Abstract

We report here the field and modal characteristics in photonic crystal (PC) Fano reflectors. Due to the tight field confinement and the compact reflector size, the cavity modes are highly localized and confined inside the single layer Fano reflectors, with the energy penetration depth of only 100nm for a 340 nm thick Fano reflector with a design wavelength of 1550 nm. On the other hand, the phase penetration depths, associated with the phase discontinuity and dispersion properties of the reflectors, vary from 2000 nm to 4000 nm, over the spectral range of 1500 nm to 1580 nm. This unique feature offers us another design freedom of the dispersion engineering for the cavity resonant mode tuning. Additionally, the field distributions are also investigated and compared for the Fabry-Perot cavities formed with PC Fano reflectors, as well conventional DBR reflectors and 1D sub-wavelength grating reflectors. All these characteristics associated with the PC Fano reflectors enable a new type of resonant cavity design for a large range of photonic applications.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Boutami, B. Benbakir, X. Letartre, J. L. Leclercq, P. Regreny, and P. Viktorovitch, “Ultimate vertical Fabry-Perot cavity based on single-layer photonic crystal mirrors,” Opt. Express 15(19), 12443–12449 (2007).
    [CrossRef] [PubMed]
  2. M. Sagawa, S. Goto, K. Hosomi, T. Sugawara, T. Katsuyama, and Y. Arakawa, “40-Gbit/s Operation of Ultracompact Photodetector-Integrated Dispersion Compensator Based on One-Dimensional Photonic Crystals,” Jpn. J. Appl. Phys. 47(8), 6672–6674 (2008).
    [CrossRef]
  3. A. Chutinan, N. P. Kherani, and S. Zukotynski, “High-efficiency photonic crystal solar cell architecture,” Opt. Express 17(11), 8871–8878 (2009).
    [CrossRef] [PubMed]
  4. O. Kilic, M. Digonnet, G. Kino, and O. Solgaard, “External fibre Fabry-Perot acoustic sensor based on a photonic-crystal mirror,” Meas. Sci. Technol. 18(10), 3049–3054 (2007).
    [CrossRef]
  5. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University Press, 2008).
  6. U. Fano, “Effects of Configuration Interaction on Intensities and Phase Shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
    [CrossRef]
  7. R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61(9), 1022 (1992).
    [CrossRef]
  8. S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002).
    [CrossRef]
  9. D. K. Jacob, S. C. Dunn, and M. G. Moharam, “Flat-top narrow-band spectral response obtained from cascaded resonant grating reflection filters,” Appl. Opt. 41(7), 1241–1245 (2002).
    [CrossRef] [PubMed]
  10. S. T. Thurman and G. M. Morris, “Controlling the spectral response in guided-mode resonance filter design,” Appl. Opt. 42(16), 3225–3233 (2003).
    [CrossRef] [PubMed]
  11. C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, “Broadband mirror (1.12-1.62 µm) using single-layer sub-wavelength grating,” IEEE Photon. Technol. Lett. 16(7), 1676–1678 (2004).
    [CrossRef]
  12. W. Suh and S. Fan, “All-pass transmission or flattop reflection filters using a single photonic crystal slab,” Appl. Phys. Lett. 84(24), 4905 (2004).
    [CrossRef]
  13. S. Boutami, B. B. Bakir, H. Hattori, X. Letartre, J.-L. Leclercq, P. Rojo-Rome, M. Garrigues, C. Seassal, and P. Viktorovitch, “Broadband and compact 2-D photonic crystal reflectors with controllable polarization dependence,” IEEE Photon. Technol. Lett. 18(7), 835–837 (2006).
    [CrossRef]
  14. Y. Ding and R. Magnusson, “Resonant leaky-mode spectral-band engineering and device applications,” Opt. Express 12(23), 5661–5674 (2004).
    [CrossRef] [PubMed]
  15. M. L. Wu, Y. C. Lee, C. L. Hsu, Y. C. Liu, and J. Y. Chang, “Experimental and Theoretical demonstration of resonant leaky-mode in grating waveguide structure with a flattened passband,” Jpn. J. Appl. Phys. 46(No. 8B), 5431–5434 (2007).
    [CrossRef]
  16. R. Magnusson and M. Shokooh-Saremi, “Physical basis for wideband resonant reflectors,” Opt. Express 16(5), 3456–3462 (2008).
    [CrossRef] [PubMed]
  17. W. Zhou, Z. Ma, H. Yang, Z. Qiang, G. Qin, H. Pang, L. Chen, W. Yang, S. Chuwongin, and D. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D. 42(23), 234007 (2009).
    [CrossRef]
  18. L. Coldren, and S. Corzine, Diode lasers and photonic integrated circuits, (Wiley New York, 1995).
  19. J. H. Kim, L. Chrostowski, E. Bisaillon, and D. V. Plant, “DBR, Sub-wavelength grating, and Photonic crystal slab Fabry-Perot cavity design using phase analysis by FDTD,” Opt. Express 15(16), 10330–10339 (2007).
    [CrossRef] [PubMed]
  20. D. Babic and S. Corzine, “Analytic expressions for the reflection delay, penetration depth, and absorptance of quarter-wave dielectric mirrors,” IEEE J. Quantum Electron. 28(2), 514–524 (1992).
    [CrossRef]
  21. C. Sauvan, J. Hugonin, and P. Lalanne, “Difference between penetration and damping lengths in photonic crystal mirrors,” Appl. Phys. Lett. 95(21), 211101 (2009).
    [CrossRef]
  22. M. Born, E. Wolf, and A. Bhatia, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light: Cambridge Univ Pr, 1999.

2009 (3)

W. Zhou, Z. Ma, H. Yang, Z. Qiang, G. Qin, H. Pang, L. Chen, W. Yang, S. Chuwongin, and D. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D. 42(23), 234007 (2009).
[CrossRef]

C. Sauvan, J. Hugonin, and P. Lalanne, “Difference between penetration and damping lengths in photonic crystal mirrors,” Appl. Phys. Lett. 95(21), 211101 (2009).
[CrossRef]

A. Chutinan, N. P. Kherani, and S. Zukotynski, “High-efficiency photonic crystal solar cell architecture,” Opt. Express 17(11), 8871–8878 (2009).
[CrossRef] [PubMed]

2008 (2)

R. Magnusson and M. Shokooh-Saremi, “Physical basis for wideband resonant reflectors,” Opt. Express 16(5), 3456–3462 (2008).
[CrossRef] [PubMed]

M. Sagawa, S. Goto, K. Hosomi, T. Sugawara, T. Katsuyama, and Y. Arakawa, “40-Gbit/s Operation of Ultracompact Photodetector-Integrated Dispersion Compensator Based on One-Dimensional Photonic Crystals,” Jpn. J. Appl. Phys. 47(8), 6672–6674 (2008).
[CrossRef]

2007 (4)

M. L. Wu, Y. C. Lee, C. L. Hsu, Y. C. Liu, and J. Y. Chang, “Experimental and Theoretical demonstration of resonant leaky-mode in grating waveguide structure with a flattened passband,” Jpn. J. Appl. Phys. 46(No. 8B), 5431–5434 (2007).
[CrossRef]

O. Kilic, M. Digonnet, G. Kino, and O. Solgaard, “External fibre Fabry-Perot acoustic sensor based on a photonic-crystal mirror,” Meas. Sci. Technol. 18(10), 3049–3054 (2007).
[CrossRef]

J. H. Kim, L. Chrostowski, E. Bisaillon, and D. V. Plant, “DBR, Sub-wavelength grating, and Photonic crystal slab Fabry-Perot cavity design using phase analysis by FDTD,” Opt. Express 15(16), 10330–10339 (2007).
[CrossRef] [PubMed]

S. Boutami, B. Benbakir, X. Letartre, J. L. Leclercq, P. Regreny, and P. Viktorovitch, “Ultimate vertical Fabry-Perot cavity based on single-layer photonic crystal mirrors,” Opt. Express 15(19), 12443–12449 (2007).
[CrossRef] [PubMed]

2006 (1)

S. Boutami, B. B. Bakir, H. Hattori, X. Letartre, J.-L. Leclercq, P. Rojo-Rome, M. Garrigues, C. Seassal, and P. Viktorovitch, “Broadband and compact 2-D photonic crystal reflectors with controllable polarization dependence,” IEEE Photon. Technol. Lett. 18(7), 835–837 (2006).
[CrossRef]

2004 (3)

C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, “Broadband mirror (1.12-1.62 µm) using single-layer sub-wavelength grating,” IEEE Photon. Technol. Lett. 16(7), 1676–1678 (2004).
[CrossRef]

W. Suh and S. Fan, “All-pass transmission or flattop reflection filters using a single photonic crystal slab,” Appl. Phys. Lett. 84(24), 4905 (2004).
[CrossRef]

Y. Ding and R. Magnusson, “Resonant leaky-mode spectral-band engineering and device applications,” Opt. Express 12(23), 5661–5674 (2004).
[CrossRef] [PubMed]

2003 (1)

2002 (2)

1992 (2)

R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61(9), 1022 (1992).
[CrossRef]

D. Babic and S. Corzine, “Analytic expressions for the reflection delay, penetration depth, and absorptance of quarter-wave dielectric mirrors,” IEEE J. Quantum Electron. 28(2), 514–524 (1992).
[CrossRef]

1961 (1)

U. Fano, “Effects of Configuration Interaction on Intensities and Phase Shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[CrossRef]

Arakawa, Y.

M. Sagawa, S. Goto, K. Hosomi, T. Sugawara, T. Katsuyama, and Y. Arakawa, “40-Gbit/s Operation of Ultracompact Photodetector-Integrated Dispersion Compensator Based on One-Dimensional Photonic Crystals,” Jpn. J. Appl. Phys. 47(8), 6672–6674 (2008).
[CrossRef]

Babic, D.

D. Babic and S. Corzine, “Analytic expressions for the reflection delay, penetration depth, and absorptance of quarter-wave dielectric mirrors,” IEEE J. Quantum Electron. 28(2), 514–524 (1992).
[CrossRef]

Bakir, B. B.

S. Boutami, B. B. Bakir, H. Hattori, X. Letartre, J.-L. Leclercq, P. Rojo-Rome, M. Garrigues, C. Seassal, and P. Viktorovitch, “Broadband and compact 2-D photonic crystal reflectors with controllable polarization dependence,” IEEE Photon. Technol. Lett. 18(7), 835–837 (2006).
[CrossRef]

Benbakir, B.

Bisaillon, E.

Boutami, S.

S. Boutami, B. Benbakir, X. Letartre, J. L. Leclercq, P. Regreny, and P. Viktorovitch, “Ultimate vertical Fabry-Perot cavity based on single-layer photonic crystal mirrors,” Opt. Express 15(19), 12443–12449 (2007).
[CrossRef] [PubMed]

S. Boutami, B. B. Bakir, H. Hattori, X. Letartre, J.-L. Leclercq, P. Rojo-Rome, M. Garrigues, C. Seassal, and P. Viktorovitch, “Broadband and compact 2-D photonic crystal reflectors with controllable polarization dependence,” IEEE Photon. Technol. Lett. 18(7), 835–837 (2006).
[CrossRef]

Chang, J. Y.

M. L. Wu, Y. C. Lee, C. L. Hsu, Y. C. Liu, and J. Y. Chang, “Experimental and Theoretical demonstration of resonant leaky-mode in grating waveguide structure with a flattened passband,” Jpn. J. Appl. Phys. 46(No. 8B), 5431–5434 (2007).
[CrossRef]

Chang-Hasnain, C. J.

C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, “Broadband mirror (1.12-1.62 µm) using single-layer sub-wavelength grating,” IEEE Photon. Technol. Lett. 16(7), 1676–1678 (2004).
[CrossRef]

Chen, L.

W. Zhou, Z. Ma, H. Yang, Z. Qiang, G. Qin, H. Pang, L. Chen, W. Yang, S. Chuwongin, and D. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D. 42(23), 234007 (2009).
[CrossRef]

C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, “Broadband mirror (1.12-1.62 µm) using single-layer sub-wavelength grating,” IEEE Photon. Technol. Lett. 16(7), 1676–1678 (2004).
[CrossRef]

Chrostowski, L.

Chutinan, A.

Chuwongin, S.

W. Zhou, Z. Ma, H. Yang, Z. Qiang, G. Qin, H. Pang, L. Chen, W. Yang, S. Chuwongin, and D. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D. 42(23), 234007 (2009).
[CrossRef]

Corzine, S.

D. Babic and S. Corzine, “Analytic expressions for the reflection delay, penetration depth, and absorptance of quarter-wave dielectric mirrors,” IEEE J. Quantum Electron. 28(2), 514–524 (1992).
[CrossRef]

Digonnet, M.

O. Kilic, M. Digonnet, G. Kino, and O. Solgaard, “External fibre Fabry-Perot acoustic sensor based on a photonic-crystal mirror,” Meas. Sci. Technol. 18(10), 3049–3054 (2007).
[CrossRef]

Ding, Y.

Dunn, S. C.

Fan, S.

W. Suh and S. Fan, “All-pass transmission or flattop reflection filters using a single photonic crystal slab,” Appl. Phys. Lett. 84(24), 4905 (2004).
[CrossRef]

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002).
[CrossRef]

Fano, U.

U. Fano, “Effects of Configuration Interaction on Intensities and Phase Shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[CrossRef]

Garrigues, M.

S. Boutami, B. B. Bakir, H. Hattori, X. Letartre, J.-L. Leclercq, P. Rojo-Rome, M. Garrigues, C. Seassal, and P. Viktorovitch, “Broadband and compact 2-D photonic crystal reflectors with controllable polarization dependence,” IEEE Photon. Technol. Lett. 18(7), 835–837 (2006).
[CrossRef]

Goto, S.

M. Sagawa, S. Goto, K. Hosomi, T. Sugawara, T. Katsuyama, and Y. Arakawa, “40-Gbit/s Operation of Ultracompact Photodetector-Integrated Dispersion Compensator Based on One-Dimensional Photonic Crystals,” Jpn. J. Appl. Phys. 47(8), 6672–6674 (2008).
[CrossRef]

Hattori, H.

S. Boutami, B. B. Bakir, H. Hattori, X. Letartre, J.-L. Leclercq, P. Rojo-Rome, M. Garrigues, C. Seassal, and P. Viktorovitch, “Broadband and compact 2-D photonic crystal reflectors with controllable polarization dependence,” IEEE Photon. Technol. Lett. 18(7), 835–837 (2006).
[CrossRef]

Hosomi, K.

M. Sagawa, S. Goto, K. Hosomi, T. Sugawara, T. Katsuyama, and Y. Arakawa, “40-Gbit/s Operation of Ultracompact Photodetector-Integrated Dispersion Compensator Based on One-Dimensional Photonic Crystals,” Jpn. J. Appl. Phys. 47(8), 6672–6674 (2008).
[CrossRef]

Hsu, C. L.

M. L. Wu, Y. C. Lee, C. L. Hsu, Y. C. Liu, and J. Y. Chang, “Experimental and Theoretical demonstration of resonant leaky-mode in grating waveguide structure with a flattened passband,” Jpn. J. Appl. Phys. 46(No. 8B), 5431–5434 (2007).
[CrossRef]

Huang, M. C. Y.

C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, “Broadband mirror (1.12-1.62 µm) using single-layer sub-wavelength grating,” IEEE Photon. Technol. Lett. 16(7), 1676–1678 (2004).
[CrossRef]

Hugonin, J.

C. Sauvan, J. Hugonin, and P. Lalanne, “Difference between penetration and damping lengths in photonic crystal mirrors,” Appl. Phys. Lett. 95(21), 211101 (2009).
[CrossRef]

Jacob, D. K.

Joannopoulos, J. D.

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002).
[CrossRef]

Katsuyama, T.

M. Sagawa, S. Goto, K. Hosomi, T. Sugawara, T. Katsuyama, and Y. Arakawa, “40-Gbit/s Operation of Ultracompact Photodetector-Integrated Dispersion Compensator Based on One-Dimensional Photonic Crystals,” Jpn. J. Appl. Phys. 47(8), 6672–6674 (2008).
[CrossRef]

Kherani, N. P.

Kilic, O.

O. Kilic, M. Digonnet, G. Kino, and O. Solgaard, “External fibre Fabry-Perot acoustic sensor based on a photonic-crystal mirror,” Meas. Sci. Technol. 18(10), 3049–3054 (2007).
[CrossRef]

Kim, J. H.

Kino, G.

O. Kilic, M. Digonnet, G. Kino, and O. Solgaard, “External fibre Fabry-Perot acoustic sensor based on a photonic-crystal mirror,” Meas. Sci. Technol. 18(10), 3049–3054 (2007).
[CrossRef]

Lalanne, P.

C. Sauvan, J. Hugonin, and P. Lalanne, “Difference between penetration and damping lengths in photonic crystal mirrors,” Appl. Phys. Lett. 95(21), 211101 (2009).
[CrossRef]

Leclercq, J. L.

Leclercq, J.-L.

S. Boutami, B. B. Bakir, H. Hattori, X. Letartre, J.-L. Leclercq, P. Rojo-Rome, M. Garrigues, C. Seassal, and P. Viktorovitch, “Broadband and compact 2-D photonic crystal reflectors with controllable polarization dependence,” IEEE Photon. Technol. Lett. 18(7), 835–837 (2006).
[CrossRef]

Lee, Y. C.

M. L. Wu, Y. C. Lee, C. L. Hsu, Y. C. Liu, and J. Y. Chang, “Experimental and Theoretical demonstration of resonant leaky-mode in grating waveguide structure with a flattened passband,” Jpn. J. Appl. Phys. 46(No. 8B), 5431–5434 (2007).
[CrossRef]

Letartre, X.

S. Boutami, B. Benbakir, X. Letartre, J. L. Leclercq, P. Regreny, and P. Viktorovitch, “Ultimate vertical Fabry-Perot cavity based on single-layer photonic crystal mirrors,” Opt. Express 15(19), 12443–12449 (2007).
[CrossRef] [PubMed]

S. Boutami, B. B. Bakir, H. Hattori, X. Letartre, J.-L. Leclercq, P. Rojo-Rome, M. Garrigues, C. Seassal, and P. Viktorovitch, “Broadband and compact 2-D photonic crystal reflectors with controllable polarization dependence,” IEEE Photon. Technol. Lett. 18(7), 835–837 (2006).
[CrossRef]

Liu, Y. C.

M. L. Wu, Y. C. Lee, C. L. Hsu, Y. C. Liu, and J. Y. Chang, “Experimental and Theoretical demonstration of resonant leaky-mode in grating waveguide structure with a flattened passband,” Jpn. J. Appl. Phys. 46(No. 8B), 5431–5434 (2007).
[CrossRef]

Ma, Z.

W. Zhou, Z. Ma, H. Yang, Z. Qiang, G. Qin, H. Pang, L. Chen, W. Yang, S. Chuwongin, and D. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D. 42(23), 234007 (2009).
[CrossRef]

Magnusson, R.

Mateus, C. F. R.

C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, “Broadband mirror (1.12-1.62 µm) using single-layer sub-wavelength grating,” IEEE Photon. Technol. Lett. 16(7), 1676–1678 (2004).
[CrossRef]

Moharam, M. G.

Morris, G. M.

Pang, H.

W. Zhou, Z. Ma, H. Yang, Z. Qiang, G. Qin, H. Pang, L. Chen, W. Yang, S. Chuwongin, and D. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D. 42(23), 234007 (2009).
[CrossRef]

Plant, D. V.

Qiang, Z.

W. Zhou, Z. Ma, H. Yang, Z. Qiang, G. Qin, H. Pang, L. Chen, W. Yang, S. Chuwongin, and D. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D. 42(23), 234007 (2009).
[CrossRef]

Qin, G.

W. Zhou, Z. Ma, H. Yang, Z. Qiang, G. Qin, H. Pang, L. Chen, W. Yang, S. Chuwongin, and D. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D. 42(23), 234007 (2009).
[CrossRef]

Regreny, P.

Rojo-Rome, P.

S. Boutami, B. B. Bakir, H. Hattori, X. Letartre, J.-L. Leclercq, P. Rojo-Rome, M. Garrigues, C. Seassal, and P. Viktorovitch, “Broadband and compact 2-D photonic crystal reflectors with controllable polarization dependence,” IEEE Photon. Technol. Lett. 18(7), 835–837 (2006).
[CrossRef]

Sagawa, M.

M. Sagawa, S. Goto, K. Hosomi, T. Sugawara, T. Katsuyama, and Y. Arakawa, “40-Gbit/s Operation of Ultracompact Photodetector-Integrated Dispersion Compensator Based on One-Dimensional Photonic Crystals,” Jpn. J. Appl. Phys. 47(8), 6672–6674 (2008).
[CrossRef]

Sauvan, C.

C. Sauvan, J. Hugonin, and P. Lalanne, “Difference between penetration and damping lengths in photonic crystal mirrors,” Appl. Phys. Lett. 95(21), 211101 (2009).
[CrossRef]

Seassal, C.

S. Boutami, B. B. Bakir, H. Hattori, X. Letartre, J.-L. Leclercq, P. Rojo-Rome, M. Garrigues, C. Seassal, and P. Viktorovitch, “Broadband and compact 2-D photonic crystal reflectors with controllable polarization dependence,” IEEE Photon. Technol. Lett. 18(7), 835–837 (2006).
[CrossRef]

Shokooh-Saremi, M.

Solgaard, O.

O. Kilic, M. Digonnet, G. Kino, and O. Solgaard, “External fibre Fabry-Perot acoustic sensor based on a photonic-crystal mirror,” Meas. Sci. Technol. 18(10), 3049–3054 (2007).
[CrossRef]

Sugawara, T.

M. Sagawa, S. Goto, K. Hosomi, T. Sugawara, T. Katsuyama, and Y. Arakawa, “40-Gbit/s Operation of Ultracompact Photodetector-Integrated Dispersion Compensator Based on One-Dimensional Photonic Crystals,” Jpn. J. Appl. Phys. 47(8), 6672–6674 (2008).
[CrossRef]

Suh, W.

W. Suh and S. Fan, “All-pass transmission or flattop reflection filters using a single photonic crystal slab,” Appl. Phys. Lett. 84(24), 4905 (2004).
[CrossRef]

Suzuki, Y.

C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, “Broadband mirror (1.12-1.62 µm) using single-layer sub-wavelength grating,” IEEE Photon. Technol. Lett. 16(7), 1676–1678 (2004).
[CrossRef]

Thurman, S. T.

Viktorovitch, P.

S. Boutami, B. Benbakir, X. Letartre, J. L. Leclercq, P. Regreny, and P. Viktorovitch, “Ultimate vertical Fabry-Perot cavity based on single-layer photonic crystal mirrors,” Opt. Express 15(19), 12443–12449 (2007).
[CrossRef] [PubMed]

S. Boutami, B. B. Bakir, H. Hattori, X. Letartre, J.-L. Leclercq, P. Rojo-Rome, M. Garrigues, C. Seassal, and P. Viktorovitch, “Broadband and compact 2-D photonic crystal reflectors with controllable polarization dependence,” IEEE Photon. Technol. Lett. 18(7), 835–837 (2006).
[CrossRef]

Wang, S. S.

R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61(9), 1022 (1992).
[CrossRef]

Wu, M. L.

M. L. Wu, Y. C. Lee, C. L. Hsu, Y. C. Liu, and J. Y. Chang, “Experimental and Theoretical demonstration of resonant leaky-mode in grating waveguide structure with a flattened passband,” Jpn. J. Appl. Phys. 46(No. 8B), 5431–5434 (2007).
[CrossRef]

Yang, H.

W. Zhou, Z. Ma, H. Yang, Z. Qiang, G. Qin, H. Pang, L. Chen, W. Yang, S. Chuwongin, and D. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D. 42(23), 234007 (2009).
[CrossRef]

Yang, W.

W. Zhou, Z. Ma, H. Yang, Z. Qiang, G. Qin, H. Pang, L. Chen, W. Yang, S. Chuwongin, and D. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D. 42(23), 234007 (2009).
[CrossRef]

Zhao, D.

W. Zhou, Z. Ma, H. Yang, Z. Qiang, G. Qin, H. Pang, L. Chen, W. Yang, S. Chuwongin, and D. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D. 42(23), 234007 (2009).
[CrossRef]

Zhou, W.

W. Zhou, Z. Ma, H. Yang, Z. Qiang, G. Qin, H. Pang, L. Chen, W. Yang, S. Chuwongin, and D. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D. 42(23), 234007 (2009).
[CrossRef]

Zukotynski, S.

Appl. Opt. (2)

Appl. Phys. Lett. (3)

R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61(9), 1022 (1992).
[CrossRef]

W. Suh and S. Fan, “All-pass transmission or flattop reflection filters using a single photonic crystal slab,” Appl. Phys. Lett. 84(24), 4905 (2004).
[CrossRef]

C. Sauvan, J. Hugonin, and P. Lalanne, “Difference between penetration and damping lengths in photonic crystal mirrors,” Appl. Phys. Lett. 95(21), 211101 (2009).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. Babic and S. Corzine, “Analytic expressions for the reflection delay, penetration depth, and absorptance of quarter-wave dielectric mirrors,” IEEE J. Quantum Electron. 28(2), 514–524 (1992).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

S. Boutami, B. B. Bakir, H. Hattori, X. Letartre, J.-L. Leclercq, P. Rojo-Rome, M. Garrigues, C. Seassal, and P. Viktorovitch, “Broadband and compact 2-D photonic crystal reflectors with controllable polarization dependence,” IEEE Photon. Technol. Lett. 18(7), 835–837 (2006).
[CrossRef]

C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, “Broadband mirror (1.12-1.62 µm) using single-layer sub-wavelength grating,” IEEE Photon. Technol. Lett. 16(7), 1676–1678 (2004).
[CrossRef]

J. Phys. D. (1)

W. Zhou, Z. Ma, H. Yang, Z. Qiang, G. Qin, H. Pang, L. Chen, W. Yang, S. Chuwongin, and D. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D. 42(23), 234007 (2009).
[CrossRef]

Jpn. J. Appl. Phys. (2)

M. Sagawa, S. Goto, K. Hosomi, T. Sugawara, T. Katsuyama, and Y. Arakawa, “40-Gbit/s Operation of Ultracompact Photodetector-Integrated Dispersion Compensator Based on One-Dimensional Photonic Crystals,” Jpn. J. Appl. Phys. 47(8), 6672–6674 (2008).
[CrossRef]

M. L. Wu, Y. C. Lee, C. L. Hsu, Y. C. Liu, and J. Y. Chang, “Experimental and Theoretical demonstration of resonant leaky-mode in grating waveguide structure with a flattened passband,” Jpn. J. Appl. Phys. 46(No. 8B), 5431–5434 (2007).
[CrossRef]

Meas. Sci. Technol. (1)

O. Kilic, M. Digonnet, G. Kino, and O. Solgaard, “External fibre Fabry-Perot acoustic sensor based on a photonic-crystal mirror,” Meas. Sci. Technol. 18(10), 3049–3054 (2007).
[CrossRef]

Opt. Express (5)

Phys. Rev. (1)

U. Fano, “Effects of Configuration Interaction on Intensities and Phase Shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[CrossRef]

Phys. Rev. B (1)

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002).
[CrossRef]

Other (3)

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University Press, 2008).

L. Coldren, and S. Corzine, Diode lasers and photonic integrated circuits, (Wiley New York, 1995).

M. Born, E. Wolf, and A. Bhatia, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light: Cambridge Univ Pr, 1999.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Sketches of different dielectric reflectors and the corresponding Fabry-Perot cavities: (a) cross section (xz plane) of Cavity I consisting of top and bottom reflectors based on 1D single Si-layer sub-wavelength grating (SWG) with the same pattern parameters; (b) overview of Cavity II consisting of top and bottom mirrors based on 2D PCS patterns with a square air holes lattice; (c) cross section (xz plane) of Cavity III consisting of top and bottom mirrors based on 4-pairs of Si/SiO2 (0.11/0.27μm) DBR stacked layers.

Fig. 2
Fig. 2

Calculated reflection R (blue solid and black dash lines) and phase shift Φr (red dash-dot and green dot lines) spectra of top and bottom (a) DBR reflectors, (b) 1D SWG reflectors and (c) 2D PCS reflectors.

Fig. 3
Fig. 3

(a) The phase penetration depths for three types of bottom reflectors; (b) Reflected field at λ = 1.540μm changes as function of time, for 1D SWG reflectors (top), 2D PCS reflectors (middle), and DBR reflectors (bottom).

Fig. 4
Fig. 4

The energy penetration depths for three types of bottom reflectors.

Fig. 5
Fig. 5

Field intensity distributions of the resonant modes inside the cavities (a) Cavity III with Lc3 = 5.4μm, (b) Cavity I with Lc1 = 5.4μm, and (c) Cavity II with Lc2 = 5.2μm, and (d) Cavity II with Lc2 = 5.4μm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

L p = 1 2 v g τ = v g 2 Φ r ω ,
T = 1 R = exp ( h L e ) ,
L e = m eff 2 ( λ 4 n 1 + λ 4 n 2 ) ,

Metrics