Abstract

The efficiency of wavelength conversion by cascaded second harmonic generation / difference frequency generation (cSHG/DFG) in Ti:PPLN waveguides can be considerably improved by using a double-pass configuration. However, due to the wavelength dependent phase change by the dielectric folding mirror phase compensation is required to maintain an optimum power transfer. We experimentally investigated three different approaches and improved the wavelength conversion efficiency up to 9 dB in comparison with the single-pass configuration.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Schreiber, H. Suche, Y. L. Lee, W. Grundkötter, V. Quiring, R. Ricken, and W. Sohler, “Efficient cascaded difference frequency conversion in periodically poled Ti:LiNbO3 waveguides using pulsed and cw pumping,” Appl. Phys. B 73, 501–504 (2001).
  2. H. Hu, H. Suche, R. Ludwig, B. Huettl, C. Schmidt-Langhorst, R. Nouroozi, W. Sohler, and C. Schubert, “Polarization insensitive all-optical wavelength conversion of 320 Gb/s RZ-DQPSK data signals,” in Proceedings of Optical Fiber Communication Conference (OFC)2009, (San Diego, March 2009), paper OThS6.
  3. A. Galvanauskas, K. K. Wong, K. El-Hadi, M. Hofer, M. E. Fermann, D. Harter, M. H. Chou, and M. M. Fejer, “Amplification in the 1.2-1.7 μm communication window using OPA in PPLN waveguides,” Electron. Lett. 35(9), 731–733 (1999).
    [CrossRef]
  4. G. Imeshev, M. Proctor, and M. M. Fejer, “Phase correction in double-pass quasi-phase-matched second-harmonic generation with a wedged crystal,” Opt. Lett. 23(3), 165–167 (1998).
    [CrossRef]
  5. C.-W. Hsu and C. C. Yang, “Using a grating structure for phase compensation in achieving an efficient round-trip optical parametric process in periodically poled lithium niobate with an incomplete quasi-phase-matching period,” Opt. Lett. 24(8), 540–542 (1999).
    [CrossRef]
  6. Y.-C. Huang, K.-W. Chang, Y.-H. Chen, A.-C. Chiang, T.-C. Lin, and B.-C. Wong, “A high-efficiency nonlinear frequency converter with a built-in amplitude modulator,” J. Lightwave Technol. 20(7), 1165–1172 (2002).
    [CrossRef]
  7. J. Buck and R. Trebino, Nonlinear Optics (Wiley-VCH, 2006).

2002 (1)

2001 (1)

G. Schreiber, H. Suche, Y. L. Lee, W. Grundkötter, V. Quiring, R. Ricken, and W. Sohler, “Efficient cascaded difference frequency conversion in periodically poled Ti:LiNbO3 waveguides using pulsed and cw pumping,” Appl. Phys. B 73, 501–504 (2001).

1999 (2)

A. Galvanauskas, K. K. Wong, K. El-Hadi, M. Hofer, M. E. Fermann, D. Harter, M. H. Chou, and M. M. Fejer, “Amplification in the 1.2-1.7 μm communication window using OPA in PPLN waveguides,” Electron. Lett. 35(9), 731–733 (1999).
[CrossRef]

C.-W. Hsu and C. C. Yang, “Using a grating structure for phase compensation in achieving an efficient round-trip optical parametric process in periodically poled lithium niobate with an incomplete quasi-phase-matching period,” Opt. Lett. 24(8), 540–542 (1999).
[CrossRef]

1998 (1)

Chang, K.-W.

Chen, Y.-H.

Chiang, A.-C.

Chou, M. H.

A. Galvanauskas, K. K. Wong, K. El-Hadi, M. Hofer, M. E. Fermann, D. Harter, M. H. Chou, and M. M. Fejer, “Amplification in the 1.2-1.7 μm communication window using OPA in PPLN waveguides,” Electron. Lett. 35(9), 731–733 (1999).
[CrossRef]

El-Hadi, K.

A. Galvanauskas, K. K. Wong, K. El-Hadi, M. Hofer, M. E. Fermann, D. Harter, M. H. Chou, and M. M. Fejer, “Amplification in the 1.2-1.7 μm communication window using OPA in PPLN waveguides,” Electron. Lett. 35(9), 731–733 (1999).
[CrossRef]

Fejer, M. M.

A. Galvanauskas, K. K. Wong, K. El-Hadi, M. Hofer, M. E. Fermann, D. Harter, M. H. Chou, and M. M. Fejer, “Amplification in the 1.2-1.7 μm communication window using OPA in PPLN waveguides,” Electron. Lett. 35(9), 731–733 (1999).
[CrossRef]

G. Imeshev, M. Proctor, and M. M. Fejer, “Phase correction in double-pass quasi-phase-matched second-harmonic generation with a wedged crystal,” Opt. Lett. 23(3), 165–167 (1998).
[CrossRef]

Fermann, M. E.

A. Galvanauskas, K. K. Wong, K. El-Hadi, M. Hofer, M. E. Fermann, D. Harter, M. H. Chou, and M. M. Fejer, “Amplification in the 1.2-1.7 μm communication window using OPA in PPLN waveguides,” Electron. Lett. 35(9), 731–733 (1999).
[CrossRef]

Galvanauskas, A.

A. Galvanauskas, K. K. Wong, K. El-Hadi, M. Hofer, M. E. Fermann, D. Harter, M. H. Chou, and M. M. Fejer, “Amplification in the 1.2-1.7 μm communication window using OPA in PPLN waveguides,” Electron. Lett. 35(9), 731–733 (1999).
[CrossRef]

Grundkötter, W.

G. Schreiber, H. Suche, Y. L. Lee, W. Grundkötter, V. Quiring, R. Ricken, and W. Sohler, “Efficient cascaded difference frequency conversion in periodically poled Ti:LiNbO3 waveguides using pulsed and cw pumping,” Appl. Phys. B 73, 501–504 (2001).

Harter, D.

A. Galvanauskas, K. K. Wong, K. El-Hadi, M. Hofer, M. E. Fermann, D. Harter, M. H. Chou, and M. M. Fejer, “Amplification in the 1.2-1.7 μm communication window using OPA in PPLN waveguides,” Electron. Lett. 35(9), 731–733 (1999).
[CrossRef]

Hofer, M.

A. Galvanauskas, K. K. Wong, K. El-Hadi, M. Hofer, M. E. Fermann, D. Harter, M. H. Chou, and M. M. Fejer, “Amplification in the 1.2-1.7 μm communication window using OPA in PPLN waveguides,” Electron. Lett. 35(9), 731–733 (1999).
[CrossRef]

Hsu, C.-W.

Huang, Y.-C.

Imeshev, G.

Lee, Y. L.

G. Schreiber, H. Suche, Y. L. Lee, W. Grundkötter, V. Quiring, R. Ricken, and W. Sohler, “Efficient cascaded difference frequency conversion in periodically poled Ti:LiNbO3 waveguides using pulsed and cw pumping,” Appl. Phys. B 73, 501–504 (2001).

Lin, T.-C.

Proctor, M.

Quiring, V.

G. Schreiber, H. Suche, Y. L. Lee, W. Grundkötter, V. Quiring, R. Ricken, and W. Sohler, “Efficient cascaded difference frequency conversion in periodically poled Ti:LiNbO3 waveguides using pulsed and cw pumping,” Appl. Phys. B 73, 501–504 (2001).

Ricken, R.

G. Schreiber, H. Suche, Y. L. Lee, W. Grundkötter, V. Quiring, R. Ricken, and W. Sohler, “Efficient cascaded difference frequency conversion in periodically poled Ti:LiNbO3 waveguides using pulsed and cw pumping,” Appl. Phys. B 73, 501–504 (2001).

Schreiber, G.

G. Schreiber, H. Suche, Y. L. Lee, W. Grundkötter, V. Quiring, R. Ricken, and W. Sohler, “Efficient cascaded difference frequency conversion in periodically poled Ti:LiNbO3 waveguides using pulsed and cw pumping,” Appl. Phys. B 73, 501–504 (2001).

Sohler, W.

G. Schreiber, H. Suche, Y. L. Lee, W. Grundkötter, V. Quiring, R. Ricken, and W. Sohler, “Efficient cascaded difference frequency conversion in periodically poled Ti:LiNbO3 waveguides using pulsed and cw pumping,” Appl. Phys. B 73, 501–504 (2001).

Suche, H.

G. Schreiber, H. Suche, Y. L. Lee, W. Grundkötter, V. Quiring, R. Ricken, and W. Sohler, “Efficient cascaded difference frequency conversion in periodically poled Ti:LiNbO3 waveguides using pulsed and cw pumping,” Appl. Phys. B 73, 501–504 (2001).

Wong, B.-C.

Wong, K. K.

A. Galvanauskas, K. K. Wong, K. El-Hadi, M. Hofer, M. E. Fermann, D. Harter, M. H. Chou, and M. M. Fejer, “Amplification in the 1.2-1.7 μm communication window using OPA in PPLN waveguides,” Electron. Lett. 35(9), 731–733 (1999).
[CrossRef]

Yang, C. C.

Appl. Phys. B (1)

G. Schreiber, H. Suche, Y. L. Lee, W. Grundkötter, V. Quiring, R. Ricken, and W. Sohler, “Efficient cascaded difference frequency conversion in periodically poled Ti:LiNbO3 waveguides using pulsed and cw pumping,” Appl. Phys. B 73, 501–504 (2001).

Electron. Lett. (1)

A. Galvanauskas, K. K. Wong, K. El-Hadi, M. Hofer, M. E. Fermann, D. Harter, M. H. Chou, and M. M. Fejer, “Amplification in the 1.2-1.7 μm communication window using OPA in PPLN waveguides,” Electron. Lett. 35(9), 731–733 (1999).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Lett. (2)

Other (2)

J. Buck and R. Trebino, Nonlinear Optics (Wiley-VCH, 2006).

H. Hu, H. Suche, R. Ludwig, B. Huettl, C. Schmidt-Langhorst, R. Nouroozi, W. Sohler, and C. Schubert, “Polarization insensitive all-optical wavelength conversion of 320 Gb/s RZ-DQPSK data signals,” in Proceedings of Optical Fiber Communication Conference (OFC)2009, (San Diego, March 2009), paper OThS6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Left: cSHG/DFG operation principle with fundamental (λf), second harmonic (λsh), signal (λs) and idler (λi) wavelengths. Right: Double-pass configuration with a broadband dielectric mirror deposited on the PPLN waveguide end face.

Fig. 2
Fig. 2

Left: Simulated evolution of cSHG/DFG: power levels versus interaction length for 200 mW of coupled fundamental power. Right: Comparison of calculated cSHG/DFG conversion efficiencies in single- and double-pass devices for 200mW of coupled fundamental power versus device length.

Fig. 3
Fig. 3

Calculated phase shifts Δφf, s, i and Δφsh for fundamental, signal, idler, and second harmonic waves induced by an optimized broadband dielectric mirror versus wavelength in the ~1550 nm (lower scale) and ~775 nm (upper scale) range, respectively.

Fig. 4
Fig. 4

Experimental setup to investigate double-pass cSHG/DFG: ECL - external cavity laser; DFB – distributed feedback laser; PC – fiber optical polarization controller; EDFA - erbium doped fiber amplifier; OSA – optical spectrum analyser; M – dielectric mirrors, deposited on waveguide end face and movable, respectively.

Fig. 5
Fig. 5

Left: Double pass-configuration using two dichroic mirrors. AR – anti reflection coated; HR – high reflection coated. Right: Measured transmission versus wavelength of the mirror deposited on the waveguide end face (blue) and of the external moveable mirror (red).

Fig. 6
Fig. 6

Left: Measured single- and double-pass SHG efficiency versus fundamental wavelength. Right: Measured spectra for single- and double-pass wavelength conversion by cSHG/DFG. Device temperature was 190 °C in both experiments.

Fig. 7
Fig. 7

Left: Operating scheme for higher order approach. Right: Measured transmission of the broadband dielectric mirror deposited on the polished waveguide end face.

Fig. 8
Fig. 8

Left: Measured single- and double-pass SHG efficiencies versus the fundamental wavelength. Right: Measured spectra for single- and double-pass wavelength conversion by cSHG/DFG. Device temperature was 190 °C in both experiments.

Fig. 9
Fig. 9

Left: Schematic drawing of the Ti:PPLN-waveguide sample with a tilted domain grating (L indicates the wedged domain fraction, LC is the width of a complete domain). Right: Measured and calculated double-pass SHG efficiency with respect to the single-pass efficiency for waveguides with different fractions L/LC of the last domain, propagation loss α ~0.1 dB/cm.

Fig. 10
Fig. 10

Left: Measured single- and double-pass SHG-efficiencies versus the fundamental wavelength. Right: Measured spectra for single- and double-pass wavelength conversion by cSHG/DFG. Device temperature was 190 °C in both experiments.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ ϕ S H G + Δ ϕ c o m p     ~ Δ ϕ D F G + Δ ϕ c o m p = m 2 π     w i t h     m = 0 , 1 , 2 , 3 ,     ....

Metrics