J. Langowski, “Protein-protein interactions determined by fluorescence correlation spectroscopy,” Methods Cell Biol. 85, 471–484 (2008).
[Crossref]
J. R. Unruh and E. Gratton, “Analysis of molecular concentration and brightness from fluorescence fluctuation data with an electron multiplied CCD camera,” Biophys. J. 95(11), 5385–5398 (2008).
[Crossref]
[PubMed]
B. Kannan, L. Guo, T. Sudhaharan, S. Ahmed, I. Maruyama, and T. Wohland, “Spatially resolved total internal reflection fluorescence correlation microscopy using an electron multiplying charge-coupled device camera,” Anal. Chem. 79(12), 4463–4470 (2007).
[Crossref]
[PubMed]
K. Bacia and P. Schwille, “Fluorescence correlation spectroscopy,” Methods Mol. Biol. 398, 73–84 (2007).
[Crossref]
S. A. Kim, K. G. Heinze, and P. Schwille, “Fluorescence correlation spectroscopy in living cells,” Nat. Methods 4(11), 963–973 (2007).
[Crossref]
[PubMed]
T. Dertinger, V. Pacheco, I. von der Hocht, R. Hartmann, I. Gregor, and J. Enderlein, “Two-focus fluorescence correlation spectroscopy: a new tool for accurate and absolute diffusion measurements,” ChemPhysChem 8(3), 433–443 (2007).
[Crossref]
[PubMed]
N. L. Thompson and B. L. Steele, “Total internal reflection with fluorescence correlation spectroscopy,” Nat. Protoc. 2(4), 878–890 (2007).
[Crossref]
[PubMed]
E. Haustein and P. Schwille, “Fluorescence correlation spectroscopy: novel variations of an established technique,” Annu. Rev. Biophys. Biomol. Struct. 36(1), 151–169 (2007).
[Crossref]
[PubMed]
O. Kochubey, A. Majumdar, and J. Klingauf, “Imaging clathrin dynamics in Drosophila melanogaster hemocytes reveals a role for actin in vesicle fission,” Traffic 7(12), 1614–1627 (2006).
[Crossref]
[PubMed]
B. Kannan, J. Y. Har, P. Liu, I. Maruyama, J. L. Ding, and T. Wohland, “Electron multiplying charge-coupled device camera based fluorescence correlation spectroscopy,” Anal. Chem. 78(10), 3444–3451 (2006).
[Crossref]
[PubMed]
K. Hassler, T. Anhut, R. Rigler, M. Goesch, and T. Lasser, “High count rates with total internal reflection fluorescence correlation spectroscopy,” Biophys J. 88(1), L01–3 (2005).
[Crossref]
K. Hassler, M. Leutenegger, P. Rigler, R. Rao, R. Rigler, M. Gösch, and T. Lasser, “Total internal reflection fluorescence correlation spectroscopy (TIR-FCS) with low background and high count-rate per molecule,” Opt. Express 13(19), 7415–7423 (2005).
[Crossref]
[PubMed]
C. J. Merrifield, D. Perrais, and D. Zenisek, “Coupling between clathrin-coated-pit invagination, cortactin recruitment, and membrane scission observed in live cells,” Cell 121(4), 593–606 (2005).
[Crossref]
[PubMed]
D. Loerke, M. Wienisch, O. Kochubey, and J. Klingauf, “Differential control of clathrin subunit dynamics measured with EW-FRAP microscopy,” Traffic 6(10), 918–929 (2005).
[Crossref]
[PubMed]
T. E. Starr and N. L. Thompson, “Total internal reflection with fluorescence correlation spectroscopy: combined surface reaction and solution diffusion,” Biophys. J. 80(3), 1575–1584 (2001).
[Crossref]
[PubMed]
S. E. Sund, J. A. Swanson, and D. Axelrod, “Cell membrane orientation visualized by polarized total internal reflection fluorescence,” Biophys. J. 77(4), 2266–2283 (1999).
[Crossref]
[PubMed]
B. C. Lagerholm and N. L. Thompson, “Theory for ligand rebinding at cell membrane surfaces,” Biophys. J. 74(3), 1215–1228 (1998).
[Crossref]
[PubMed]
P. Schwille, F. J. Meyer-Almes, and R. Rigler, “Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution,” Biophys. J. 72(4), 1878–1886 (1997).
[Crossref]
[PubMed]
M. Eigen, “Prionics or the kinetic basis of prion diseases,” Biophys. Chem. 63(1), A1–A18 (1996).
[Crossref]
[PubMed]
B. R. Terry, E. K. Matthews, and J. Haseloff, “Molecular characterisation of recombinant green fluorescent protein by fluorescence correlation microscopy,” Biochem. Biophys. Res. Commun. 217(1), 21–27 (1995).
[Crossref]
[PubMed]
D Madge, E. L. Elson, and W. W. Webb, “Fluorescence correlation spectroscopy. I. Conceptual basis and theory,” Biopolymers 13(1), 1–27 (1974).
[Crossref]
D. Magde, E. L. Elson, and W. W. Webb, “Fluorescence correlation spectroscopy. II. An experimental realization,” Biopolymers 13(1), 29–61 (1974).
[Crossref]
[PubMed]
B. Kannan, L. Guo, T. Sudhaharan, S. Ahmed, I. Maruyama, and T. Wohland, “Spatially resolved total internal reflection fluorescence correlation microscopy using an electron multiplying charge-coupled device camera,” Anal. Chem. 79(12), 4463–4470 (2007).
[Crossref]
[PubMed]
K. Hassler, T. Anhut, R. Rigler, M. Goesch, and T. Lasser, “High count rates with total internal reflection fluorescence correlation spectroscopy,” Biophys J. 88(1), L01–3 (2005).
[Crossref]
S. E. Sund, J. A. Swanson, and D. Axelrod, “Cell membrane orientation visualized by polarized total internal reflection fluorescence,” Biophys. J. 77(4), 2266–2283 (1999).
[Crossref]
[PubMed]
K. Bacia and P. Schwille, “Fluorescence correlation spectroscopy,” Methods Mol. Biol. 398, 73–84 (2007).
[Crossref]
T. Dertinger, V. Pacheco, I. von der Hocht, R. Hartmann, I. Gregor, and J. Enderlein, “Two-focus fluorescence correlation spectroscopy: a new tool for accurate and absolute diffusion measurements,” ChemPhysChem 8(3), 433–443 (2007).
[Crossref]
[PubMed]
B. Kannan, J. Y. Har, P. Liu, I. Maruyama, J. L. Ding, and T. Wohland, “Electron multiplying charge-coupled device camera based fluorescence correlation spectroscopy,” Anal. Chem. 78(10), 3444–3451 (2006).
[Crossref]
[PubMed]
M. Eigen, “Prionics or the kinetic basis of prion diseases,” Biophys. Chem. 63(1), A1–A18 (1996).
[Crossref]
[PubMed]
D. Magde, E. L. Elson, and W. W. Webb, “Fluorescence correlation spectroscopy. II. An experimental realization,” Biopolymers 13(1), 29–61 (1974).
[Crossref]
[PubMed]
D Madge, E. L. Elson, and W. W. Webb, “Fluorescence correlation spectroscopy. I. Conceptual basis and theory,” Biopolymers 13(1), 1–27 (1974).
[Crossref]
T. Dertinger, V. Pacheco, I. von der Hocht, R. Hartmann, I. Gregor, and J. Enderlein, “Two-focus fluorescence correlation spectroscopy: a new tool for accurate and absolute diffusion measurements,” ChemPhysChem 8(3), 433–443 (2007).
[Crossref]
[PubMed]
K. Hassler, T. Anhut, R. Rigler, M. Goesch, and T. Lasser, “High count rates with total internal reflection fluorescence correlation spectroscopy,” Biophys J. 88(1), L01–3 (2005).
[Crossref]
J. R. Unruh and E. Gratton, “Analysis of molecular concentration and brightness from fluorescence fluctuation data with an electron multiplied CCD camera,” Biophys. J. 95(11), 5385–5398 (2008).
[Crossref]
[PubMed]
T. Dertinger, V. Pacheco, I. von der Hocht, R. Hartmann, I. Gregor, and J. Enderlein, “Two-focus fluorescence correlation spectroscopy: a new tool for accurate and absolute diffusion measurements,” ChemPhysChem 8(3), 433–443 (2007).
[Crossref]
[PubMed]
B. Kannan, L. Guo, T. Sudhaharan, S. Ahmed, I. Maruyama, and T. Wohland, “Spatially resolved total internal reflection fluorescence correlation microscopy using an electron multiplying charge-coupled device camera,” Anal. Chem. 79(12), 4463–4470 (2007).
[Crossref]
[PubMed]
B. Kannan, J. Y. Har, P. Liu, I. Maruyama, J. L. Ding, and T. Wohland, “Electron multiplying charge-coupled device camera based fluorescence correlation spectroscopy,” Anal. Chem. 78(10), 3444–3451 (2006).
[Crossref]
[PubMed]
T. Dertinger, V. Pacheco, I. von der Hocht, R. Hartmann, I. Gregor, and J. Enderlein, “Two-focus fluorescence correlation spectroscopy: a new tool for accurate and absolute diffusion measurements,” ChemPhysChem 8(3), 433–443 (2007).
[Crossref]
[PubMed]
B. R. Terry, E. K. Matthews, and J. Haseloff, “Molecular characterisation of recombinant green fluorescent protein by fluorescence correlation microscopy,” Biochem. Biophys. Res. Commun. 217(1), 21–27 (1995).
[Crossref]
[PubMed]
K. Hassler, M. Leutenegger, P. Rigler, R. Rao, R. Rigler, M. Gösch, and T. Lasser, “Total internal reflection fluorescence correlation spectroscopy (TIR-FCS) with low background and high count-rate per molecule,” Opt. Express 13(19), 7415–7423 (2005).
[Crossref]
[PubMed]
K. Hassler, T. Anhut, R. Rigler, M. Goesch, and T. Lasser, “High count rates with total internal reflection fluorescence correlation spectroscopy,” Biophys J. 88(1), L01–3 (2005).
[Crossref]
E. Haustein and P. Schwille, “Fluorescence correlation spectroscopy: novel variations of an established technique,” Annu. Rev. Biophys. Biomol. Struct. 36(1), 151–169 (2007).
[Crossref]
[PubMed]
S. A. Kim, K. G. Heinze, and P. Schwille, “Fluorescence correlation spectroscopy in living cells,” Nat. Methods 4(11), 963–973 (2007).
[Crossref]
[PubMed]
B. Kannan, L. Guo, T. Sudhaharan, S. Ahmed, I. Maruyama, and T. Wohland, “Spatially resolved total internal reflection fluorescence correlation microscopy using an electron multiplying charge-coupled device camera,” Anal. Chem. 79(12), 4463–4470 (2007).
[Crossref]
[PubMed]
B. Kannan, J. Y. Har, P. Liu, I. Maruyama, J. L. Ding, and T. Wohland, “Electron multiplying charge-coupled device camera based fluorescence correlation spectroscopy,” Anal. Chem. 78(10), 3444–3451 (2006).
[Crossref]
[PubMed]
S. A. Kim, K. G. Heinze, and P. Schwille, “Fluorescence correlation spectroscopy in living cells,” Nat. Methods 4(11), 963–973 (2007).
[Crossref]
[PubMed]
O. Kochubey, A. Majumdar, and J. Klingauf, “Imaging clathrin dynamics in Drosophila melanogaster hemocytes reveals a role for actin in vesicle fission,” Traffic 7(12), 1614–1627 (2006).
[Crossref]
[PubMed]
D. Loerke, M. Wienisch, O. Kochubey, and J. Klingauf, “Differential control of clathrin subunit dynamics measured with EW-FRAP microscopy,” Traffic 6(10), 918–929 (2005).
[Crossref]
[PubMed]
O. Kochubey, A. Majumdar, and J. Klingauf, “Imaging clathrin dynamics in Drosophila melanogaster hemocytes reveals a role for actin in vesicle fission,” Traffic 7(12), 1614–1627 (2006).
[Crossref]
[PubMed]
D. Loerke, M. Wienisch, O. Kochubey, and J. Klingauf, “Differential control of clathrin subunit dynamics measured with EW-FRAP microscopy,” Traffic 6(10), 918–929 (2005).
[Crossref]
[PubMed]
B. C. Lagerholm and N. L. Thompson, “Theory for ligand rebinding at cell membrane surfaces,” Biophys. J. 74(3), 1215–1228 (1998).
[Crossref]
[PubMed]
J. Langowski, “Protein-protein interactions determined by fluorescence correlation spectroscopy,” Methods Cell Biol. 85, 471–484 (2008).
[Crossref]
K. Hassler, T. Anhut, R. Rigler, M. Goesch, and T. Lasser, “High count rates with total internal reflection fluorescence correlation spectroscopy,” Biophys J. 88(1), L01–3 (2005).
[Crossref]
K. Hassler, M. Leutenegger, P. Rigler, R. Rao, R. Rigler, M. Gösch, and T. Lasser, “Total internal reflection fluorescence correlation spectroscopy (TIR-FCS) with low background and high count-rate per molecule,” Opt. Express 13(19), 7415–7423 (2005).
[Crossref]
[PubMed]
B. Kannan, J. Y. Har, P. Liu, I. Maruyama, J. L. Ding, and T. Wohland, “Electron multiplying charge-coupled device camera based fluorescence correlation spectroscopy,” Anal. Chem. 78(10), 3444–3451 (2006).
[Crossref]
[PubMed]
D. Loerke, M. Wienisch, O. Kochubey, and J. Klingauf, “Differential control of clathrin subunit dynamics measured with EW-FRAP microscopy,” Traffic 6(10), 918–929 (2005).
[Crossref]
[PubMed]
D Madge, E. L. Elson, and W. W. Webb, “Fluorescence correlation spectroscopy. I. Conceptual basis and theory,” Biopolymers 13(1), 1–27 (1974).
[Crossref]
D. Magde, E. L. Elson, and W. W. Webb, “Fluorescence correlation spectroscopy. II. An experimental realization,” Biopolymers 13(1), 29–61 (1974).
[Crossref]
[PubMed]
O. Kochubey, A. Majumdar, and J. Klingauf, “Imaging clathrin dynamics in Drosophila melanogaster hemocytes reveals a role for actin in vesicle fission,” Traffic 7(12), 1614–1627 (2006).
[Crossref]
[PubMed]
B. Kannan, L. Guo, T. Sudhaharan, S. Ahmed, I. Maruyama, and T. Wohland, “Spatially resolved total internal reflection fluorescence correlation microscopy using an electron multiplying charge-coupled device camera,” Anal. Chem. 79(12), 4463–4470 (2007).
[Crossref]
[PubMed]
B. Kannan, J. Y. Har, P. Liu, I. Maruyama, J. L. Ding, and T. Wohland, “Electron multiplying charge-coupled device camera based fluorescence correlation spectroscopy,” Anal. Chem. 78(10), 3444–3451 (2006).
[Crossref]
[PubMed]
B. R. Terry, E. K. Matthews, and J. Haseloff, “Molecular characterisation of recombinant green fluorescent protein by fluorescence correlation microscopy,” Biochem. Biophys. Res. Commun. 217(1), 21–27 (1995).
[Crossref]
[PubMed]
C. J. Merrifield, D. Perrais, and D. Zenisek, “Coupling between clathrin-coated-pit invagination, cortactin recruitment, and membrane scission observed in live cells,” Cell 121(4), 593–606 (2005).
[Crossref]
[PubMed]
P. Schwille, F. J. Meyer-Almes, and R. Rigler, “Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution,” Biophys. J. 72(4), 1878–1886 (1997).
[Crossref]
[PubMed]
T. Dertinger, V. Pacheco, I. von der Hocht, R. Hartmann, I. Gregor, and J. Enderlein, “Two-focus fluorescence correlation spectroscopy: a new tool for accurate and absolute diffusion measurements,” ChemPhysChem 8(3), 433–443 (2007).
[Crossref]
[PubMed]
C. J. Merrifield, D. Perrais, and D. Zenisek, “Coupling between clathrin-coated-pit invagination, cortactin recruitment, and membrane scission observed in live cells,” Cell 121(4), 593–606 (2005).
[Crossref]
[PubMed]
K. Hassler, M. Leutenegger, P. Rigler, R. Rao, R. Rigler, M. Gösch, and T. Lasser, “Total internal reflection fluorescence correlation spectroscopy (TIR-FCS) with low background and high count-rate per molecule,” Opt. Express 13(19), 7415–7423 (2005).
[Crossref]
[PubMed]
K. Hassler, T. Anhut, R. Rigler, M. Goesch, and T. Lasser, “High count rates with total internal reflection fluorescence correlation spectroscopy,” Biophys J. 88(1), L01–3 (2005).
[Crossref]
P. Schwille, F. J. Meyer-Almes, and R. Rigler, “Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution,” Biophys. J. 72(4), 1878–1886 (1997).
[Crossref]
[PubMed]
E. Haustein and P. Schwille, “Fluorescence correlation spectroscopy: novel variations of an established technique,” Annu. Rev. Biophys. Biomol. Struct. 36(1), 151–169 (2007).
[Crossref]
[PubMed]
S. A. Kim, K. G. Heinze, and P. Schwille, “Fluorescence correlation spectroscopy in living cells,” Nat. Methods 4(11), 963–973 (2007).
[Crossref]
[PubMed]
K. Bacia and P. Schwille, “Fluorescence correlation spectroscopy,” Methods Mol. Biol. 398, 73–84 (2007).
[Crossref]
P. Schwille, F. J. Meyer-Almes, and R. Rigler, “Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution,” Biophys. J. 72(4), 1878–1886 (1997).
[Crossref]
[PubMed]
T. E. Starr and N. L. Thompson, “Total internal reflection with fluorescence correlation spectroscopy: combined surface reaction and solution diffusion,” Biophys. J. 80(3), 1575–1584 (2001).
[Crossref]
[PubMed]
N. L. Thompson and B. L. Steele, “Total internal reflection with fluorescence correlation spectroscopy,” Nat. Protoc. 2(4), 878–890 (2007).
[Crossref]
[PubMed]
B. Kannan, L. Guo, T. Sudhaharan, S. Ahmed, I. Maruyama, and T. Wohland, “Spatially resolved total internal reflection fluorescence correlation microscopy using an electron multiplying charge-coupled device camera,” Anal. Chem. 79(12), 4463–4470 (2007).
[Crossref]
[PubMed]
S. E. Sund, J. A. Swanson, and D. Axelrod, “Cell membrane orientation visualized by polarized total internal reflection fluorescence,” Biophys. J. 77(4), 2266–2283 (1999).
[Crossref]
[PubMed]
S. E. Sund, J. A. Swanson, and D. Axelrod, “Cell membrane orientation visualized by polarized total internal reflection fluorescence,” Biophys. J. 77(4), 2266–2283 (1999).
[Crossref]
[PubMed]
B. R. Terry, E. K. Matthews, and J. Haseloff, “Molecular characterisation of recombinant green fluorescent protein by fluorescence correlation microscopy,” Biochem. Biophys. Res. Commun. 217(1), 21–27 (1995).
[Crossref]
[PubMed]
N. L. Thompson and B. L. Steele, “Total internal reflection with fluorescence correlation spectroscopy,” Nat. Protoc. 2(4), 878–890 (2007).
[Crossref]
[PubMed]
T. E. Starr and N. L. Thompson, “Total internal reflection with fluorescence correlation spectroscopy: combined surface reaction and solution diffusion,” Biophys. J. 80(3), 1575–1584 (2001).
[Crossref]
[PubMed]
B. C. Lagerholm and N. L. Thompson, “Theory for ligand rebinding at cell membrane surfaces,” Biophys. J. 74(3), 1215–1228 (1998).
[Crossref]
[PubMed]
J. R. Unruh and E. Gratton, “Analysis of molecular concentration and brightness from fluorescence fluctuation data with an electron multiplied CCD camera,” Biophys. J. 95(11), 5385–5398 (2008).
[Crossref]
[PubMed]
T. Dertinger, V. Pacheco, I. von der Hocht, R. Hartmann, I. Gregor, and J. Enderlein, “Two-focus fluorescence correlation spectroscopy: a new tool for accurate and absolute diffusion measurements,” ChemPhysChem 8(3), 433–443 (2007).
[Crossref]
[PubMed]
D Madge, E. L. Elson, and W. W. Webb, “Fluorescence correlation spectroscopy. I. Conceptual basis and theory,” Biopolymers 13(1), 1–27 (1974).
[Crossref]
D. Magde, E. L. Elson, and W. W. Webb, “Fluorescence correlation spectroscopy. II. An experimental realization,” Biopolymers 13(1), 29–61 (1974).
[Crossref]
[PubMed]
D. Loerke, M. Wienisch, O. Kochubey, and J. Klingauf, “Differential control of clathrin subunit dynamics measured with EW-FRAP microscopy,” Traffic 6(10), 918–929 (2005).
[Crossref]
[PubMed]
B. Kannan, L. Guo, T. Sudhaharan, S. Ahmed, I. Maruyama, and T. Wohland, “Spatially resolved total internal reflection fluorescence correlation microscopy using an electron multiplying charge-coupled device camera,” Anal. Chem. 79(12), 4463–4470 (2007).
[Crossref]
[PubMed]
B. Kannan, J. Y. Har, P. Liu, I. Maruyama, J. L. Ding, and T. Wohland, “Electron multiplying charge-coupled device camera based fluorescence correlation spectroscopy,” Anal. Chem. 78(10), 3444–3451 (2006).
[Crossref]
[PubMed]
C. J. Merrifield, D. Perrais, and D. Zenisek, “Coupling between clathrin-coated-pit invagination, cortactin recruitment, and membrane scission observed in live cells,” Cell 121(4), 593–606 (2005).
[Crossref]
[PubMed]
B. Kannan, J. Y. Har, P. Liu, I. Maruyama, J. L. Ding, and T. Wohland, “Electron multiplying charge-coupled device camera based fluorescence correlation spectroscopy,” Anal. Chem. 78(10), 3444–3451 (2006).
[Crossref]
[PubMed]
B. Kannan, L. Guo, T. Sudhaharan, S. Ahmed, I. Maruyama, and T. Wohland, “Spatially resolved total internal reflection fluorescence correlation microscopy using an electron multiplying charge-coupled device camera,” Anal. Chem. 79(12), 4463–4470 (2007).
[Crossref]
[PubMed]
E. Haustein and P. Schwille, “Fluorescence correlation spectroscopy: novel variations of an established technique,” Annu. Rev. Biophys. Biomol. Struct. 36(1), 151–169 (2007).
[Crossref]
[PubMed]
B. R. Terry, E. K. Matthews, and J. Haseloff, “Molecular characterisation of recombinant green fluorescent protein by fluorescence correlation microscopy,” Biochem. Biophys. Res. Commun. 217(1), 21–27 (1995).
[Crossref]
[PubMed]
K. Hassler, T. Anhut, R. Rigler, M. Goesch, and T. Lasser, “High count rates with total internal reflection fluorescence correlation spectroscopy,” Biophys J. 88(1), L01–3 (2005).
[Crossref]
M. Eigen, “Prionics or the kinetic basis of prion diseases,” Biophys. Chem. 63(1), A1–A18 (1996).
[Crossref]
[PubMed]
T. E. Starr and N. L. Thompson, “Total internal reflection with fluorescence correlation spectroscopy: combined surface reaction and solution diffusion,” Biophys. J. 80(3), 1575–1584 (2001).
[Crossref]
[PubMed]
P. Schwille, F. J. Meyer-Almes, and R. Rigler, “Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution,” Biophys. J. 72(4), 1878–1886 (1997).
[Crossref]
[PubMed]
B. C. Lagerholm and N. L. Thompson, “Theory for ligand rebinding at cell membrane surfaces,” Biophys. J. 74(3), 1215–1228 (1998).
[Crossref]
[PubMed]
J. R. Unruh and E. Gratton, “Analysis of molecular concentration and brightness from fluorescence fluctuation data with an electron multiplied CCD camera,” Biophys. J. 95(11), 5385–5398 (2008).
[Crossref]
[PubMed]
S. E. Sund, J. A. Swanson, and D. Axelrod, “Cell membrane orientation visualized by polarized total internal reflection fluorescence,” Biophys. J. 77(4), 2266–2283 (1999).
[Crossref]
[PubMed]
D Madge, E. L. Elson, and W. W. Webb, “Fluorescence correlation spectroscopy. I. Conceptual basis and theory,” Biopolymers 13(1), 1–27 (1974).
[Crossref]
D. Magde, E. L. Elson, and W. W. Webb, “Fluorescence correlation spectroscopy. II. An experimental realization,” Biopolymers 13(1), 29–61 (1974).
[Crossref]
[PubMed]
C. J. Merrifield, D. Perrais, and D. Zenisek, “Coupling between clathrin-coated-pit invagination, cortactin recruitment, and membrane scission observed in live cells,” Cell 121(4), 593–606 (2005).
[Crossref]
[PubMed]
T. Dertinger, V. Pacheco, I. von der Hocht, R. Hartmann, I. Gregor, and J. Enderlein, “Two-focus fluorescence correlation spectroscopy: a new tool for accurate and absolute diffusion measurements,” ChemPhysChem 8(3), 433–443 (2007).
[Crossref]
[PubMed]
J. Langowski, “Protein-protein interactions determined by fluorescence correlation spectroscopy,” Methods Cell Biol. 85, 471–484 (2008).
[Crossref]
K. Bacia and P. Schwille, “Fluorescence correlation spectroscopy,” Methods Mol. Biol. 398, 73–84 (2007).
[Crossref]
S. A. Kim, K. G. Heinze, and P. Schwille, “Fluorescence correlation spectroscopy in living cells,” Nat. Methods 4(11), 963–973 (2007).
[Crossref]
[PubMed]
N. L. Thompson and B. L. Steele, “Total internal reflection with fluorescence correlation spectroscopy,” Nat. Protoc. 2(4), 878–890 (2007).
[Crossref]
[PubMed]
D. Loerke, M. Wienisch, O. Kochubey, and J. Klingauf, “Differential control of clathrin subunit dynamics measured with EW-FRAP microscopy,” Traffic 6(10), 918–929 (2005).
[Crossref]
[PubMed]
O. Kochubey, A. Majumdar, and J. Klingauf, “Imaging clathrin dynamics in Drosophila melanogaster hemocytes reveals a role for actin in vesicle fission,” Traffic 7(12), 1614–1627 (2006).
[Crossref]
[PubMed]
N. L. Thompson, Fluorescence Correlation Spectroscopy, in Topics in Fluorescence Spectroscopy, (Plenum Press, New York, 1991).
A. Stroebel, O. Welzel, J. Kornhuber, and T. W. Groemer, “Background determination-based detection of scattered peaks,” Microsc. Res. Tech.; published online (2010).