Abstract

In this work, we experimentally demonstrate a novel broadband optical time division multiplexer (OTDM) on a silicon chip. The fabricated devices generate 20 Gb/s and 40 Gb/s signals starting from a 5 Gb/s input signal. The proposed design has a small footprint of 1mmx1mm. The system is inherently broadband with a bandwidth of over 100nm making it suitable for high-speed optical networks on chip.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Petracca, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip: opportunities and challenges,” in IEEE International Symposium on Circuits and Systems, (ISCAS 2008), pp. 2789–2792 (2008)
  2. B. G. Lee, B. A. Small, Q. Xu, M. Lipson, and K. Bergman, “Characterization of a 4 × 4 Gb/s parallel electronic bus to WDM optical link silicon photonic translator,” IEEE Photon. Technol. Lett. 19(7), 456–458 (2007).
    [CrossRef]
  3. Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, “Cascaded silicon micro-ring modulators for WDM optical interconnection,” Opt. Express 14(20), 9431–9435 (2006).
    [CrossRef] [PubMed]
  4. P. Dong, S. F. Preble, and M. Lipson, “All-optical compact silicon comb switch,” Opt. Express 15(15), 9600–9605 (2007).
    [CrossRef] [PubMed]
  5. L. Chen and M. Lipson, “Ultra-low capacitance and high speed germanium photodetectors on silicon,” Opt. Express 17(10), 7901–7906 (2009).
    [CrossRef] [PubMed]
  6. A. Biberman, B. G. Lee, K. Bergman, P. Dong, and M. Lipson, “Demonstration of all-optical multi-wavelength message routing for silicon photonic networks,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OTuF6.
  7. S. Kawanishi, “Ultrahigh-speed optical time-division-multiplexed transmission technology based on optical signal processing,” IEEE J. Quantum Electron. 34(11), 2064–2079 (1998).
    [CrossRef]
  8. M. Saruwatari, “All-optical signal processing for terabit/second optical transmission,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1363–1374 (2000).
    [CrossRef]
  9. H. Weber, R. Ludwig, S. Ferber, C. Schmidt-Langhorst, M. Kroh, V. Marembert, C. Boerner, and C. Schubert, “Ultrahigh-speed OTDM-transmission technology,” J. Lightwave Technol. 24(12), 4616–4627 (2006).
    [CrossRef]
  10. M. Pu, H. Ji, L. H. Frandsen, M. Galili, L. K. Oxenløwe, and J. M. Hvam, “High-Q microring resonator with narrow free spectral range for pulse repetition rate multiplication,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper CThBB7.
  11. H. L. R. Lira, S. Manipatruni, and M. Lipson, “Broadband hitless silicon electro-optic switch for on-chip optical networks,” Opt. Express 17(25), 22271–22280 (2009).
    [CrossRef]
  12. L.-W. Luo, S. Ibrahim, C. B. Poitras, S. S. Djordjevic, H. Lira, L. Zhou, J. Cardenas, B. Guan, A. Nitkowski, Z. Ding, S. J. Yoo, and M. Lipson, “Fully reconfigurable silicon photonic interleaver,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper CFL5.
  13. B. R. Koch, A. W. Fang, O. Cohen, and J. E. Bowers, “Mode-locked silicon evanescent lasers,” Opt. Express 15(18), 11225–11233 (2007).
    [CrossRef] [PubMed]
  14. Y.-C. Xin, Y. Li, V. Kovanis, A. L. Gray, L. Zhang, and L. F. Lester, “Reconfigurable quantum dot monolithic multisection passive mode-locked lasers,” Opt. Express 15(12), 7623–7633 (2007).
    [CrossRef] [PubMed]
  15. J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16(9), 6227–6232 (2008).
    [CrossRef] [PubMed]
  16. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
    [CrossRef] [PubMed]
  17. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
    [CrossRef] [PubMed]
  18. T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D Appl. Phys. 40(9), 2666–2670 (2007).
    [CrossRef]
  19. V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28(15), 1302–1304 (2003).
    [CrossRef] [PubMed]
  20. J. Cardenas, C. B. Poitras, J. T. Robinson, K. Preston, L. Chen, and M. Lipson, ““Low loss etchless silicon photonic waveguides,” Opt. Express 17(4752), 16 (2009).
    [CrossRef]
  21. K. Preston, B. Schmidt, and M. Lipson, “Polysilicon photonic resonators for large-scale 3D integration of optical networks,” Opt. Express 15(25), 17283–17290 (2007).
    [CrossRef] [PubMed]

2009 (3)

2008 (1)

2007 (6)

2006 (2)

2005 (1)

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[CrossRef] [PubMed]

2003 (1)

2001 (1)

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[CrossRef] [PubMed]

2000 (1)

M. Saruwatari, “All-optical signal processing for terabit/second optical transmission,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1363–1374 (2000).
[CrossRef]

1998 (1)

S. Kawanishi, “Ultrahigh-speed optical time-division-multiplexed transmission technology based on optical signal processing,” IEEE J. Quantum Electron. 34(11), 2064–2079 (1998).
[CrossRef]

Almeida, V. R.

Bergman, K.

B. G. Lee, B. A. Small, Q. Xu, M. Lipson, and K. Bergman, “Characterization of a 4 × 4 Gb/s parallel electronic bus to WDM optical link silicon photonic translator,” IEEE Photon. Technol. Lett. 19(7), 456–458 (2007).
[CrossRef]

Boerner, C.

Bowers, J. E.

Cardenas, J.

J. Cardenas, C. B. Poitras, J. T. Robinson, K. Preston, L. Chen, and M. Lipson, ““Low loss etchless silicon photonic waveguides,” Opt. Express 17(4752), 16 (2009).
[CrossRef]

Chen, L.

L. Chen and M. Lipson, “Ultra-low capacitance and high speed germanium photodetectors on silicon,” Opt. Express 17(10), 7901–7906 (2009).
[CrossRef] [PubMed]

J. Cardenas, C. B. Poitras, J. T. Robinson, K. Preston, L. Chen, and M. Lipson, ““Low loss etchless silicon photonic waveguides,” Opt. Express 17(4752), 16 (2009).
[CrossRef]

Cohen, O.

Dong, P.

Fang, A. W.

Ferber, S.

Gomez-Iglesias, A.

Gray, A. L.

Hamann, H. F.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[CrossRef] [PubMed]

Kawanishi, S.

S. Kawanishi, “Ultrahigh-speed optical time-division-multiplexed transmission technology based on optical signal processing,” IEEE J. Quantum Electron. 34(11), 2064–2079 (1998).
[CrossRef]

Koch, B. R.

Kovanis, V.

Krauss, T. F.

Kroh, M.

Lee, B. G.

B. G. Lee, B. A. Small, Q. Xu, M. Lipson, and K. Bergman, “Characterization of a 4 × 4 Gb/s parallel electronic bus to WDM optical link silicon photonic translator,” IEEE Photon. Technol. Lett. 19(7), 456–458 (2007).
[CrossRef]

Lester, L. F.

Li, J.

Li, Y.

Lipson, M.

Lira, H. L. R.

Ludwig, R.

Manipatruni, S.

Marembert, V.

McNab, S. J.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[CrossRef] [PubMed]

Notomi, M.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[CrossRef] [PubMed]

O’Boyle, M.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[CrossRef] [PubMed]

O’Faolain, L.

Panepucci, R. R.

Poitras, C. B.

J. Cardenas, C. B. Poitras, J. T. Robinson, K. Preston, L. Chen, and M. Lipson, ““Low loss etchless silicon photonic waveguides,” Opt. Express 17(4752), 16 (2009).
[CrossRef]

Preble, S. F.

Preston, K.

J. Cardenas, C. B. Poitras, J. T. Robinson, K. Preston, L. Chen, and M. Lipson, ““Low loss etchless silicon photonic waveguides,” Opt. Express 17(4752), 16 (2009).
[CrossRef]

K. Preston, B. Schmidt, and M. Lipson, “Polysilicon photonic resonators for large-scale 3D integration of optical networks,” Opt. Express 15(25), 17283–17290 (2007).
[CrossRef] [PubMed]

Robinson, J. T.

J. Cardenas, C. B. Poitras, J. T. Robinson, K. Preston, L. Chen, and M. Lipson, ““Low loss etchless silicon photonic waveguides,” Opt. Express 17(4752), 16 (2009).
[CrossRef]

Saruwatari, M.

M. Saruwatari, “All-optical signal processing for terabit/second optical transmission,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1363–1374 (2000).
[CrossRef]

Schmidt, B.

Schmidt-Langhorst, C.

Schubert, C.

Shakya, J.

Shinya, A.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[CrossRef] [PubMed]

Small, B. A.

B. G. Lee, B. A. Small, Q. Xu, M. Lipson, and K. Bergman, “Characterization of a 4 × 4 Gb/s parallel electronic bus to WDM optical link silicon photonic translator,” IEEE Photon. Technol. Lett. 19(7), 456–458 (2007).
[CrossRef]

Takahashi, C.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[CrossRef] [PubMed]

Takahashi, J.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[CrossRef] [PubMed]

Vlasov, Y. A.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[CrossRef] [PubMed]

Weber, H.

White, T. P.

Xin, Y.-C.

Xu, Q.

B. G. Lee, B. A. Small, Q. Xu, M. Lipson, and K. Bergman, “Characterization of a 4 × 4 Gb/s parallel electronic bus to WDM optical link silicon photonic translator,” IEEE Photon. Technol. Lett. 19(7), 456–458 (2007).
[CrossRef]

Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, “Cascaded silicon micro-ring modulators for WDM optical interconnection,” Opt. Express 14(20), 9431–9435 (2006).
[CrossRef] [PubMed]

Yamada, K.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[CrossRef] [PubMed]

Yokohama, I.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[CrossRef] [PubMed]

Zhang, L.

IEEE J. Quantum Electron. (1)

S. Kawanishi, “Ultrahigh-speed optical time-division-multiplexed transmission technology based on optical signal processing,” IEEE J. Quantum Electron. 34(11), 2064–2079 (1998).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Saruwatari, “All-optical signal processing for terabit/second optical transmission,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1363–1374 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

B. G. Lee, B. A. Small, Q. Xu, M. Lipson, and K. Bergman, “Characterization of a 4 × 4 Gb/s parallel electronic bus to WDM optical link silicon photonic translator,” IEEE Photon. Technol. Lett. 19(7), 456–458 (2007).
[CrossRef]

J. Lightwave Technol. (1)

J. Phys. D Appl. Phys. (1)

T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D Appl. Phys. 40(9), 2666–2670 (2007).
[CrossRef]

Nature (1)

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[CrossRef] [PubMed]

Opt. Express (8)

Opt. Express (1)

J. Cardenas, C. B. Poitras, J. T. Robinson, K. Preston, L. Chen, and M. Lipson, ““Low loss etchless silicon photonic waveguides,” Opt. Express 17(4752), 16 (2009).
[CrossRef]

Opt. Express (8)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[CrossRef] [PubMed]

Other (4)

M. Petracca, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip: opportunities and challenges,” in IEEE International Symposium on Circuits and Systems, (ISCAS 2008), pp. 2789–2792 (2008)

A. Biberman, B. G. Lee, K. Bergman, P. Dong, and M. Lipson, “Demonstration of all-optical multi-wavelength message routing for silicon photonic networks,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OTuF6.

M. Pu, H. Ji, L. H. Frandsen, M. Galili, L. K. Oxenløwe, and J. M. Hvam, “High-Q microring resonator with narrow free spectral range for pulse repetition rate multiplication,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper CThBB7.

L.-W. Luo, S. Ibrahim, C. B. Poitras, S. S. Djordjevic, H. Lira, L. Zhou, J. Cardenas, B. Guan, A. Nitkowski, Z. Ding, S. J. Yoo, and M. Lipson, “Fully reconfigurable silicon photonic interleaver,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper CFL5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Optical Time-Division Multiplexing scheme. The device takes in short optical pulses operating at 5Gb/s (left) and multiplexes them to 5N Gbit/s (right) by splitting the original pulses into N separate channels and then recombining them after they go through bit-rate determined delays ΔL.

Fig. 2
Fig. 2

Effective refractive index/group index of the mode versus wavelength. Inset, displays the horizontal electric field profile of the propagating mode.

Fig. 3
Fig. 3

A top-view scanning electron microscopy (SEM) image for 20 Gb/s OTDM. Magnified images of the spiral with length ΔL = 3.694mm and the 1:4 Y-splitter are shown.

Fig. 4
Fig. 4

Time multiplexing of four pulses using a single pulse from a Ti:Sapphire laser. The separation between each consecutive pulses is 50 ps. The inset shows the detector response for the input Ti:Sapphire pulse.

Fig. 5
Fig. 5

Experimental setup used to test the devices with fiber-ring mode locked laser schematic.

Fig. 6
Fig. 6

a) The input stream of pulses at 5 Gb/s from a fiber-ring mode locked laser. b) 20 Gb/s TDM signal at the output of the device.

Fig. 7
Fig. 7

The output signal from the 40 Gb/s device using a single pulse input from a Ti:Sapphire laser. The inset shows the detector response for the input Ti:Sapphire pulse.

Fig. 8
Fig. 8

Schematic of full OTDM multiplexer with the integration of EO modulator in each channel. Each EO modulator is used to switch the pulses on/off. The modulated pulses are recombined at an effectively higher bit-rate.

Metrics