]

V. Garcés-Chávez, K. Volke-Sepulveda, S. Chávez-Cerda, W. Sibbett, and K. Dholakia, “Transfer of orbital angular momentum to an optically trapped low-index particle,” Phys. Rev. A 66(6), 063402 (2002).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

W. Singer, T. A. Nieminen, U. J. Gibson, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Orientation of optically trapped nonspherical birefringent particles,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(2), 021911 (2006).
[CrossRef] [PubMed]

Phys. Rev. Lett. (3)

A. La Porta and M. D. Wang, “Optical torque wrench: angular trapping, rotation, and torque detection of quartz microparticles,” Phys. Rev. Lett. 92(19), 190801 (2004).
[CrossRef] [PubMed]

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical microrheology using rotating laser-trapped particles,” Phys. Rev. Lett. 92(19), 198104 (2004).
[CrossRef] [PubMed]

M.-F. Shih and F.-W. Sheu, “Dynamic soliton-like modes,” Phys. Rev. Lett. 86(11), 2281–2284 (2001).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

S. L. Mohanty and P. K. Gupta, “Laser-assisted three-dimensional rotation of microscopic objects,” Rev. Sci. Instrum. 75(7), 2320–2322 (2004).
[CrossRef]

Science (2)

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292(5518), 912–914 (2001).
[CrossRef] [PubMed]

M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, “Creation and manipulation of three-dimensional optically trapped structures,” Science 296(5570), 1101–1103 (2002).
[CrossRef] [PubMed]

Supplementary Material (4)

» Media 1: MOV (3460 KB)     
» Media 2: MOV (3882 KB)     
» Media 3: MOV (3540 KB)     
» Media 4: MOV (3738 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

The configuration of the experimental setup for the dual-mode split-beam optical tweezers. PC, personal computer; CCD, charge coupled device; LED, light emitting diode.

Fig. 2
Fig. 2

(a) The photograph of a coverslip installed in a rotary mount which can be shifted by the rotation and the three-dimensional translation stages. The observed images of (b) the original single-mode Gaussian beam and (c) the dual-mode split beam at the laser focus when inserting a coverslip into half of the laser beam. (d) The top view of the laser beam and the coverslip. The field amplitude and the optical intensity distribution profiles in the lateral position of (e) a single-mode Gaussian beam and (f) a dual-mode split beam, respectively.

Fig. 3
Fig. 3

The manually controlled rotation of a red blood cell trapped by the dual-mode split-beam optical tweezers (Media 1) displayed at an angular interval of 45 degrees. The original disk-like biconcave red blood cell has a diameter of 7 μm approximately.

Fig. 4
Fig. 4

The self rotations of a birefringent polystyrene micro strip particle trapped by the linearly polarized single-beam optical tweezers (a)-(h) along the two structural principal axes, respectively (Media 2). The other types of random and faster self rotations, such as the high-speed spinning and (i)-(l) the gyroscope-like precession, can also be observed (Media 3).

Fig. 5
Fig. 5

The manually controlled rotation of a birefringent polystyrene micro strip particle (length ≈ 5 μm) trapped by the dual-mode split-beam optical tweezers (Media 4).

Metrics