Abstract

Passive harmonic mode-locking in a quantum dot laser is realized using the double interval technique, which uses two separate absorbers to stimulate a specific higher-order repetition rate compared to the fundamental. Operating alone these absorbers would otherwise reinforce lower harmonic frequencies, but by operating together they produce the harmonic corresponding to their least common multiple. Mode-locking at a nominal 60 GHz repetition rate, which is the 10th harmonic of the fundamental frequency of the device, is achieved unambiguously despite the constraint of a uniformly-segmented, multi-section device layout. The diversity of repetition rates available with this method is also discussed.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Bimberg, N. Kirstaedter, N. N. Ledentsov, Zh. I. Alferov, P. S. Kop’ev, and V. M. Ustinov, “InGaAs-GaAs Quantum-Dot Lasers,” IEEE J. Sel. Top. Quantum Electron. 3(2), 196–205 (1997).
    [CrossRef]
  2. X. D. Huang, A. Stintz, H. Li, A. Rice, G. T. Liu, L. F. Lester, J. Cheng, and K. J. Malloy, “Bistable operation of a two section 1.3-μm InAs quantum dot laser-Absorption saturation and the quantum confined Stark effect,” IEEE J. Quantum Electron. 37(3), 414–417 (2001).
    [CrossRef]
  3. M. Kuntz, G. Fiol, M. Lammlin, D. Bimberg, M. G. Thompson, K. T. Tan, C. Marinelli, R. V. Penty, I. H. White, V. M. Ustinov, A. E. Zhukov, Y. M. Shernyakov, and A. R. Kovsh, “35 GHz mode-locking of 1. 3-μm quantum dot lasers,” Appl. Phys. Lett. 85(5), 843–845 (2004).
    [CrossRef]
  4. G. A. Keeler, B. E. Nelson, D. Agarwal, C. Debaes, N. C. Helman, A. Bhatnagar, and D. A. B. Miller, “The benefits of ultrashort optical pulses in optically interconnected systems,” IEEE J. Sel. Top. Quantum Electron. 9(2), 477–485 (2003).
    [CrossRef]
  5. M. Mielke, G. A. Alphonse, and P. J. Delfyett, “168 Channels x 6 GHz from a Multiwavelength Mode-Locked Semiconductor Laser,” IEEE Photon. Technol. Lett. 15(4), 501–503 (2003).
    [CrossRef]
  6. C.-Y. Lin, Y.-C. Xin, J. H. Kim, C. G. Christodoulou, and L. F. Lester, “Compact Optical Generation of Microwave Signals Using a Monolithic Quantum Dot Passively Mode-Locked Laser,” IEEE Photon. J. 1(4), 236–244 (2009).
    [CrossRef]
  7. J. H. Kim, C. G. Christodoulou, Z. Ku, C.-Y. Lin, Y.-C. Xin, N. A. Naderi, and L. F. Lester, “Hybrid integration of a bowtie slot antenna and a quantum dot mode-locked laser,” IEEE Antennas Wirel. Propag. Lett. 8, 1337–1340 (2009).
    [CrossRef]
  8. Y.-C. Xin, Y. Li, V. Kovanis, A. L. Gray, L. Zhang, and L. F. Lester, “Reconfigurable quantum dot monolithic multisection passive mode-locked lasers,” Opt. Express 15(12), 7623–7633 (2007).
    [CrossRef] [PubMed]
  9. C.-Y. Lin, Y.-C. Xin, Y. Li, F. L. Chiragh, and L. F. Lester, “Cavity design and characteristics of monolithic long-wavelength InAs/InP quantum dash passively mode-locked lasers,” Opt. Express 17(22), 19739–19748 (2009).
    [CrossRef] [PubMed]
  10. X. D. Huang, A. Stintz, H. Li, L. F. Lester, J. Cheng, and K. J. Malloy, “Passive mode-locking in 1.3-µm two-section InAs quantum dot lasers,” Appl. Phys. Lett. 78(19), 2825–2827 (2001).
    [CrossRef]
  11. T. Shimizu, X.-L. Wang, and H. Yokoyama, “Asymmetric colliding-pulse mode-locking in InGaAsP semiconductor lasers,” Opt. Rev. 2(6), 401–403 (1995).
    [CrossRef]
  12. A. R. Rae, M. G. Thompson, R. V. Penty, I. H. White, A. R. Kovsh, S. S. Mikhrin, D. A. Livshits, and I. L. Krestnikov, “Harmonic mode-locking of a Quantum-Dot Laser Diode”, IEEE LEOS Annual Conference, paper ThR5 (2009)
  13. J. L. Duport, Essay on the fingering of the violoncello and on the conduct of the bow, (1806).

2009

C.-Y. Lin, Y.-C. Xin, J. H. Kim, C. G. Christodoulou, and L. F. Lester, “Compact Optical Generation of Microwave Signals Using a Monolithic Quantum Dot Passively Mode-Locked Laser,” IEEE Photon. J. 1(4), 236–244 (2009).
[CrossRef]

J. H. Kim, C. G. Christodoulou, Z. Ku, C.-Y. Lin, Y.-C. Xin, N. A. Naderi, and L. F. Lester, “Hybrid integration of a bowtie slot antenna and a quantum dot mode-locked laser,” IEEE Antennas Wirel. Propag. Lett. 8, 1337–1340 (2009).
[CrossRef]

C.-Y. Lin, Y.-C. Xin, Y. Li, F. L. Chiragh, and L. F. Lester, “Cavity design and characteristics of monolithic long-wavelength InAs/InP quantum dash passively mode-locked lasers,” Opt. Express 17(22), 19739–19748 (2009).
[CrossRef] [PubMed]

2007

2004

M. Kuntz, G. Fiol, M. Lammlin, D. Bimberg, M. G. Thompson, K. T. Tan, C. Marinelli, R. V. Penty, I. H. White, V. M. Ustinov, A. E. Zhukov, Y. M. Shernyakov, and A. R. Kovsh, “35 GHz mode-locking of 1. 3-μm quantum dot lasers,” Appl. Phys. Lett. 85(5), 843–845 (2004).
[CrossRef]

2003

G. A. Keeler, B. E. Nelson, D. Agarwal, C. Debaes, N. C. Helman, A. Bhatnagar, and D. A. B. Miller, “The benefits of ultrashort optical pulses in optically interconnected systems,” IEEE J. Sel. Top. Quantum Electron. 9(2), 477–485 (2003).
[CrossRef]

M. Mielke, G. A. Alphonse, and P. J. Delfyett, “168 Channels x 6 GHz from a Multiwavelength Mode-Locked Semiconductor Laser,” IEEE Photon. Technol. Lett. 15(4), 501–503 (2003).
[CrossRef]

2001

X. D. Huang, A. Stintz, H. Li, A. Rice, G. T. Liu, L. F. Lester, J. Cheng, and K. J. Malloy, “Bistable operation of a two section 1.3-μm InAs quantum dot laser-Absorption saturation and the quantum confined Stark effect,” IEEE J. Quantum Electron. 37(3), 414–417 (2001).
[CrossRef]

X. D. Huang, A. Stintz, H. Li, L. F. Lester, J. Cheng, and K. J. Malloy, “Passive mode-locking in 1.3-µm two-section InAs quantum dot lasers,” Appl. Phys. Lett. 78(19), 2825–2827 (2001).
[CrossRef]

1997

D. Bimberg, N. Kirstaedter, N. N. Ledentsov, Zh. I. Alferov, P. S. Kop’ev, and V. M. Ustinov, “InGaAs-GaAs Quantum-Dot Lasers,” IEEE J. Sel. Top. Quantum Electron. 3(2), 196–205 (1997).
[CrossRef]

1995

T. Shimizu, X.-L. Wang, and H. Yokoyama, “Asymmetric colliding-pulse mode-locking in InGaAsP semiconductor lasers,” Opt. Rev. 2(6), 401–403 (1995).
[CrossRef]

Agarwal, D.

G. A. Keeler, B. E. Nelson, D. Agarwal, C. Debaes, N. C. Helman, A. Bhatnagar, and D. A. B. Miller, “The benefits of ultrashort optical pulses in optically interconnected systems,” IEEE J. Sel. Top. Quantum Electron. 9(2), 477–485 (2003).
[CrossRef]

Alferov, Zh. I.

D. Bimberg, N. Kirstaedter, N. N. Ledentsov, Zh. I. Alferov, P. S. Kop’ev, and V. M. Ustinov, “InGaAs-GaAs Quantum-Dot Lasers,” IEEE J. Sel. Top. Quantum Electron. 3(2), 196–205 (1997).
[CrossRef]

Alphonse, G. A.

M. Mielke, G. A. Alphonse, and P. J. Delfyett, “168 Channels x 6 GHz from a Multiwavelength Mode-Locked Semiconductor Laser,” IEEE Photon. Technol. Lett. 15(4), 501–503 (2003).
[CrossRef]

Bhatnagar, A.

G. A. Keeler, B. E. Nelson, D. Agarwal, C. Debaes, N. C. Helman, A. Bhatnagar, and D. A. B. Miller, “The benefits of ultrashort optical pulses in optically interconnected systems,” IEEE J. Sel. Top. Quantum Electron. 9(2), 477–485 (2003).
[CrossRef]

Bimberg, D.

M. Kuntz, G. Fiol, M. Lammlin, D. Bimberg, M. G. Thompson, K. T. Tan, C. Marinelli, R. V. Penty, I. H. White, V. M. Ustinov, A. E. Zhukov, Y. M. Shernyakov, and A. R. Kovsh, “35 GHz mode-locking of 1. 3-μm quantum dot lasers,” Appl. Phys. Lett. 85(5), 843–845 (2004).
[CrossRef]

D. Bimberg, N. Kirstaedter, N. N. Ledentsov, Zh. I. Alferov, P. S. Kop’ev, and V. M. Ustinov, “InGaAs-GaAs Quantum-Dot Lasers,” IEEE J. Sel. Top. Quantum Electron. 3(2), 196–205 (1997).
[CrossRef]

Cheng, J.

X. D. Huang, A. Stintz, H. Li, L. F. Lester, J. Cheng, and K. J. Malloy, “Passive mode-locking in 1.3-µm two-section InAs quantum dot lasers,” Appl. Phys. Lett. 78(19), 2825–2827 (2001).
[CrossRef]

X. D. Huang, A. Stintz, H. Li, A. Rice, G. T. Liu, L. F. Lester, J. Cheng, and K. J. Malloy, “Bistable operation of a two section 1.3-μm InAs quantum dot laser-Absorption saturation and the quantum confined Stark effect,” IEEE J. Quantum Electron. 37(3), 414–417 (2001).
[CrossRef]

Chiragh, F. L.

Christodoulou, C. G.

C.-Y. Lin, Y.-C. Xin, J. H. Kim, C. G. Christodoulou, and L. F. Lester, “Compact Optical Generation of Microwave Signals Using a Monolithic Quantum Dot Passively Mode-Locked Laser,” IEEE Photon. J. 1(4), 236–244 (2009).
[CrossRef]

J. H. Kim, C. G. Christodoulou, Z. Ku, C.-Y. Lin, Y.-C. Xin, N. A. Naderi, and L. F. Lester, “Hybrid integration of a bowtie slot antenna and a quantum dot mode-locked laser,” IEEE Antennas Wirel. Propag. Lett. 8, 1337–1340 (2009).
[CrossRef]

Debaes, C.

G. A. Keeler, B. E. Nelson, D. Agarwal, C. Debaes, N. C. Helman, A. Bhatnagar, and D. A. B. Miller, “The benefits of ultrashort optical pulses in optically interconnected systems,” IEEE J. Sel. Top. Quantum Electron. 9(2), 477–485 (2003).
[CrossRef]

Delfyett, P. J.

M. Mielke, G. A. Alphonse, and P. J. Delfyett, “168 Channels x 6 GHz from a Multiwavelength Mode-Locked Semiconductor Laser,” IEEE Photon. Technol. Lett. 15(4), 501–503 (2003).
[CrossRef]

Fiol, G.

M. Kuntz, G. Fiol, M. Lammlin, D. Bimberg, M. G. Thompson, K. T. Tan, C. Marinelli, R. V. Penty, I. H. White, V. M. Ustinov, A. E. Zhukov, Y. M. Shernyakov, and A. R. Kovsh, “35 GHz mode-locking of 1. 3-μm quantum dot lasers,” Appl. Phys. Lett. 85(5), 843–845 (2004).
[CrossRef]

Gray, A. L.

Helman, N. C.

G. A. Keeler, B. E. Nelson, D. Agarwal, C. Debaes, N. C. Helman, A. Bhatnagar, and D. A. B. Miller, “The benefits of ultrashort optical pulses in optically interconnected systems,” IEEE J. Sel. Top. Quantum Electron. 9(2), 477–485 (2003).
[CrossRef]

Huang, X. D.

X. D. Huang, A. Stintz, H. Li, A. Rice, G. T. Liu, L. F. Lester, J. Cheng, and K. J. Malloy, “Bistable operation of a two section 1.3-μm InAs quantum dot laser-Absorption saturation and the quantum confined Stark effect,” IEEE J. Quantum Electron. 37(3), 414–417 (2001).
[CrossRef]

X. D. Huang, A. Stintz, H. Li, L. F. Lester, J. Cheng, and K. J. Malloy, “Passive mode-locking in 1.3-µm two-section InAs quantum dot lasers,” Appl. Phys. Lett. 78(19), 2825–2827 (2001).
[CrossRef]

Keeler, G. A.

G. A. Keeler, B. E. Nelson, D. Agarwal, C. Debaes, N. C. Helman, A. Bhatnagar, and D. A. B. Miller, “The benefits of ultrashort optical pulses in optically interconnected systems,” IEEE J. Sel. Top. Quantum Electron. 9(2), 477–485 (2003).
[CrossRef]

Kim, J. H.

C.-Y. Lin, Y.-C. Xin, J. H. Kim, C. G. Christodoulou, and L. F. Lester, “Compact Optical Generation of Microwave Signals Using a Monolithic Quantum Dot Passively Mode-Locked Laser,” IEEE Photon. J. 1(4), 236–244 (2009).
[CrossRef]

J. H. Kim, C. G. Christodoulou, Z. Ku, C.-Y. Lin, Y.-C. Xin, N. A. Naderi, and L. F. Lester, “Hybrid integration of a bowtie slot antenna and a quantum dot mode-locked laser,” IEEE Antennas Wirel. Propag. Lett. 8, 1337–1340 (2009).
[CrossRef]

Kirstaedter, N.

D. Bimberg, N. Kirstaedter, N. N. Ledentsov, Zh. I. Alferov, P. S. Kop’ev, and V. M. Ustinov, “InGaAs-GaAs Quantum-Dot Lasers,” IEEE J. Sel. Top. Quantum Electron. 3(2), 196–205 (1997).
[CrossRef]

Kop’ev, P. S.

D. Bimberg, N. Kirstaedter, N. N. Ledentsov, Zh. I. Alferov, P. S. Kop’ev, and V. M. Ustinov, “InGaAs-GaAs Quantum-Dot Lasers,” IEEE J. Sel. Top. Quantum Electron. 3(2), 196–205 (1997).
[CrossRef]

Kovanis, V.

Kovsh, A. R.

M. Kuntz, G. Fiol, M. Lammlin, D. Bimberg, M. G. Thompson, K. T. Tan, C. Marinelli, R. V. Penty, I. H. White, V. M. Ustinov, A. E. Zhukov, Y. M. Shernyakov, and A. R. Kovsh, “35 GHz mode-locking of 1. 3-μm quantum dot lasers,” Appl. Phys. Lett. 85(5), 843–845 (2004).
[CrossRef]

Ku, Z.

J. H. Kim, C. G. Christodoulou, Z. Ku, C.-Y. Lin, Y.-C. Xin, N. A. Naderi, and L. F. Lester, “Hybrid integration of a bowtie slot antenna and a quantum dot mode-locked laser,” IEEE Antennas Wirel. Propag. Lett. 8, 1337–1340 (2009).
[CrossRef]

Kuntz, M.

M. Kuntz, G. Fiol, M. Lammlin, D. Bimberg, M. G. Thompson, K. T. Tan, C. Marinelli, R. V. Penty, I. H. White, V. M. Ustinov, A. E. Zhukov, Y. M. Shernyakov, and A. R. Kovsh, “35 GHz mode-locking of 1. 3-μm quantum dot lasers,” Appl. Phys. Lett. 85(5), 843–845 (2004).
[CrossRef]

Lammlin, M.

M. Kuntz, G. Fiol, M. Lammlin, D. Bimberg, M. G. Thompson, K. T. Tan, C. Marinelli, R. V. Penty, I. H. White, V. M. Ustinov, A. E. Zhukov, Y. M. Shernyakov, and A. R. Kovsh, “35 GHz mode-locking of 1. 3-μm quantum dot lasers,” Appl. Phys. Lett. 85(5), 843–845 (2004).
[CrossRef]

Ledentsov, N. N.

D. Bimberg, N. Kirstaedter, N. N. Ledentsov, Zh. I. Alferov, P. S. Kop’ev, and V. M. Ustinov, “InGaAs-GaAs Quantum-Dot Lasers,” IEEE J. Sel. Top. Quantum Electron. 3(2), 196–205 (1997).
[CrossRef]

Lester, L. F.

J. H. Kim, C. G. Christodoulou, Z. Ku, C.-Y. Lin, Y.-C. Xin, N. A. Naderi, and L. F. Lester, “Hybrid integration of a bowtie slot antenna and a quantum dot mode-locked laser,” IEEE Antennas Wirel. Propag. Lett. 8, 1337–1340 (2009).
[CrossRef]

C.-Y. Lin, Y.-C. Xin, Y. Li, F. L. Chiragh, and L. F. Lester, “Cavity design and characteristics of monolithic long-wavelength InAs/InP quantum dash passively mode-locked lasers,” Opt. Express 17(22), 19739–19748 (2009).
[CrossRef] [PubMed]

C.-Y. Lin, Y.-C. Xin, J. H. Kim, C. G. Christodoulou, and L. F. Lester, “Compact Optical Generation of Microwave Signals Using a Monolithic Quantum Dot Passively Mode-Locked Laser,” IEEE Photon. J. 1(4), 236–244 (2009).
[CrossRef]

Y.-C. Xin, Y. Li, V. Kovanis, A. L. Gray, L. Zhang, and L. F. Lester, “Reconfigurable quantum dot monolithic multisection passive mode-locked lasers,” Opt. Express 15(12), 7623–7633 (2007).
[CrossRef] [PubMed]

X. D. Huang, A. Stintz, H. Li, A. Rice, G. T. Liu, L. F. Lester, J. Cheng, and K. J. Malloy, “Bistable operation of a two section 1.3-μm InAs quantum dot laser-Absorption saturation and the quantum confined Stark effect,” IEEE J. Quantum Electron. 37(3), 414–417 (2001).
[CrossRef]

X. D. Huang, A. Stintz, H. Li, L. F. Lester, J. Cheng, and K. J. Malloy, “Passive mode-locking in 1.3-µm two-section InAs quantum dot lasers,” Appl. Phys. Lett. 78(19), 2825–2827 (2001).
[CrossRef]

Li, H.

X. D. Huang, A. Stintz, H. Li, L. F. Lester, J. Cheng, and K. J. Malloy, “Passive mode-locking in 1.3-µm two-section InAs quantum dot lasers,” Appl. Phys. Lett. 78(19), 2825–2827 (2001).
[CrossRef]

X. D. Huang, A. Stintz, H. Li, A. Rice, G. T. Liu, L. F. Lester, J. Cheng, and K. J. Malloy, “Bistable operation of a two section 1.3-μm InAs quantum dot laser-Absorption saturation and the quantum confined Stark effect,” IEEE J. Quantum Electron. 37(3), 414–417 (2001).
[CrossRef]

Li, Y.

Lin, C.-Y.

C.-Y. Lin, Y.-C. Xin, Y. Li, F. L. Chiragh, and L. F. Lester, “Cavity design and characteristics of monolithic long-wavelength InAs/InP quantum dash passively mode-locked lasers,” Opt. Express 17(22), 19739–19748 (2009).
[CrossRef] [PubMed]

C.-Y. Lin, Y.-C. Xin, J. H. Kim, C. G. Christodoulou, and L. F. Lester, “Compact Optical Generation of Microwave Signals Using a Monolithic Quantum Dot Passively Mode-Locked Laser,” IEEE Photon. J. 1(4), 236–244 (2009).
[CrossRef]

J. H. Kim, C. G. Christodoulou, Z. Ku, C.-Y. Lin, Y.-C. Xin, N. A. Naderi, and L. F. Lester, “Hybrid integration of a bowtie slot antenna and a quantum dot mode-locked laser,” IEEE Antennas Wirel. Propag. Lett. 8, 1337–1340 (2009).
[CrossRef]

Liu, G. T.

X. D. Huang, A. Stintz, H. Li, A. Rice, G. T. Liu, L. F. Lester, J. Cheng, and K. J. Malloy, “Bistable operation of a two section 1.3-μm InAs quantum dot laser-Absorption saturation and the quantum confined Stark effect,” IEEE J. Quantum Electron. 37(3), 414–417 (2001).
[CrossRef]

Malloy, K. J.

X. D. Huang, A. Stintz, H. Li, A. Rice, G. T. Liu, L. F. Lester, J. Cheng, and K. J. Malloy, “Bistable operation of a two section 1.3-μm InAs quantum dot laser-Absorption saturation and the quantum confined Stark effect,” IEEE J. Quantum Electron. 37(3), 414–417 (2001).
[CrossRef]

X. D. Huang, A. Stintz, H. Li, L. F. Lester, J. Cheng, and K. J. Malloy, “Passive mode-locking in 1.3-µm two-section InAs quantum dot lasers,” Appl. Phys. Lett. 78(19), 2825–2827 (2001).
[CrossRef]

Marinelli, C.

M. Kuntz, G. Fiol, M. Lammlin, D. Bimberg, M. G. Thompson, K. T. Tan, C. Marinelli, R. V. Penty, I. H. White, V. M. Ustinov, A. E. Zhukov, Y. M. Shernyakov, and A. R. Kovsh, “35 GHz mode-locking of 1. 3-μm quantum dot lasers,” Appl. Phys. Lett. 85(5), 843–845 (2004).
[CrossRef]

Mielke, M.

M. Mielke, G. A. Alphonse, and P. J. Delfyett, “168 Channels x 6 GHz from a Multiwavelength Mode-Locked Semiconductor Laser,” IEEE Photon. Technol. Lett. 15(4), 501–503 (2003).
[CrossRef]

Miller, D. A. B.

G. A. Keeler, B. E. Nelson, D. Agarwal, C. Debaes, N. C. Helman, A. Bhatnagar, and D. A. B. Miller, “The benefits of ultrashort optical pulses in optically interconnected systems,” IEEE J. Sel. Top. Quantum Electron. 9(2), 477–485 (2003).
[CrossRef]

Naderi, N. A.

J. H. Kim, C. G. Christodoulou, Z. Ku, C.-Y. Lin, Y.-C. Xin, N. A. Naderi, and L. F. Lester, “Hybrid integration of a bowtie slot antenna and a quantum dot mode-locked laser,” IEEE Antennas Wirel. Propag. Lett. 8, 1337–1340 (2009).
[CrossRef]

Nelson, B. E.

G. A. Keeler, B. E. Nelson, D. Agarwal, C. Debaes, N. C. Helman, A. Bhatnagar, and D. A. B. Miller, “The benefits of ultrashort optical pulses in optically interconnected systems,” IEEE J. Sel. Top. Quantum Electron. 9(2), 477–485 (2003).
[CrossRef]

Penty, R. V.

M. Kuntz, G. Fiol, M. Lammlin, D. Bimberg, M. G. Thompson, K. T. Tan, C. Marinelli, R. V. Penty, I. H. White, V. M. Ustinov, A. E. Zhukov, Y. M. Shernyakov, and A. R. Kovsh, “35 GHz mode-locking of 1. 3-μm quantum dot lasers,” Appl. Phys. Lett. 85(5), 843–845 (2004).
[CrossRef]

Rice, A.

X. D. Huang, A. Stintz, H. Li, A. Rice, G. T. Liu, L. F. Lester, J. Cheng, and K. J. Malloy, “Bistable operation of a two section 1.3-μm InAs quantum dot laser-Absorption saturation and the quantum confined Stark effect,” IEEE J. Quantum Electron. 37(3), 414–417 (2001).
[CrossRef]

Shernyakov, Y. M.

M. Kuntz, G. Fiol, M. Lammlin, D. Bimberg, M. G. Thompson, K. T. Tan, C. Marinelli, R. V. Penty, I. H. White, V. M. Ustinov, A. E. Zhukov, Y. M. Shernyakov, and A. R. Kovsh, “35 GHz mode-locking of 1. 3-μm quantum dot lasers,” Appl. Phys. Lett. 85(5), 843–845 (2004).
[CrossRef]

Shimizu, T.

T. Shimizu, X.-L. Wang, and H. Yokoyama, “Asymmetric colliding-pulse mode-locking in InGaAsP semiconductor lasers,” Opt. Rev. 2(6), 401–403 (1995).
[CrossRef]

Stintz, A.

X. D. Huang, A. Stintz, H. Li, A. Rice, G. T. Liu, L. F. Lester, J. Cheng, and K. J. Malloy, “Bistable operation of a two section 1.3-μm InAs quantum dot laser-Absorption saturation and the quantum confined Stark effect,” IEEE J. Quantum Electron. 37(3), 414–417 (2001).
[CrossRef]

X. D. Huang, A. Stintz, H. Li, L. F. Lester, J. Cheng, and K. J. Malloy, “Passive mode-locking in 1.3-µm two-section InAs quantum dot lasers,” Appl. Phys. Lett. 78(19), 2825–2827 (2001).
[CrossRef]

Tan, K. T.

M. Kuntz, G. Fiol, M. Lammlin, D. Bimberg, M. G. Thompson, K. T. Tan, C. Marinelli, R. V. Penty, I. H. White, V. M. Ustinov, A. E. Zhukov, Y. M. Shernyakov, and A. R. Kovsh, “35 GHz mode-locking of 1. 3-μm quantum dot lasers,” Appl. Phys. Lett. 85(5), 843–845 (2004).
[CrossRef]

Thompson, M. G.

M. Kuntz, G. Fiol, M. Lammlin, D. Bimberg, M. G. Thompson, K. T. Tan, C. Marinelli, R. V. Penty, I. H. White, V. M. Ustinov, A. E. Zhukov, Y. M. Shernyakov, and A. R. Kovsh, “35 GHz mode-locking of 1. 3-μm quantum dot lasers,” Appl. Phys. Lett. 85(5), 843–845 (2004).
[CrossRef]

Ustinov, V. M.

M. Kuntz, G. Fiol, M. Lammlin, D. Bimberg, M. G. Thompson, K. T. Tan, C. Marinelli, R. V. Penty, I. H. White, V. M. Ustinov, A. E. Zhukov, Y. M. Shernyakov, and A. R. Kovsh, “35 GHz mode-locking of 1. 3-μm quantum dot lasers,” Appl. Phys. Lett. 85(5), 843–845 (2004).
[CrossRef]

D. Bimberg, N. Kirstaedter, N. N. Ledentsov, Zh. I. Alferov, P. S. Kop’ev, and V. M. Ustinov, “InGaAs-GaAs Quantum-Dot Lasers,” IEEE J. Sel. Top. Quantum Electron. 3(2), 196–205 (1997).
[CrossRef]

Wang, X.-L.

T. Shimizu, X.-L. Wang, and H. Yokoyama, “Asymmetric colliding-pulse mode-locking in InGaAsP semiconductor lasers,” Opt. Rev. 2(6), 401–403 (1995).
[CrossRef]

White, I. H.

M. Kuntz, G. Fiol, M. Lammlin, D. Bimberg, M. G. Thompson, K. T. Tan, C. Marinelli, R. V. Penty, I. H. White, V. M. Ustinov, A. E. Zhukov, Y. M. Shernyakov, and A. R. Kovsh, “35 GHz mode-locking of 1. 3-μm quantum dot lasers,” Appl. Phys. Lett. 85(5), 843–845 (2004).
[CrossRef]

Xin, Y.-C.

J. H. Kim, C. G. Christodoulou, Z. Ku, C.-Y. Lin, Y.-C. Xin, N. A. Naderi, and L. F. Lester, “Hybrid integration of a bowtie slot antenna and a quantum dot mode-locked laser,” IEEE Antennas Wirel. Propag. Lett. 8, 1337–1340 (2009).
[CrossRef]

C.-Y. Lin, Y.-C. Xin, J. H. Kim, C. G. Christodoulou, and L. F. Lester, “Compact Optical Generation of Microwave Signals Using a Monolithic Quantum Dot Passively Mode-Locked Laser,” IEEE Photon. J. 1(4), 236–244 (2009).
[CrossRef]

C.-Y. Lin, Y.-C. Xin, Y. Li, F. L. Chiragh, and L. F. Lester, “Cavity design and characteristics of monolithic long-wavelength InAs/InP quantum dash passively mode-locked lasers,” Opt. Express 17(22), 19739–19748 (2009).
[CrossRef] [PubMed]

Y.-C. Xin, Y. Li, V. Kovanis, A. L. Gray, L. Zhang, and L. F. Lester, “Reconfigurable quantum dot monolithic multisection passive mode-locked lasers,” Opt. Express 15(12), 7623–7633 (2007).
[CrossRef] [PubMed]

Yokoyama, H.

T. Shimizu, X.-L. Wang, and H. Yokoyama, “Asymmetric colliding-pulse mode-locking in InGaAsP semiconductor lasers,” Opt. Rev. 2(6), 401–403 (1995).
[CrossRef]

Zhang, L.

Zhukov, A. E.

M. Kuntz, G. Fiol, M. Lammlin, D. Bimberg, M. G. Thompson, K. T. Tan, C. Marinelli, R. V. Penty, I. H. White, V. M. Ustinov, A. E. Zhukov, Y. M. Shernyakov, and A. R. Kovsh, “35 GHz mode-locking of 1. 3-μm quantum dot lasers,” Appl. Phys. Lett. 85(5), 843–845 (2004).
[CrossRef]

Appl. Phys. Lett.

M. Kuntz, G. Fiol, M. Lammlin, D. Bimberg, M. G. Thompson, K. T. Tan, C. Marinelli, R. V. Penty, I. H. White, V. M. Ustinov, A. E. Zhukov, Y. M. Shernyakov, and A. R. Kovsh, “35 GHz mode-locking of 1. 3-μm quantum dot lasers,” Appl. Phys. Lett. 85(5), 843–845 (2004).
[CrossRef]

X. D. Huang, A. Stintz, H. Li, L. F. Lester, J. Cheng, and K. J. Malloy, “Passive mode-locking in 1.3-µm two-section InAs quantum dot lasers,” Appl. Phys. Lett. 78(19), 2825–2827 (2001).
[CrossRef]

IEEE Antennas Wirel. Propag. Lett.

J. H. Kim, C. G. Christodoulou, Z. Ku, C.-Y. Lin, Y.-C. Xin, N. A. Naderi, and L. F. Lester, “Hybrid integration of a bowtie slot antenna and a quantum dot mode-locked laser,” IEEE Antennas Wirel. Propag. Lett. 8, 1337–1340 (2009).
[CrossRef]

IEEE J. Quantum Electron.

X. D. Huang, A. Stintz, H. Li, A. Rice, G. T. Liu, L. F. Lester, J. Cheng, and K. J. Malloy, “Bistable operation of a two section 1.3-μm InAs quantum dot laser-Absorption saturation and the quantum confined Stark effect,” IEEE J. Quantum Electron. 37(3), 414–417 (2001).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

D. Bimberg, N. Kirstaedter, N. N. Ledentsov, Zh. I. Alferov, P. S. Kop’ev, and V. M. Ustinov, “InGaAs-GaAs Quantum-Dot Lasers,” IEEE J. Sel. Top. Quantum Electron. 3(2), 196–205 (1997).
[CrossRef]

G. A. Keeler, B. E. Nelson, D. Agarwal, C. Debaes, N. C. Helman, A. Bhatnagar, and D. A. B. Miller, “The benefits of ultrashort optical pulses in optically interconnected systems,” IEEE J. Sel. Top. Quantum Electron. 9(2), 477–485 (2003).
[CrossRef]

IEEE Photon. J.

C.-Y. Lin, Y.-C. Xin, J. H. Kim, C. G. Christodoulou, and L. F. Lester, “Compact Optical Generation of Microwave Signals Using a Monolithic Quantum Dot Passively Mode-Locked Laser,” IEEE Photon. J. 1(4), 236–244 (2009).
[CrossRef]

IEEE Photon. Technol. Lett.

M. Mielke, G. A. Alphonse, and P. J. Delfyett, “168 Channels x 6 GHz from a Multiwavelength Mode-Locked Semiconductor Laser,” IEEE Photon. Technol. Lett. 15(4), 501–503 (2003).
[CrossRef]

Opt. Express

Opt. Rev.

T. Shimizu, X.-L. Wang, and H. Yokoyama, “Asymmetric colliding-pulse mode-locking in InGaAsP semiconductor lasers,” Opt. Rev. 2(6), 401–403 (1995).
[CrossRef]

Other

A. R. Rae, M. G. Thompson, R. V. Penty, I. H. White, A. R. Kovsh, S. S. Mikhrin, D. A. Livshits, and I. L. Krestnikov, “Harmonic mode-locking of a Quantum-Dot Laser Diode”, IEEE LEOS Annual Conference, paper ThR5 (2009)

J. L. Duport, Essay on the fingering of the violoncello and on the conduct of the bow, (1806).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

The quantum dot mode-locked laser structure grown by MBE with 10 stacks of quantum dots in the active region.

Fig. 2
Fig. 2

The top-view schematic diagram of the multi-section quantum dot laser that has 27 electrically-isolated anodes of equal length, a common cathode, and a common optical waveguide (seen as the thin horizontal black line across the device). The absorber positions that potentially excite higher-order harmonics are marked. The circled regions show locations that are particularly problematic for isolating a specific harmonic.

Fig. 3
Fig. 3

The RF spectrum (a) and pulse train (b) of mode-locking at a repetition frequency of 12.03 GHz that is the 2nd harmonic of the QD MLL’s fundamental repetition rate; (c) and (b) are the RF spectrum and pulse train for mode-locking at a repetition frequency of 30.12 GHz, the 5th harmonic.

Fig. 4
Fig. 4

(a) The pulse trace showing mode-locking at a repetition rate of 65.8 GHz, which is the 11th harmonic of fundamental frequency of the MLL. Here, section 3 was used as the absorber. Section 3 could potentially stimulate harmonics 9th through 12th; (b) The pulse trace of mode-locking at a repetition rate of 59.3 GHz. The 10th harmonic of the fundamental frequency of the MLL is realized through the double interval technique.

Fig. 5
Fig. 5

The repetition rate of the QD MLL as a function of gain current and reverse bias voltage where section 3 is the location of the single absorber. The value of repetition rate is indicated by the color bar. Under different bias conditions, the repetition rate averages 64.6 GHz with a ± 2.7% variation.

Fig. 6
Fig. 6

Operational map for exciting repetition rates at the 2nd, 5th and 10th harmonics of the multi-section QD MLL as function of gain current and reverse bias voltage on section 22. The reverse bias voltage on section 14 is fixed at 1V.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

m = ( N + 1 ) 2 ± N ( 1 2 1 n )
Ω = R = 1 Q Q ! R ! ( Q ! R ! )

Metrics