Abstract

We report the use of quasi-phase-matching techniques based on periodically-poled MgO:LiNbO3 for the generation of nanosecond duration pulses of terahertz radiation in intracavity optical parametric oscillators. Multiple idler-waves are generated with temporal studies indicating that the initiating process is the expected parametric down-conversion, but followed by cascaded difference frequency generation. A number of grating geometries have been explored, revealing the presence of dual solutions for the quasi-phase-matching process in the general case. Choice of grating parameters so as to minimize oscillation threshold while simultaneously ensuring effective extraction of the THz radiation is considered.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. K. Kitaeva, “Terahertz generation by means of optical lasers,” Laser Phys. Lett. 5(8), 559–576 (2008).
    [CrossRef]
  2. H. E. Puthoff, R. H. Pantell, B. G. Huth, and M. A. Chacon, “Near-Forward Raman Scattering in LiNbO3,” J. Appl. Phys. 39(4), 2144–2146 (1968).
    [CrossRef]
  3. J. M. Yarborough, S. S. Sussman, H. E. Puthoff, R. H. Pantell, and B. C. Johnson, “Efficient, Tunable Optical Emission from LiNbO3 without a Resonator,” Appl. Phys. Lett. 15(3), 102–105 (1969).
    [CrossRef]
  4. M. A. Piestrup, R. N. Fleming, and R. H. Pantell, “Continuously tunable submillimeter wave source,” Appl. Phys. Lett. 26(8), 418–421 (1975).
    [CrossRef]
  5. K. Kawase, M. Sato, T. Taniuchi, and H. Ito, “Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler,” Appl. Phys. Lett. 68(18), 2483–2485 (1996).
    [CrossRef]
  6. J. Shikata, K. Kawase, K. Karino, T. Taniuchi, and H. Ito, “Tunable terahertz-wave parametric oscillators using LiNbO3 and MgO:LiNbO3 crystals,” IEEE Trans. Microw. Theory Tech. 48(4), 653–661 (2000).
    [CrossRef]
  7. K. Imai, K. Kawase, J.-i. Shikata, H. Minamide, and H. Ito, “Injection-seeded terahertz-wave parametric oscillator,” Appl. Phys. Lett. 78(8), 1026–1028 (2001).
    [CrossRef]
  8. K. Kawase, J.-i. Shikata, H. Minamide, K. Imai, and H. Ito, “Arrayed silicon prism coupler for a terahertz-wave parametric oscillator,” Appl. Opt. 40(9), 1423–1426 (2001).
    [CrossRef]
  9. K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, “Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express 11(20), 2549–2554 (2003).
    [CrossRef] [PubMed]
  10. S. Hayashi, H. Minamide, T. Ikari, Y. Ogawa, J.-i. Shikata, H. Ito, C. Otani, and K. Kawase, “Output power enhancement of a palmtop terahertz-wave parametric generator,” Appl. Opt. 46(1), 117–123 (2007).
    [CrossRef]
  11. S. Hayashi, T. Shibuya, H. Sakai, H. Kan, T. Taira, Y. Ogawa, C. Otani, and K. Kawase, “Tunable Terahertz-Wave Parametric Generation Pumped by Microchip Nd:YAG Laser,” in Advanced Solid-State Photonics(Optical Society of America, 2008), p. MC30.
  12. T. Edwards, D. Walsh, M. Spurr, C. Rae, M. Dunn, and P. Browne, “Compact source of continuously and widely-tunable terahertz radiation,” Opt. Express 14(4), 1582–1589 (2006).
    [CrossRef] [PubMed]
  13. D. J. M. Stothard, T. J. Edwards, D. Walsh, C. L. Thomson, C. F. Rae, M. H. Dunn, and P. G. Browne, “Line-narrowed, compact, and coherent source of widely tunable terahertz radiation,” Appl. Phys. Lett. 92(14), 141105 (2008).
    [CrossRef]
  14. D. Walsh, D. J. M. Stothard, T. J. Edwards, P. G. Browne, C. F. Rae, and M. H. Dunn, “Injection-seeded intracavity terahertz optical parametric oscillator,” J. Opt. Soc. Am. B 26(6), 1196–1202 (2009).
    [CrossRef]
  15. J. A. L’huillier, G. Torosyan, M. Theuer, Y. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate – Part 1: Theory,” Appl. Phys. B 86(2), 185–196 (2007).
    [CrossRef]
  16. J. A. L’huillier, G. Torosyan, M. Theuer, C. Rau, Y. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate – Part 2: Experiments,” Appl. Phys. B 86(2), 197–208 (2007).
    [CrossRef]
  17. C. Weiss, G. Torosyan, Y. Avetisyan, and R. Beigang, “Generation of tunable narrow-band surface-emitted terahertz radiation in periodically poled lithium niobate,” Opt. Lett. 26(8), 563–565 (2001).
    [CrossRef]
  18. C. Weiss, G. Torosyan, J.-P. Meyn, R. Wallenstein, R. Beigang, and Y. Avetisyan, “Tuning characteristics of narrowband THz radiation generated via optical rectification in periodically poled lithium niobate,” Opt. Express 8(9), 497–502 (2001).
    [CrossRef] [PubMed]
  19. Y. Sasaki, A. Yuri, K. Kawase, and H. Ito, “Terahertz-wave surface-emitted difference frequency generation in slant-stripe-type periodically poled LiNbO3 crystal,” Appl. Phys. Lett. 81(18), 3323–3325 (2002).
    [CrossRef]
  20. K. Suizu, Y. Suzuki, Y. Sasaki, H. Ito, and Y. Avetisyan, “Surface-emitted terahertz-wave generation by ridged periodically poled lithium niobate and enhancement by mixing of two terahertz waves,” Opt. Lett. 31(7), 957–959 (2006).
    [CrossRef] [PubMed]
  21. K. L. Vodopyanov, “Optical THz-wave generation with periodically-inverted GaAs,” Laser Photonics Rev. 2(1-2), 11–25 (2008).
    [CrossRef]
  22. D. Molter, M. Theuer, and R. Beigang, “Nanosecond terahertz optical parametric oscillator with a novel quasi phase matching scheme in lithium niobate,” Opt. Express 17(8), 6623–6628 (2009).
    [CrossRef] [PubMed]
  23. D. Stothard, C. F. Rae, and M. H. Dunn, “An Intracavity Optical Parametric Oscillator With Very High Repetition Rate and Broad Tunability Based Upon Room Temperature Periodically Poled MgO:LiNbO3 With Fanned Grating Design,” IEEE J. Quantum Electron. 45(3), 256–263 (2009).
    [CrossRef]
  24. D. J. Stothard, J. M. Hopkins, D. Burns, and M. H. Dunn, “Stable, continuous-wave, intracavity, optical parametric oscillator pumped by a semiconductor disk laser (VECSEL),” Opt. Express 17(13), 10648–10658 (2009).
    [CrossRef] [PubMed]
  25. D. E. Zelmon, D. L. Small, and D. Jundt, “Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol.% magnesium oxide doped lithium niobate,” J. Opt. Soc. Am. B 14(12), 3319–3322 (1997).
    [CrossRef]
  26. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press Inc. London, 1985).

2009 (4)

2008 (3)

K. L. Vodopyanov, “Optical THz-wave generation with periodically-inverted GaAs,” Laser Photonics Rev. 2(1-2), 11–25 (2008).
[CrossRef]

D. J. M. Stothard, T. J. Edwards, D. Walsh, C. L. Thomson, C. F. Rae, M. H. Dunn, and P. G. Browne, “Line-narrowed, compact, and coherent source of widely tunable terahertz radiation,” Appl. Phys. Lett. 92(14), 141105 (2008).
[CrossRef]

G. K. Kitaeva, “Terahertz generation by means of optical lasers,” Laser Phys. Lett. 5(8), 559–576 (2008).
[CrossRef]

2007 (3)

S. Hayashi, H. Minamide, T. Ikari, Y. Ogawa, J.-i. Shikata, H. Ito, C. Otani, and K. Kawase, “Output power enhancement of a palmtop terahertz-wave parametric generator,” Appl. Opt. 46(1), 117–123 (2007).
[CrossRef]

J. A. L’huillier, G. Torosyan, M. Theuer, Y. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate – Part 1: Theory,” Appl. Phys. B 86(2), 185–196 (2007).
[CrossRef]

J. A. L’huillier, G. Torosyan, M. Theuer, C. Rau, Y. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate – Part 2: Experiments,” Appl. Phys. B 86(2), 197–208 (2007).
[CrossRef]

2006 (2)

2003 (1)

2002 (1)

Y. Sasaki, A. Yuri, K. Kawase, and H. Ito, “Terahertz-wave surface-emitted difference frequency generation in slant-stripe-type periodically poled LiNbO3 crystal,” Appl. Phys. Lett. 81(18), 3323–3325 (2002).
[CrossRef]

2001 (4)

2000 (1)

J. Shikata, K. Kawase, K. Karino, T. Taniuchi, and H. Ito, “Tunable terahertz-wave parametric oscillators using LiNbO3 and MgO:LiNbO3 crystals,” IEEE Trans. Microw. Theory Tech. 48(4), 653–661 (2000).
[CrossRef]

1997 (1)

1996 (1)

K. Kawase, M. Sato, T. Taniuchi, and H. Ito, “Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler,” Appl. Phys. Lett. 68(18), 2483–2485 (1996).
[CrossRef]

1975 (1)

M. A. Piestrup, R. N. Fleming, and R. H. Pantell, “Continuously tunable submillimeter wave source,” Appl. Phys. Lett. 26(8), 418–421 (1975).
[CrossRef]

1969 (1)

J. M. Yarborough, S. S. Sussman, H. E. Puthoff, R. H. Pantell, and B. C. Johnson, “Efficient, Tunable Optical Emission from LiNbO3 without a Resonator,” Appl. Phys. Lett. 15(3), 102–105 (1969).
[CrossRef]

1968 (1)

H. E. Puthoff, R. H. Pantell, B. G. Huth, and M. A. Chacon, “Near-Forward Raman Scattering in LiNbO3,” J. Appl. Phys. 39(4), 2144–2146 (1968).
[CrossRef]

Avetisyan, Y.

Beigang, R.

Browne, P.

Browne, P. G.

D. Walsh, D. J. M. Stothard, T. J. Edwards, P. G. Browne, C. F. Rae, and M. H. Dunn, “Injection-seeded intracavity terahertz optical parametric oscillator,” J. Opt. Soc. Am. B 26(6), 1196–1202 (2009).
[CrossRef]

D. J. M. Stothard, T. J. Edwards, D. Walsh, C. L. Thomson, C. F. Rae, M. H. Dunn, and P. G. Browne, “Line-narrowed, compact, and coherent source of widely tunable terahertz radiation,” Appl. Phys. Lett. 92(14), 141105 (2008).
[CrossRef]

Burns, D.

Chacon, M. A.

H. E. Puthoff, R. H. Pantell, B. G. Huth, and M. A. Chacon, “Near-Forward Raman Scattering in LiNbO3,” J. Appl. Phys. 39(4), 2144–2146 (1968).
[CrossRef]

Dunn, M.

Dunn, M. H.

D. Walsh, D. J. M. Stothard, T. J. Edwards, P. G. Browne, C. F. Rae, and M. H. Dunn, “Injection-seeded intracavity terahertz optical parametric oscillator,” J. Opt. Soc. Am. B 26(6), 1196–1202 (2009).
[CrossRef]

D. J. Stothard, J. M. Hopkins, D. Burns, and M. H. Dunn, “Stable, continuous-wave, intracavity, optical parametric oscillator pumped by a semiconductor disk laser (VECSEL),” Opt. Express 17(13), 10648–10658 (2009).
[CrossRef] [PubMed]

D. Stothard, C. F. Rae, and M. H. Dunn, “An Intracavity Optical Parametric Oscillator With Very High Repetition Rate and Broad Tunability Based Upon Room Temperature Periodically Poled MgO:LiNbO3 With Fanned Grating Design,” IEEE J. Quantum Electron. 45(3), 256–263 (2009).
[CrossRef]

D. J. M. Stothard, T. J. Edwards, D. Walsh, C. L. Thomson, C. F. Rae, M. H. Dunn, and P. G. Browne, “Line-narrowed, compact, and coherent source of widely tunable terahertz radiation,” Appl. Phys. Lett. 92(14), 141105 (2008).
[CrossRef]

Edwards, T.

Edwards, T. J.

D. Walsh, D. J. M. Stothard, T. J. Edwards, P. G. Browne, C. F. Rae, and M. H. Dunn, “Injection-seeded intracavity terahertz optical parametric oscillator,” J. Opt. Soc. Am. B 26(6), 1196–1202 (2009).
[CrossRef]

D. J. M. Stothard, T. J. Edwards, D. Walsh, C. L. Thomson, C. F. Rae, M. H. Dunn, and P. G. Browne, “Line-narrowed, compact, and coherent source of widely tunable terahertz radiation,” Appl. Phys. Lett. 92(14), 141105 (2008).
[CrossRef]

Fleming, R. N.

M. A. Piestrup, R. N. Fleming, and R. H. Pantell, “Continuously tunable submillimeter wave source,” Appl. Phys. Lett. 26(8), 418–421 (1975).
[CrossRef]

Hayashi, S.

Hopkins, J. M.

Huth, B. G.

H. E. Puthoff, R. H. Pantell, B. G. Huth, and M. A. Chacon, “Near-Forward Raman Scattering in LiNbO3,” J. Appl. Phys. 39(4), 2144–2146 (1968).
[CrossRef]

Ikari, T.

Imai, K.

K. Imai, K. Kawase, J.-i. Shikata, H. Minamide, and H. Ito, “Injection-seeded terahertz-wave parametric oscillator,” Appl. Phys. Lett. 78(8), 1026–1028 (2001).
[CrossRef]

K. Kawase, J.-i. Shikata, H. Minamide, K. Imai, and H. Ito, “Arrayed silicon prism coupler for a terahertz-wave parametric oscillator,” Appl. Opt. 40(9), 1423–1426 (2001).
[CrossRef]

Inoue, H.

Ito, H.

S. Hayashi, H. Minamide, T. Ikari, Y. Ogawa, J.-i. Shikata, H. Ito, C. Otani, and K. Kawase, “Output power enhancement of a palmtop terahertz-wave parametric generator,” Appl. Opt. 46(1), 117–123 (2007).
[CrossRef]

K. Suizu, Y. Suzuki, Y. Sasaki, H. Ito, and Y. Avetisyan, “Surface-emitted terahertz-wave generation by ridged periodically poled lithium niobate and enhancement by mixing of two terahertz waves,” Opt. Lett. 31(7), 957–959 (2006).
[CrossRef] [PubMed]

Y. Sasaki, A. Yuri, K. Kawase, and H. Ito, “Terahertz-wave surface-emitted difference frequency generation in slant-stripe-type periodically poled LiNbO3 crystal,” Appl. Phys. Lett. 81(18), 3323–3325 (2002).
[CrossRef]

K. Imai, K. Kawase, J.-i. Shikata, H. Minamide, and H. Ito, “Injection-seeded terahertz-wave parametric oscillator,” Appl. Phys. Lett. 78(8), 1026–1028 (2001).
[CrossRef]

K. Kawase, J.-i. Shikata, H. Minamide, K. Imai, and H. Ito, “Arrayed silicon prism coupler for a terahertz-wave parametric oscillator,” Appl. Opt. 40(9), 1423–1426 (2001).
[CrossRef]

J. Shikata, K. Kawase, K. Karino, T. Taniuchi, and H. Ito, “Tunable terahertz-wave parametric oscillators using LiNbO3 and MgO:LiNbO3 crystals,” IEEE Trans. Microw. Theory Tech. 48(4), 653–661 (2000).
[CrossRef]

K. Kawase, M. Sato, T. Taniuchi, and H. Ito, “Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler,” Appl. Phys. Lett. 68(18), 2483–2485 (1996).
[CrossRef]

Johnson, B. C.

J. M. Yarborough, S. S. Sussman, H. E. Puthoff, R. H. Pantell, and B. C. Johnson, “Efficient, Tunable Optical Emission from LiNbO3 without a Resonator,” Appl. Phys. Lett. 15(3), 102–105 (1969).
[CrossRef]

Jundt, D.

Karino, K.

J. Shikata, K. Kawase, K. Karino, T. Taniuchi, and H. Ito, “Tunable terahertz-wave parametric oscillators using LiNbO3 and MgO:LiNbO3 crystals,” IEEE Trans. Microw. Theory Tech. 48(4), 653–661 (2000).
[CrossRef]

Kawase, K.

S. Hayashi, H. Minamide, T. Ikari, Y. Ogawa, J.-i. Shikata, H. Ito, C. Otani, and K. Kawase, “Output power enhancement of a palmtop terahertz-wave parametric generator,” Appl. Opt. 46(1), 117–123 (2007).
[CrossRef]

K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, “Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express 11(20), 2549–2554 (2003).
[CrossRef] [PubMed]

Y. Sasaki, A. Yuri, K. Kawase, and H. Ito, “Terahertz-wave surface-emitted difference frequency generation in slant-stripe-type periodically poled LiNbO3 crystal,” Appl. Phys. Lett. 81(18), 3323–3325 (2002).
[CrossRef]

K. Kawase, J.-i. Shikata, H. Minamide, K. Imai, and H. Ito, “Arrayed silicon prism coupler for a terahertz-wave parametric oscillator,” Appl. Opt. 40(9), 1423–1426 (2001).
[CrossRef]

K. Imai, K. Kawase, J.-i. Shikata, H. Minamide, and H. Ito, “Injection-seeded terahertz-wave parametric oscillator,” Appl. Phys. Lett. 78(8), 1026–1028 (2001).
[CrossRef]

J. Shikata, K. Kawase, K. Karino, T. Taniuchi, and H. Ito, “Tunable terahertz-wave parametric oscillators using LiNbO3 and MgO:LiNbO3 crystals,” IEEE Trans. Microw. Theory Tech. 48(4), 653–661 (2000).
[CrossRef]

K. Kawase, M. Sato, T. Taniuchi, and H. Ito, “Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler,” Appl. Phys. Lett. 68(18), 2483–2485 (1996).
[CrossRef]

Kitaeva, G. K.

G. K. Kitaeva, “Terahertz generation by means of optical lasers,” Laser Phys. Lett. 5(8), 559–576 (2008).
[CrossRef]

L’huillier, J. A.

J. A. L’huillier, G. Torosyan, M. Theuer, Y. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate – Part 1: Theory,” Appl. Phys. B 86(2), 185–196 (2007).
[CrossRef]

J. A. L’huillier, G. Torosyan, M. Theuer, C. Rau, Y. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate – Part 2: Experiments,” Appl. Phys. B 86(2), 197–208 (2007).
[CrossRef]

Meyn, J.-P.

Minamide, H.

Molter, D.

Ogawa, Y.

Otani, C.

Pantell, R. H.

M. A. Piestrup, R. N. Fleming, and R. H. Pantell, “Continuously tunable submillimeter wave source,” Appl. Phys. Lett. 26(8), 418–421 (1975).
[CrossRef]

J. M. Yarborough, S. S. Sussman, H. E. Puthoff, R. H. Pantell, and B. C. Johnson, “Efficient, Tunable Optical Emission from LiNbO3 without a Resonator,” Appl. Phys. Lett. 15(3), 102–105 (1969).
[CrossRef]

H. E. Puthoff, R. H. Pantell, B. G. Huth, and M. A. Chacon, “Near-Forward Raman Scattering in LiNbO3,” J. Appl. Phys. 39(4), 2144–2146 (1968).
[CrossRef]

Piestrup, M. A.

M. A. Piestrup, R. N. Fleming, and R. H. Pantell, “Continuously tunable submillimeter wave source,” Appl. Phys. Lett. 26(8), 418–421 (1975).
[CrossRef]

Puthoff, H. E.

J. M. Yarborough, S. S. Sussman, H. E. Puthoff, R. H. Pantell, and B. C. Johnson, “Efficient, Tunable Optical Emission from LiNbO3 without a Resonator,” Appl. Phys. Lett. 15(3), 102–105 (1969).
[CrossRef]

H. E. Puthoff, R. H. Pantell, B. G. Huth, and M. A. Chacon, “Near-Forward Raman Scattering in LiNbO3,” J. Appl. Phys. 39(4), 2144–2146 (1968).
[CrossRef]

Rae, C.

Rae, C. F.

D. Walsh, D. J. M. Stothard, T. J. Edwards, P. G. Browne, C. F. Rae, and M. H. Dunn, “Injection-seeded intracavity terahertz optical parametric oscillator,” J. Opt. Soc. Am. B 26(6), 1196–1202 (2009).
[CrossRef]

D. Stothard, C. F. Rae, and M. H. Dunn, “An Intracavity Optical Parametric Oscillator With Very High Repetition Rate and Broad Tunability Based Upon Room Temperature Periodically Poled MgO:LiNbO3 With Fanned Grating Design,” IEEE J. Quantum Electron. 45(3), 256–263 (2009).
[CrossRef]

D. J. M. Stothard, T. J. Edwards, D. Walsh, C. L. Thomson, C. F. Rae, M. H. Dunn, and P. G. Browne, “Line-narrowed, compact, and coherent source of widely tunable terahertz radiation,” Appl. Phys. Lett. 92(14), 141105 (2008).
[CrossRef]

Rau, C.

J. A. L’huillier, G. Torosyan, M. Theuer, C. Rau, Y. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate – Part 2: Experiments,” Appl. Phys. B 86(2), 197–208 (2007).
[CrossRef]

Sasaki, Y.

K. Suizu, Y. Suzuki, Y. Sasaki, H. Ito, and Y. Avetisyan, “Surface-emitted terahertz-wave generation by ridged periodically poled lithium niobate and enhancement by mixing of two terahertz waves,” Opt. Lett. 31(7), 957–959 (2006).
[CrossRef] [PubMed]

Y. Sasaki, A. Yuri, K. Kawase, and H. Ito, “Terahertz-wave surface-emitted difference frequency generation in slant-stripe-type periodically poled LiNbO3 crystal,” Appl. Phys. Lett. 81(18), 3323–3325 (2002).
[CrossRef]

Sato, M.

K. Kawase, M. Sato, T. Taniuchi, and H. Ito, “Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler,” Appl. Phys. Lett. 68(18), 2483–2485 (1996).
[CrossRef]

Shikata, J.

J. Shikata, K. Kawase, K. Karino, T. Taniuchi, and H. Ito, “Tunable terahertz-wave parametric oscillators using LiNbO3 and MgO:LiNbO3 crystals,” IEEE Trans. Microw. Theory Tech. 48(4), 653–661 (2000).
[CrossRef]

Shikata, J.-i.

Small, D. L.

Spurr, M.

Stothard, D.

D. Stothard, C. F. Rae, and M. H. Dunn, “An Intracavity Optical Parametric Oscillator With Very High Repetition Rate and Broad Tunability Based Upon Room Temperature Periodically Poled MgO:LiNbO3 With Fanned Grating Design,” IEEE J. Quantum Electron. 45(3), 256–263 (2009).
[CrossRef]

Stothard, D. J.

Stothard, D. J. M.

D. Walsh, D. J. M. Stothard, T. J. Edwards, P. G. Browne, C. F. Rae, and M. H. Dunn, “Injection-seeded intracavity terahertz optical parametric oscillator,” J. Opt. Soc. Am. B 26(6), 1196–1202 (2009).
[CrossRef]

D. J. M. Stothard, T. J. Edwards, D. Walsh, C. L. Thomson, C. F. Rae, M. H. Dunn, and P. G. Browne, “Line-narrowed, compact, and coherent source of widely tunable terahertz radiation,” Appl. Phys. Lett. 92(14), 141105 (2008).
[CrossRef]

Suizu, K.

Sussman, S. S.

J. M. Yarborough, S. S. Sussman, H. E. Puthoff, R. H. Pantell, and B. C. Johnson, “Efficient, Tunable Optical Emission from LiNbO3 without a Resonator,” Appl. Phys. Lett. 15(3), 102–105 (1969).
[CrossRef]

Suzuki, Y.

Taniuchi, T.

J. Shikata, K. Kawase, K. Karino, T. Taniuchi, and H. Ito, “Tunable terahertz-wave parametric oscillators using LiNbO3 and MgO:LiNbO3 crystals,” IEEE Trans. Microw. Theory Tech. 48(4), 653–661 (2000).
[CrossRef]

K. Kawase, M. Sato, T. Taniuchi, and H. Ito, “Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler,” Appl. Phys. Lett. 68(18), 2483–2485 (1996).
[CrossRef]

Theuer, M.

D. Molter, M. Theuer, and R. Beigang, “Nanosecond terahertz optical parametric oscillator with a novel quasi phase matching scheme in lithium niobate,” Opt. Express 17(8), 6623–6628 (2009).
[CrossRef] [PubMed]

J. A. L’huillier, G. Torosyan, M. Theuer, C. Rau, Y. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate – Part 2: Experiments,” Appl. Phys. B 86(2), 197–208 (2007).
[CrossRef]

J. A. L’huillier, G. Torosyan, M. Theuer, Y. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate – Part 1: Theory,” Appl. Phys. B 86(2), 185–196 (2007).
[CrossRef]

Thomson, C. L.

D. J. M. Stothard, T. J. Edwards, D. Walsh, C. L. Thomson, C. F. Rae, M. H. Dunn, and P. G. Browne, “Line-narrowed, compact, and coherent source of widely tunable terahertz radiation,” Appl. Phys. Lett. 92(14), 141105 (2008).
[CrossRef]

Torosyan, G.

J. A. L’huillier, G. Torosyan, M. Theuer, Y. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate – Part 1: Theory,” Appl. Phys. B 86(2), 185–196 (2007).
[CrossRef]

J. A. L’huillier, G. Torosyan, M. Theuer, C. Rau, Y. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate – Part 2: Experiments,” Appl. Phys. B 86(2), 197–208 (2007).
[CrossRef]

C. Weiss, G. Torosyan, Y. Avetisyan, and R. Beigang, “Generation of tunable narrow-band surface-emitted terahertz radiation in periodically poled lithium niobate,” Opt. Lett. 26(8), 563–565 (2001).
[CrossRef]

C. Weiss, G. Torosyan, J.-P. Meyn, R. Wallenstein, R. Beigang, and Y. Avetisyan, “Tuning characteristics of narrowband THz radiation generated via optical rectification in periodically poled lithium niobate,” Opt. Express 8(9), 497–502 (2001).
[CrossRef] [PubMed]

Vodopyanov, K. L.

K. L. Vodopyanov, “Optical THz-wave generation with periodically-inverted GaAs,” Laser Photonics Rev. 2(1-2), 11–25 (2008).
[CrossRef]

Wallenstein, R.

Walsh, D.

Watanabe, Y.

Weiss, C.

Yarborough, J. M.

J. M. Yarborough, S. S. Sussman, H. E. Puthoff, R. H. Pantell, and B. C. Johnson, “Efficient, Tunable Optical Emission from LiNbO3 without a Resonator,” Appl. Phys. Lett. 15(3), 102–105 (1969).
[CrossRef]

Yuri, A.

Y. Sasaki, A. Yuri, K. Kawase, and H. Ito, “Terahertz-wave surface-emitted difference frequency generation in slant-stripe-type periodically poled LiNbO3 crystal,” Appl. Phys. Lett. 81(18), 3323–3325 (2002).
[CrossRef]

Zelmon, D. E.

Appl. Opt. (2)

Appl. Phys. B (2)

J. A. L’huillier, G. Torosyan, M. Theuer, Y. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate – Part 1: Theory,” Appl. Phys. B 86(2), 185–196 (2007).
[CrossRef]

J. A. L’huillier, G. Torosyan, M. Theuer, C. Rau, Y. Avetisyan, and R. Beigang, “Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate – Part 2: Experiments,” Appl. Phys. B 86(2), 197–208 (2007).
[CrossRef]

Appl. Phys. Lett. (6)

D. J. M. Stothard, T. J. Edwards, D. Walsh, C. L. Thomson, C. F. Rae, M. H. Dunn, and P. G. Browne, “Line-narrowed, compact, and coherent source of widely tunable terahertz radiation,” Appl. Phys. Lett. 92(14), 141105 (2008).
[CrossRef]

K. Imai, K. Kawase, J.-i. Shikata, H. Minamide, and H. Ito, “Injection-seeded terahertz-wave parametric oscillator,” Appl. Phys. Lett. 78(8), 1026–1028 (2001).
[CrossRef]

J. M. Yarborough, S. S. Sussman, H. E. Puthoff, R. H. Pantell, and B. C. Johnson, “Efficient, Tunable Optical Emission from LiNbO3 without a Resonator,” Appl. Phys. Lett. 15(3), 102–105 (1969).
[CrossRef]

M. A. Piestrup, R. N. Fleming, and R. H. Pantell, “Continuously tunable submillimeter wave source,” Appl. Phys. Lett. 26(8), 418–421 (1975).
[CrossRef]

K. Kawase, M. Sato, T. Taniuchi, and H. Ito, “Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler,” Appl. Phys. Lett. 68(18), 2483–2485 (1996).
[CrossRef]

Y. Sasaki, A. Yuri, K. Kawase, and H. Ito, “Terahertz-wave surface-emitted difference frequency generation in slant-stripe-type periodically poled LiNbO3 crystal,” Appl. Phys. Lett. 81(18), 3323–3325 (2002).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. Stothard, C. F. Rae, and M. H. Dunn, “An Intracavity Optical Parametric Oscillator With Very High Repetition Rate and Broad Tunability Based Upon Room Temperature Periodically Poled MgO:LiNbO3 With Fanned Grating Design,” IEEE J. Quantum Electron. 45(3), 256–263 (2009).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (1)

J. Shikata, K. Kawase, K. Karino, T. Taniuchi, and H. Ito, “Tunable terahertz-wave parametric oscillators using LiNbO3 and MgO:LiNbO3 crystals,” IEEE Trans. Microw. Theory Tech. 48(4), 653–661 (2000).
[CrossRef]

J. Appl. Phys. (1)

H. E. Puthoff, R. H. Pantell, B. G. Huth, and M. A. Chacon, “Near-Forward Raman Scattering in LiNbO3,” J. Appl. Phys. 39(4), 2144–2146 (1968).
[CrossRef]

J. Opt. Soc. Am. B (2)

Laser Photonics Rev. (1)

K. L. Vodopyanov, “Optical THz-wave generation with periodically-inverted GaAs,” Laser Photonics Rev. 2(1-2), 11–25 (2008).
[CrossRef]

Laser Phys. Lett. (1)

G. K. Kitaeva, “Terahertz generation by means of optical lasers,” Laser Phys. Lett. 5(8), 559–576 (2008).
[CrossRef]

Opt. Express (5)

Opt. Lett. (2)

Other (2)

S. Hayashi, T. Shibuya, H. Sakai, H. Kan, T. Taira, Y. Ogawa, C. Otani, and K. Kawase, “Tunable Terahertz-Wave Parametric Generation Pumped by Microchip Nd:YAG Laser,” in Advanced Solid-State Photonics(Optical Society of America, 2008), p. MC30.

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press Inc. London, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Quasi phasematching solutions with collinear pump and idler waves for terahertz generation in PPLN. Light grey lines illustrate the inverted domain walls in the crystal. The wave vectors of electromagnetic waves are illustrated with a k with subscripts p, i and THz for the pump, idler and terahertz wavelengths respectively, and the grating vector is denoted G.

Fig. 2
Fig. 2

Schematic diagram of the intracavity terahertz OPO.

Fig. 3
Fig. 3

OPO output spectra captured using an HP86140A optical spectrum analyzer (OSA). The analyzer was set to peak hold mode and left to integrate over 10 to 15 minutes in order to capture the full spectrum of the pulsed source.

Fig. 4
Fig. 4

Energy characteristics of the intracavity terahertz OPO.

Fig. 5
Fig. 5

Samples of 100 consecutive temporal profiles of each of the three highest frequency downconverted (infrared) idler waves shown against 100 pump profiles. Each sample was captured using a ~1nS rise time biased photodiode on an oscilloscope triggered synchronously with the electro optic Q-Switch. Idler D is omitted for clarity, as the pulses were very low in signal and difficult to distinguish against the background noise, but follow the same trend as the other idler pulses.

Fig. 7
Fig. 7

Phase-matching diagram of the solution with greatest overlap of the three waves (i.e. the smaller walk off angle of the terahertz beam).

Fig. 6
Fig. 6

Plots of the two phase-matching solutions for a grating period of 42.4μm. Solutions are calculated using an empirical fit to terahertz refractive index data found in literature. The critical angle is calculated assuming constant refractive indices of 5.2 and 3.4 for lithium niobate and silicon respectively.

Tables (1)

Tables Icon

Table 1 Predicted and measured quasi-phasematching solutions

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

A D = 2 π n 0 ( ν p ν i ) c = 2 π n 0 ν T c
A C = 2 π n T ν T c
D B = G cos α G
B C = G sin α G
θ = π 2 ϕ
tan α G = sin θ cos θ ( n 0 / n T )
G = 2 π n T ν T sin θ c sin α G

Metrics