Abstract

We present a simple and reliable method based on the spectral splice loss measurement to determine the cutoff wavelength of bend insensitive fiber.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Van Erps, C. Debaes, T. Nasilowski, J. Watté, J. Wojcik, and H. Thienpont, “Design and tolerance analysis of a low bending loss hole-assisted fiber using statistical design methodology,” Opt. Express 16(7), 5061–5074 (2008).
    [CrossRef] [PubMed]
  2. P. R. Watekar, S. Ju, and W.-T. Han, “Single-mode optical fiber design with wide-band ultra low bending-loss for FTTH application,” Opt. Express 16(2), 1180–1185 (2008).
    [CrossRef] [PubMed]
  3. S. Matsuo, M. Ikeda, and K. Himeno, “Bend insensitive and low splice loss optical fiber for indoor wiring in FTTH,” Proceedings of Optical Fiber Communication Conference (OFC), Anaheim, USA, Feb. 23–27, 2004, ThI3 (2004).
  4. I. Sakabe, H. Ishikawa, H. Tanji, Y. Terasawa, M. Ito, and T. Ueda, “Enhanced bending loss insensitive fiber and new cables for CWDM access networks,” Proceeding of 53rd International Wire and Cable Symposium, Philadelphia, USA, November 14–17, 2004, 112–118, (2004).
  5. K. Himeno, S. Matsuo, Ning Guan, and A. Wada, “Low bending loss single mode fibers for Fiber-to-the-Home,” J. Lightwave Technol. 23(11), 3494–3499 (2005).
    [CrossRef]
  6. M.-J. Li, P. Tandon, D. C. Bookbinder, S. R. Bickham, M. A. McDermott, R. B. Desorcie, D. A. Nolan, J. J. Johnson, K. A. Lewis, and J. J. Englebert, “Ultra-low bending loss single-mode fiber for FTTH,” Proceedings of OFC/NFOEC-2008, San Diego, USA, Feb. 24–28, 2008, PDP10 (2008).
  7. Stokeryale bend insensitive fiber (2007), http://www.stockeryale.com/o/fiber/products/bif-1550-l2.htm
  8. P. R. Watekar, S. Ju, and W.-T. Han, “Bend insensitive optical fiber with ultralow bending loss in the visible wavelength band,” Opt. Lett. 34(24), 3830–3832 (2009).
    [CrossRef] [PubMed]
  9. P. R. Watekar, S. Ju, and W.-T. Han, “Near zero bending loss in a double-trenched bend insensitive optical fiber at 1550 nm,” Opt. Express 17(22), 20155–20166 (2009).
    [CrossRef] [PubMed]
  10. P. R. Watekar, S. Ju, and W.-T. Han, “Design and development of a trenched optical fiber with ultra-low bending loss,” Opt. Express 17(12), 10350–10363 (2009).
    [CrossRef] [PubMed]
  11. Draka BendBright Fiber data-sheets (2010). ( http://communications.draka.com/sites/eu/Datasheets/SMF%20-%20BendBright-XS%20Single-Mode%20Optical%20Fiber.pdf )
  12. ITU-T recommendation G.652.
  13. A. Ghatak, and K. Thyagarajan, Introduction to Fiber Optics, Cambridge University Press, USA (1998).
  14. D. Pagnoux, J.-M. Blondy, P. Roy, and P. Facq, “Cutoff wavelength and mode field radius determinations in monomode fibers by means of a new single measurement device,” Pure Appl. Opt. 6(5), 551–556 (1997).
    [CrossRef]
  15. International Standard IEC 60793–1-42, 2007–04 (2007).
  16. K. Nakajima, J. Zhou, K. Tajima, C. Fukai, K. Kurokawa, and I. Sankawa, “Cutoff wavelength measurement in a fiber with improved bending loss,” IEEE Photon. Technol. Lett. 16(8), 1918–1920 (2004).
    [CrossRef]
  17. T. Nakanishi, M. Hirano, and T. Sasaki, “Proposal of reliable cutoff wavelength measurement for bend insensitive fiber,” Proceedings of European Conference on Optical Communications (ECOC), Vienna, Austria, Sept. 20–24, 2009, P1.14 (2009).
  18. A. W. Snyder, and J. D. Love, Optical waveguide theory, Chapman and Hall (1983).
  19. L. B. Jeunhomme, Single Mode Fiber Optics, Marcel Dekker Inc., New York, USA (1990).
  20. K. Petermann and R. Kuhne, “Upper and lower limits for the microbending loss in arbitrary single-mode fibers,” J. Lightwave Technol. 4(1), 2–7 (1986).
    [CrossRef]
  21. K. Thyagarajan, A. Gupta, B. P. Pal, and A. K. Ghatak, “An analytical model for studying two-mode fibers: splice loss prediction,” Opt. Commun. 42(2), 92–996 (1982).
    [CrossRef]
  22. Samsung single mode fiber data-sheets (2010).

2009 (3)

2008 (2)

2005 (1)

2004 (1)

K. Nakajima, J. Zhou, K. Tajima, C. Fukai, K. Kurokawa, and I. Sankawa, “Cutoff wavelength measurement in a fiber with improved bending loss,” IEEE Photon. Technol. Lett. 16(8), 1918–1920 (2004).
[CrossRef]

1997 (1)

D. Pagnoux, J.-M. Blondy, P. Roy, and P. Facq, “Cutoff wavelength and mode field radius determinations in monomode fibers by means of a new single measurement device,” Pure Appl. Opt. 6(5), 551–556 (1997).
[CrossRef]

1986 (1)

K. Petermann and R. Kuhne, “Upper and lower limits for the microbending loss in arbitrary single-mode fibers,” J. Lightwave Technol. 4(1), 2–7 (1986).
[CrossRef]

1982 (1)

K. Thyagarajan, A. Gupta, B. P. Pal, and A. K. Ghatak, “An analytical model for studying two-mode fibers: splice loss prediction,” Opt. Commun. 42(2), 92–996 (1982).
[CrossRef]

Blondy, J.-M.

D. Pagnoux, J.-M. Blondy, P. Roy, and P. Facq, “Cutoff wavelength and mode field radius determinations in monomode fibers by means of a new single measurement device,” Pure Appl. Opt. 6(5), 551–556 (1997).
[CrossRef]

Debaes, C.

Facq, P.

D. Pagnoux, J.-M. Blondy, P. Roy, and P. Facq, “Cutoff wavelength and mode field radius determinations in monomode fibers by means of a new single measurement device,” Pure Appl. Opt. 6(5), 551–556 (1997).
[CrossRef]

Fukai, C.

K. Nakajima, J. Zhou, K. Tajima, C. Fukai, K. Kurokawa, and I. Sankawa, “Cutoff wavelength measurement in a fiber with improved bending loss,” IEEE Photon. Technol. Lett. 16(8), 1918–1920 (2004).
[CrossRef]

Ghatak, A. K.

K. Thyagarajan, A. Gupta, B. P. Pal, and A. K. Ghatak, “An analytical model for studying two-mode fibers: splice loss prediction,” Opt. Commun. 42(2), 92–996 (1982).
[CrossRef]

Gupta, A.

K. Thyagarajan, A. Gupta, B. P. Pal, and A. K. Ghatak, “An analytical model for studying two-mode fibers: splice loss prediction,” Opt. Commun. 42(2), 92–996 (1982).
[CrossRef]

Han, W.-T.

Himeno, K.

Ju, S.

Kuhne, R.

K. Petermann and R. Kuhne, “Upper and lower limits for the microbending loss in arbitrary single-mode fibers,” J. Lightwave Technol. 4(1), 2–7 (1986).
[CrossRef]

Kurokawa, K.

K. Nakajima, J. Zhou, K. Tajima, C. Fukai, K. Kurokawa, and I. Sankawa, “Cutoff wavelength measurement in a fiber with improved bending loss,” IEEE Photon. Technol. Lett. 16(8), 1918–1920 (2004).
[CrossRef]

Matsuo, S.

Nakajima, K.

K. Nakajima, J. Zhou, K. Tajima, C. Fukai, K. Kurokawa, and I. Sankawa, “Cutoff wavelength measurement in a fiber with improved bending loss,” IEEE Photon. Technol. Lett. 16(8), 1918–1920 (2004).
[CrossRef]

Nasilowski, T.

Ning Guan,

Pagnoux, D.

D. Pagnoux, J.-M. Blondy, P. Roy, and P. Facq, “Cutoff wavelength and mode field radius determinations in monomode fibers by means of a new single measurement device,” Pure Appl. Opt. 6(5), 551–556 (1997).
[CrossRef]

Pal, B. P.

K. Thyagarajan, A. Gupta, B. P. Pal, and A. K. Ghatak, “An analytical model for studying two-mode fibers: splice loss prediction,” Opt. Commun. 42(2), 92–996 (1982).
[CrossRef]

Petermann, K.

K. Petermann and R. Kuhne, “Upper and lower limits for the microbending loss in arbitrary single-mode fibers,” J. Lightwave Technol. 4(1), 2–7 (1986).
[CrossRef]

Roy, P.

D. Pagnoux, J.-M. Blondy, P. Roy, and P. Facq, “Cutoff wavelength and mode field radius determinations in monomode fibers by means of a new single measurement device,” Pure Appl. Opt. 6(5), 551–556 (1997).
[CrossRef]

Sankawa, I.

K. Nakajima, J. Zhou, K. Tajima, C. Fukai, K. Kurokawa, and I. Sankawa, “Cutoff wavelength measurement in a fiber with improved bending loss,” IEEE Photon. Technol. Lett. 16(8), 1918–1920 (2004).
[CrossRef]

Tajima, K.

K. Nakajima, J. Zhou, K. Tajima, C. Fukai, K. Kurokawa, and I. Sankawa, “Cutoff wavelength measurement in a fiber with improved bending loss,” IEEE Photon. Technol. Lett. 16(8), 1918–1920 (2004).
[CrossRef]

Thienpont, H.

Thyagarajan, K.

K. Thyagarajan, A. Gupta, B. P. Pal, and A. K. Ghatak, “An analytical model for studying two-mode fibers: splice loss prediction,” Opt. Commun. 42(2), 92–996 (1982).
[CrossRef]

Van Erps, J.

Wada, A.

Watekar, P. R.

Watté, J.

Wojcik, J.

Zhou, J.

K. Nakajima, J. Zhou, K. Tajima, C. Fukai, K. Kurokawa, and I. Sankawa, “Cutoff wavelength measurement in a fiber with improved bending loss,” IEEE Photon. Technol. Lett. 16(8), 1918–1920 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

K. Nakajima, J. Zhou, K. Tajima, C. Fukai, K. Kurokawa, and I. Sankawa, “Cutoff wavelength measurement in a fiber with improved bending loss,” IEEE Photon. Technol. Lett. 16(8), 1918–1920 (2004).
[CrossRef]

J. Lightwave Technol. (2)

K. Petermann and R. Kuhne, “Upper and lower limits for the microbending loss in arbitrary single-mode fibers,” J. Lightwave Technol. 4(1), 2–7 (1986).
[CrossRef]

K. Himeno, S. Matsuo, Ning Guan, and A. Wada, “Low bending loss single mode fibers for Fiber-to-the-Home,” J. Lightwave Technol. 23(11), 3494–3499 (2005).
[CrossRef]

Opt. Commun. (1)

K. Thyagarajan, A. Gupta, B. P. Pal, and A. K. Ghatak, “An analytical model for studying two-mode fibers: splice loss prediction,” Opt. Commun. 42(2), 92–996 (1982).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Pure Appl. Opt. (1)

D. Pagnoux, J.-M. Blondy, P. Roy, and P. Facq, “Cutoff wavelength and mode field radius determinations in monomode fibers by means of a new single measurement device,” Pure Appl. Opt. 6(5), 551–556 (1997).
[CrossRef]

Other (12)

International Standard IEC 60793–1-42, 2007–04 (2007).

Samsung single mode fiber data-sheets (2010).

T. Nakanishi, M. Hirano, and T. Sasaki, “Proposal of reliable cutoff wavelength measurement for bend insensitive fiber,” Proceedings of European Conference on Optical Communications (ECOC), Vienna, Austria, Sept. 20–24, 2009, P1.14 (2009).

A. W. Snyder, and J. D. Love, Optical waveguide theory, Chapman and Hall (1983).

L. B. Jeunhomme, Single Mode Fiber Optics, Marcel Dekker Inc., New York, USA (1990).

S. Matsuo, M. Ikeda, and K. Himeno, “Bend insensitive and low splice loss optical fiber for indoor wiring in FTTH,” Proceedings of Optical Fiber Communication Conference (OFC), Anaheim, USA, Feb. 23–27, 2004, ThI3 (2004).

I. Sakabe, H. Ishikawa, H. Tanji, Y. Terasawa, M. Ito, and T. Ueda, “Enhanced bending loss insensitive fiber and new cables for CWDM access networks,” Proceeding of 53rd International Wire and Cable Symposium, Philadelphia, USA, November 14–17, 2004, 112–118, (2004).

M.-J. Li, P. Tandon, D. C. Bookbinder, S. R. Bickham, M. A. McDermott, R. B. Desorcie, D. A. Nolan, J. J. Johnson, K. A. Lewis, and J. J. Englebert, “Ultra-low bending loss single-mode fiber for FTTH,” Proceedings of OFC/NFOEC-2008, San Diego, USA, Feb. 24–28, 2008, PDP10 (2008).

Stokeryale bend insensitive fiber (2007), http://www.stockeryale.com/o/fiber/products/bif-1550-l2.htm

Draka BendBright Fiber data-sheets (2010). ( http://communications.draka.com/sites/eu/Datasheets/SMF%20-%20BendBright-XS%20Single-Mode%20Optical%20Fiber.pdf )

ITU-T recommendation G.652.

A. Ghatak, and K. Thyagarajan, Introduction to Fiber Optics, Cambridge University Press, USA (1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Refractive index profile of the bend insensitive fiber with a single trench (solid line) and two trenches (solid line + dotted line). Refractive index difference, Δni = ninclad.

Fig. 2
Fig. 2

Radial distribution of mode fields in the trenched fiber (a = 4 μm, b = 8 μm, c = 12 μm, ∆n1 = 0.006, and ∆nT1 = −0.003) at different wavelengths. The LP11 cutoff wavelength = 1.3 μm.

Fig. 3
Fig. 3

Spectral variations of the fundamental MFD and the transverse splice loss in the trenched fiber (a = 4 μm, b = 8 μm, c = 12 μm, ∆n1 = 0.006, and ∆nT1 = −0.003). The LP11 cutoff wavelength ~1.3 μm.

Fig. 4
Fig. 4

Typical measurements for spectral variations of the bending loss at 60 mm of loop diameter and the transverse splice loss for the SMF (Fiber-1). For the splice loss measurement, two fibers facets were separated less than 5 μm.

Fig. 5
Fig. 5

Estimation of the cutoff wavelength of SMF. Vertical lines were drawn by the linear fit to central points. The wavelength value shown in the figure indicates that a pure LP01 mode will be sustained after 1226.3 nm.

Fig. 6
Fig. 6

Typical measurements for spectral variations of the bending loss at 10 mm of loop diameter and the transverse splice loss for the BIF (Fiber-2). The effective LP11 cutoff wavelength was at 599.33 nm. The bending loss was about 0.47 dB at 633 nm for one loop of 10 mm of diameter.

Fig. 7
Fig. 7

Typical measurements for spectral variations of the bending loss at 10 mm of loop diameter and the transverse splice loss for the BIF (Fiber-3). The effective LP11 cutoff wavelength was at 1140.4 nm. The bending loss was negligible at 1550 nm for one loop of 10 mm of diameter.

Fig. 8
Fig. 8

Typical measurements for spectral variations of the bending loss at 10 mm of loop diameter and the transverse splice loss for the BIF (Fiber-4). The effective LP11 cutoff wavelength was at 1169.5 nm.

Tables (2)

Tables Icon

Table 1 Various BIF parameters.

Tables Icon

Table 2 Comparison of estimated cutoff wavelengths by using different techniques.

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

2 Ψ = ε 0 μ 0 n 2 2 Ψ t 2
Ψ ( r , φ , z , t ) = R ( r ) Φ ( φ ) e i ( ω t β z )
d 2 R d r 2 + 1 r d R d r + [ k 0 2 n 2 ( r ) β 2 l 2 r 2 ] R = 0
1 Φ d 2 Φ d φ 2 = l 2
R 1 ( r ) = A 0 J l ( p 1 r )                                     r a
R 2 ( r ) = A 1 I l ( q 2 r ) + A 2 K l ( q 2 r )                                   a < r b
R 3 ( r ) = A 3 I l ( q 3 r ) + A 4 K l ( q 3 r )                                   b < r c
R 4 ( r ) = A 5 K l ( q 4 r )                                     r > c
p i = k 0 2 n i 2 β l 2 ; q i 2 = p i 2
| J l ( p 1 a )           I l ( q 2 a )             K l ( q 2 a )                                   0                                                           0                                                 0       0                                         I l ( q 2 b )                     K l ( q 2 b )                   I l ( q 3 b )                 K l ( q 3 b )                               0       0                                                     0                                                     0                                         I l ( q 3 c )                       K l ( q 3 c )                   K l ( q 4 c )       X 1                                 X 2                                     X 3                                                           0                                                           0                                                 0       0                                                 X 4                                           X 5                                                   X 6                                         X 7                                             0       0                                                     0                                                     0                                                             X 8                                                 X 9                               X 10         | = 0
X 1 = l J l ( p 1 a ) ( p 1 a ) J l + 1 ( p 1 a ) ; X 2 = l I l ( q 2 a ) + ( q 2 a ) I l + 1 ( q 2 a ) X 3 = l K l ( q 2 a ) ( q 2 a ) K l + 1 ( q 2 a ) ; X 4 = l I l ( q 2 b ) + ( q 2 b ) I l + 1 ( q 2 b ) X 5 = l K l ( q 2 b ) ( q 2 b ) K l + 1 ( q 2 b ) ; X 6 = l I l ( q 3 b ) + ( q 3 b ) I l + 1 ( q 3 b ) X 7 = l K l ( q 3 b ) ( q 3 b ) K l + 1 ( q 3 b ) ; X 8 = l I l ( q 3 c ) + ( q 3 c ) I l + 1 ( q 3 c ) X 9 = l K l ( q 3 c ) ( q 3 c ) K l + 1 ( q 3 c ) ; X 1 0 = l K l ( q 4 c ) ( q 4 c ) K l + 1 ( q 4 c )
LP 01 : Ψ x , y = R 01 ( r ) e [ i ( ω t β 01 x , y z ) ]
LP 11 : Ψ x , y = R 11 ( r ) e [ i ( ω t β 11 x , y z ) ] cos ( φ )
LP 11 : Ψ x , y = R 11 ( r ) e [ i ( ω t β 11 x , y z ) ] sin ( φ )
M F D = 2 ( 2 0 0 2 π [ R ( r ) r ] 2 r d r d φ 0 0 2 π [ R ( r ) ] 2 r d r d φ ) 1 / 2
P = C 0 0 2 π | Ψ ( r , φ ) | 2 r d r d φ
P 01 = C 1 ( 2 π ) 0 | R | 2 r d r
P 11 = C 2 π r = 0 | R | 2 r d r
P t o t a l = l P l 1
T = | + Ψ 1 ( x , y ) Ψ 2 * ( x u , y ) d x d y | 2 ( + Ψ 1 2 ( x , y )     d x d y ) ( + Ψ 2 2 ( x u , y ) d x d y )
α   (dB) = 10 log 10 [ T ]
T 11 = e u 2 / w 2 , T 12 = ( u 2 2 w 2 ) 2 e u 2 / w 2 / 2 , T 13 = 0 T 22 = ( 1 u 2 w 2 ) 2 e u 2 / w 2 , T 21 = ( u 2 2 w 2 ) 2 e u 2 / w 2 / 2 , T 23 = 0 T 33 = e u 2 / w 2 , T 31 = 0 , T 32 = 0
α ( d B ) = 10 log 10 [ A ( T 11 + T 12 + T 13 ) + B ( T 21 + T 22 + T 23 ) + C ( T 31 + T 32 + T 33 )

Metrics