Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40, 939 (1982).
[Crossref]
M. Kahl, T. Thomay, V. Kohnle, K. Beha, J. Merlein, M. Hagner, A. Halm, J. Ziegler, T. Nann, Y. Fedutik, U. Woggon, M. Artemyev, F. Pérez-Willard, A. Leitenstorfer, and R. Bratschitsch, “Colloidal Quantum Dots in All-Dielectric High-Q Pillar Microcavities,” Nano Lett. 7, 2897 (2007).
[Crossref]
[PubMed]
W. L. Barnes, G. Björk, J. M. Gérard, P. Jonsson, J. A. E. Wasey, P. T. Worthing, and V. Zwiller, “Solid-state single photon sources: light collection strategies,” Eur. Phys. J. D 18, 197 (2002).
[Crossref]
J. M. Gérard, D. Barrier, J. Y. Marzin, R. Kuszelewicz, L. Manin, E. Costard, V. Thierry-Mieg, and T. Rivera, “Quantum boxes as active probes for photonic microstructures: The pillar microcavity case,” Appl. Phys. Lett. 69, 449 (1996).
[Crossref]
P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A Quantum Dot Single-Photon Turnstile Device,” Science 290, 2282 (2000).
[Crossref]
[PubMed]
P. Michler, A. Kiraz, L. Zhang, C. Becher, E. Hu, and A. Imamoglu, “Laser emission from quantum dots in microdisk structures,” Appl. Phys. Lett. 77, 184 (2000).
[Crossref]
T. Thomay, T. Hanke, M. Tomas, F. Sotier, K. Beha, V. Knittel, M. Kahl, K. M. Whitaker, D. R. Gamelin, A. Leitenstorfer, and R. Bratschitsch, “Colloidal ZnO quantum dots in ultraviolet pillar microcavities,” Opt. Express 16, 9791 (2008).
[Crossref]
[PubMed]
M. Kahl, T. Thomay, V. Kohnle, K. Beha, J. Merlein, M. Hagner, A. Halm, J. Ziegler, T. Nann, Y. Fedutik, U. Woggon, M. Artemyev, F. Pérez-Willard, A. Leitenstorfer, and R. Bratschitsch, “Colloidal Quantum Dots in All-Dielectric High-Q Pillar Microcavities,” Nano Lett. 7, 2897 (2007).
[Crossref]
[PubMed]
W.-M. Schulz, R. Roβbach, M. Reischle, G. J. Beirne, M. Bommer, M. Jetter, and P. Michler, “Optical and structural properties of InP quantum dots embedded in (AlxGa1−x)0.51In0.49P,” Phys. Rev. B 79, 035329 (2009).
[Crossref]
M. Reischle, G. J. Beirne, W.-M. Schulz, M. Eichfelder, R. Roβbach, M. Jetter, and P. Michler, “Electrically pumped single-photon emission in the visible spectral range up to 80 K,” Opt. Express 16, 12771 (2008).
[PubMed]
D. Bimberg, “Quantum dots for lasers, amplifiers and computing,” J. Phys. D: Appl. Phys. 38, 2055 (2005).
[Crossref]
W. L. Barnes, G. Björk, J. M. Gérard, P. Jonsson, J. A. E. Wasey, P. T. Worthing, and V. Zwiller, “Solid-state single photon sources: light collection strategies,” Eur. Phys. J. D 18, 197 (2002).
[Crossref]
W.-M. Schulz, R. Roβbach, M. Reischle, G. J. Beirne, M. Bommer, M. Jetter, and P. Michler, “Optical and structural properties of InP quantum dots embedded in (AlxGa1−x)0.51In0.49P,” Phys. Rev. B 79, 035329 (2009).
[Crossref]
G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limitations on Practical Quantum Cryptography,” Phys. Rev. Lett. 85, 1330 (2000).
[Crossref]
[PubMed]
T. Thomay, T. Hanke, M. Tomas, F. Sotier, K. Beha, V. Knittel, M. Kahl, K. M. Whitaker, D. R. Gamelin, A. Leitenstorfer, and R. Bratschitsch, “Colloidal ZnO quantum dots in ultraviolet pillar microcavities,” Opt. Express 16, 9791 (2008).
[Crossref]
[PubMed]
M. Kahl, T. Thomay, V. Kohnle, K. Beha, J. Merlein, M. Hagner, A. Halm, J. Ziegler, T. Nann, Y. Fedutik, U. Woggon, M. Artemyev, F. Pérez-Willard, A. Leitenstorfer, and R. Bratschitsch, “Colloidal Quantum Dots in All-Dielectric High-Q Pillar Microcavities,” Nano Lett. 7, 2897 (2007).
[Crossref]
[PubMed]
T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, and A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96, 011107 (2010).
[Crossref]
J. M. Gérard, D. Barrier, J. Y. Marzin, R. Kuszelewicz, L. Manin, E. Costard, V. Thierry-Mieg, and T. Rivera, “Quantum boxes as active probes for photonic microstructures: The pillar microcavity case,” Appl. Phys. Lett. 69, 449 (1996).
[Crossref]
C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered Single Photons from a Quantum Dot,” Phys. Rev. Lett. 86, 1502 (2001).
[Crossref]
[PubMed]
T. Rivera, J. P. Debray, J. M. Gerard, L. Manin-Ferlazzo, and J. L. Oudar, “Optical losses in plasma-etched AlGaAs microresonators using reflection spectroscopy,” Appl. Phys. Lett. 74, 911 (1999).
[Crossref]
M. Eichfelder, W.-M. Schulz, M. Reischle, M. Wiesner, R. Roβbach, M. Jetter, and P. Michler, “Roomtemperature lasing of electrically pumped red-emitting InP/(Al0.20Ga0.80)0.51In0.49P quantum dots embedded in a vertical microcavity,” Appl. Phys. Lett. 95, 131107 (2009).
[Crossref]
M. Reischle, G. J. Beirne, W.-M. Schulz, M. Eichfelder, R. Roβbach, M. Jetter, and P. Michler, “Electrically pumped single-photon emission in the visible spectral range up to 80 K,” Opt. Express 16, 12771 (2008).
[PubMed]
M. Kahl, T. Thomay, V. Kohnle, K. Beha, J. Merlein, M. Hagner, A. Halm, J. Ziegler, T. Nann, Y. Fedutik, U. Woggon, M. Artemyev, F. Pérez-Willard, A. Leitenstorfer, and R. Bratschitsch, “Colloidal Quantum Dots in All-Dielectric High-Q Pillar Microcavities,” Nano Lett. 7, 2897 (2007).
[Crossref]
[PubMed]
T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, and A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96, 011107 (2010).
[Crossref]
C. Schneider, T. Heindel, A. Huggenberger, P. Weinmann, C. Kistner, M. Kamp, S. Reitzenstein, S. Höfling, and A. Forchel, “Single photon emission from a site-controlled quantum dot-micropillar cavity system,” Appl. Phys. Lett. 94, 111111 (2009).
[Crossref]
T. Thomay, T. Hanke, M. Tomas, F. Sotier, K. Beha, V. Knittel, M. Kahl, K. M. Whitaker, D. R. Gamelin, A. Leitenstorfer, and R. Bratschitsch, “Colloidal ZnO quantum dots in ultraviolet pillar microcavities,” Opt. Express 16, 9791 (2008).
[Crossref]
[PubMed]
T. Rivera, J. P. Debray, J. M. Gerard, L. Manin-Ferlazzo, and J. L. Oudar, “Optical losses in plasma-etched AlGaAs microresonators using reflection spectroscopy,” Appl. Phys. Lett. 74, 911 (1999).
[Crossref]
W. L. Barnes, G. Björk, J. M. Gérard, P. Jonsson, J. A. E. Wasey, P. T. Worthing, and V. Zwiller, “Solid-state single photon sources: light collection strategies,” Eur. Phys. J. D 18, 197 (2002).
[Crossref]
J. M. Gérard, D. Barrier, J. Y. Marzin, R. Kuszelewicz, L. Manin, E. Costard, V. Thierry-Mieg, and T. Rivera, “Quantum boxes as active probes for photonic microstructures: The pillar microcavity case,” Appl. Phys. Lett. 69, 449 (1996).
[Crossref]
H. Lohmeyer, J. Kalden, K. Sebald, C. Kruse, D. Hommel, and J. Gutowski, “Fine tuning of quantum-dot pillar microcavities by focused ion beam milling,” Appl. Phys. Lett. 92, 011116 (2008).
[Crossref]
H. Lohmeyer, K. Sebald, J. Gutowski, R. Kröoger, C. Kruse, D. Hommel, J. Wiersig, and F. Jahnke, “Resonant modes in monolithic nitride pillar microcavities,” Eur. Phys. J. B 48, 291 (2005).
[Crossref]
M. Kahl, T. Thomay, V. Kohnle, K. Beha, J. Merlein, M. Hagner, A. Halm, J. Ziegler, T. Nann, Y. Fedutik, U. Woggon, M. Artemyev, F. Pérez-Willard, A. Leitenstorfer, and R. Bratschitsch, “Colloidal Quantum Dots in All-Dielectric High-Q Pillar Microcavities,” Nano Lett. 7, 2897 (2007).
[Crossref]
[PubMed]
M. Kahl, T. Thomay, V. Kohnle, K. Beha, J. Merlein, M. Hagner, A. Halm, J. Ziegler, T. Nann, Y. Fedutik, U. Woggon, M. Artemyev, F. Pérez-Willard, A. Leitenstorfer, and R. Bratschitsch, “Colloidal Quantum Dots in All-Dielectric High-Q Pillar Microcavities,” Nano Lett. 7, 2897 (2007).
[Crossref]
[PubMed]
R. Hanbury-Brown and R. Q. Twiss, “The Question of Correlation Between Photonics in Coherent Light Rays,” Nature (London) 178, 1447 (1956).
[Crossref]
T. Thomay, T. Hanke, M. Tomas, F. Sotier, K. Beha, V. Knittel, M. Kahl, K. M. Whitaker, D. R. Gamelin, A. Leitenstorfer, and R. Bratschitsch, “Colloidal ZnO quantum dots in ultraviolet pillar microcavities,” Opt. Express 16, 9791 (2008).
[Crossref]
[PubMed]
T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, and A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96, 011107 (2010).
[Crossref]
C. Schneider, T. Heindel, A. Huggenberger, P. Weinmann, C. Kistner, M. Kamp, S. Reitzenstein, S. Höfling, and A. Forchel, “Single photon emission from a site-controlled quantum dot-micropillar cavity system,” Appl. Phys. Lett. 94, 111111 (2009).
[Crossref]
T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, and A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96, 011107 (2010).
[Crossref]
C. Schneider, T. Heindel, A. Huggenberger, P. Weinmann, C. Kistner, M. Kamp, S. Reitzenstein, S. Höfling, and A. Forchel, “Single photon emission from a site-controlled quantum dot-micropillar cavity system,” Appl. Phys. Lett. 94, 111111 (2009).
[Crossref]
H. Lohmeyer, J. Kalden, K. Sebald, C. Kruse, D. Hommel, and J. Gutowski, “Fine tuning of quantum-dot pillar microcavities by focused ion beam milling,” Appl. Phys. Lett. 92, 011116 (2008).
[Crossref]
H. Lohmeyer, K. Sebald, J. Gutowski, R. Kröoger, C. Kruse, D. Hommel, J. Wiersig, and F. Jahnke, “Resonant modes in monolithic nitride pillar microcavities,” Eur. Phys. J. B 48, 291 (2005).
[Crossref]
P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A Quantum Dot Single-Photon Turnstile Device,” Science 290, 2282 (2000).
[Crossref]
[PubMed]
P. Michler, A. Kiraz, L. Zhang, C. Becher, E. Hu, and A. Imamoglu, “Laser emission from quantum dots in microdisk structures,” Appl. Phys. Lett. 77, 184 (2000).
[Crossref]
C. Schneider, T. Heindel, A. Huggenberger, P. Weinmann, C. Kistner, M. Kamp, S. Reitzenstein, S. Höfling, and A. Forchel, “Single photon emission from a site-controlled quantum dot-micropillar cavity system,” Appl. Phys. Lett. 94, 111111 (2009).
[Crossref]
P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A Quantum Dot Single-Photon Turnstile Device,” Science 290, 2282 (2000).
[Crossref]
[PubMed]
P. Michler, A. Kiraz, L. Zhang, C. Becher, E. Hu, and A. Imamoglu, “Laser emission from quantum dots in microdisk structures,” Appl. Phys. Lett. 77, 184 (2000).
[Crossref]
H. Lohmeyer, K. Sebald, J. Gutowski, R. Kröoger, C. Kruse, D. Hommel, J. Wiersig, and F. Jahnke, “Resonant modes in monolithic nitride pillar microcavities,” Eur. Phys. J. B 48, 291 (2005).
[Crossref]
W.-M. Schulz, R. Roβbach, M. Reischle, G. J. Beirne, M. Bommer, M. Jetter, and P. Michler, “Optical and structural properties of InP quantum dots embedded in (AlxGa1−x)0.51In0.49P,” Phys. Rev. B 79, 035329 (2009).
[Crossref]
M. Eichfelder, W.-M. Schulz, M. Reischle, M. Wiesner, R. Roβbach, M. Jetter, and P. Michler, “Roomtemperature lasing of electrically pumped red-emitting InP/(Al0.20Ga0.80)0.51In0.49P quantum dots embedded in a vertical microcavity,” Appl. Phys. Lett. 95, 131107 (2009).
[Crossref]
M. Reischle, G. J. Beirne, W.-M. Schulz, M. Eichfelder, R. Roβbach, M. Jetter, and P. Michler, “Electrically pumped single-photon emission in the visible spectral range up to 80 K,” Opt. Express 16, 12771 (2008).
[PubMed]
W. L. Barnes, G. Björk, J. M. Gérard, P. Jonsson, J. A. E. Wasey, P. T. Worthing, and V. Zwiller, “Solid-state single photon sources: light collection strategies,” Eur. Phys. J. D 18, 197 (2002).
[Crossref]
T. Thomay, T. Hanke, M. Tomas, F. Sotier, K. Beha, V. Knittel, M. Kahl, K. M. Whitaker, D. R. Gamelin, A. Leitenstorfer, and R. Bratschitsch, “Colloidal ZnO quantum dots in ultraviolet pillar microcavities,” Opt. Express 16, 9791 (2008).
[Crossref]
[PubMed]
M. Kahl, T. Thomay, V. Kohnle, K. Beha, J. Merlein, M. Hagner, A. Halm, J. Ziegler, T. Nann, Y. Fedutik, U. Woggon, M. Artemyev, F. Pérez-Willard, A. Leitenstorfer, and R. Bratschitsch, “Colloidal Quantum Dots in All-Dielectric High-Q Pillar Microcavities,” Nano Lett. 7, 2897 (2007).
[Crossref]
[PubMed]
H. Lohmeyer, J. Kalden, K. Sebald, C. Kruse, D. Hommel, and J. Gutowski, “Fine tuning of quantum-dot pillar microcavities by focused ion beam milling,” Appl. Phys. Lett. 92, 011116 (2008).
[Crossref]
T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, and A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96, 011107 (2010).
[Crossref]
C. Schneider, T. Heindel, A. Huggenberger, P. Weinmann, C. Kistner, M. Kamp, S. Reitzenstein, S. Höfling, and A. Forchel, “Single photon emission from a site-controlled quantum dot-micropillar cavity system,” Appl. Phys. Lett. 94, 111111 (2009).
[Crossref]
H. P. A. van den Boom, W. Li, P. K. van Bennekom, I. T. Monroy, and G.-D. Khoe, “High-Capacity Transmission Over Polymer Optical Fiber,” IEEE J. Sel. Top. Quantum Electron. 7, 461 (2001).
[Crossref]
P. Michler, A. Kiraz, L. Zhang, C. Becher, E. Hu, and A. Imamoglu, “Laser emission from quantum dots in microdisk structures,” Appl. Phys. Lett. 77, 184 (2000).
[Crossref]
P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A Quantum Dot Single-Photon Turnstile Device,” Science 290, 2282 (2000).
[Crossref]
[PubMed]
C. Schneider, T. Heindel, A. Huggenberger, P. Weinmann, C. Kistner, M. Kamp, S. Reitzenstein, S. Höfling, and A. Forchel, “Single photon emission from a site-controlled quantum dot-micropillar cavity system,” Appl. Phys. Lett. 94, 111111 (2009).
[Crossref]
T. Thomay, T. Hanke, M. Tomas, F. Sotier, K. Beha, V. Knittel, M. Kahl, K. M. Whitaker, D. R. Gamelin, A. Leitenstorfer, and R. Bratschitsch, “Colloidal ZnO quantum dots in ultraviolet pillar microcavities,” Opt. Express 16, 9791 (2008).
[Crossref]
[PubMed]
M. Kahl, T. Thomay, V. Kohnle, K. Beha, J. Merlein, M. Hagner, A. Halm, J. Ziegler, T. Nann, Y. Fedutik, U. Woggon, M. Artemyev, F. Pérez-Willard, A. Leitenstorfer, and R. Bratschitsch, “Colloidal Quantum Dots in All-Dielectric High-Q Pillar Microcavities,” Nano Lett. 7, 2897 (2007).
[Crossref]
[PubMed]
I. N. Stranski and L. Krastanow, “Zur Theorie der orientierten Ausscheidung von Ionenkristailen aufeinander,” Akad. Wiss. Wien Kl.IIb 146, 797 (1938).
H. Lohmeyer, K. Sebald, J. Gutowski, R. Kröoger, C. Kruse, D. Hommel, J. Wiersig, and F. Jahnke, “Resonant modes in monolithic nitride pillar microcavities,” Eur. Phys. J. B 48, 291 (2005).
[Crossref]
K. Sebald, C. Kruse, and J. Wiersig, “Properties and prospects of blue-green emitting II-VI-based monolithic microcavities,” Phys. Stat. Sol. B 246, 255 (2009).
[Crossref]
H. Lohmeyer, J. Kalden, K. Sebald, C. Kruse, D. Hommel, and J. Gutowski, “Fine tuning of quantum-dot pillar microcavities by focused ion beam milling,” Appl. Phys. Lett. 92, 011116 (2008).
[Crossref]
H. Lohmeyer, K. Sebald, J. Gutowski, R. Kröoger, C. Kruse, D. Hommel, J. Wiersig, and F. Jahnke, “Resonant modes in monolithic nitride pillar microcavities,” Eur. Phys. J. B 48, 291 (2005).
[Crossref]
J. M. Gérard, D. Barrier, J. Y. Marzin, R. Kuszelewicz, L. Manin, E. Costard, V. Thierry-Mieg, and T. Rivera, “Quantum boxes as active probes for photonic microstructures: The pillar microcavity case,” Appl. Phys. Lett. 69, 449 (1996).
[Crossref]
T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, and A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96, 011107 (2010).
[Crossref]
T. Thomay, T. Hanke, M. Tomas, F. Sotier, K. Beha, V. Knittel, M. Kahl, K. M. Whitaker, D. R. Gamelin, A. Leitenstorfer, and R. Bratschitsch, “Colloidal ZnO quantum dots in ultraviolet pillar microcavities,” Opt. Express 16, 9791 (2008).
[Crossref]
[PubMed]
M. Kahl, T. Thomay, V. Kohnle, K. Beha, J. Merlein, M. Hagner, A. Halm, J. Ziegler, T. Nann, Y. Fedutik, U. Woggon, M. Artemyev, F. Pérez-Willard, A. Leitenstorfer, and R. Bratschitsch, “Colloidal Quantum Dots in All-Dielectric High-Q Pillar Microcavities,” Nano Lett. 7, 2897 (2007).
[Crossref]
[PubMed]
T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, and A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96, 011107 (2010).
[Crossref]
H. P. A. van den Boom, W. Li, P. K. van Bennekom, I. T. Monroy, and G.-D. Khoe, “High-Capacity Transmission Over Polymer Optical Fiber,” IEEE J. Sel. Top. Quantum Electron. 7, 461 (2001).
[Crossref]
H. Lohmeyer, J. Kalden, K. Sebald, C. Kruse, D. Hommel, and J. Gutowski, “Fine tuning of quantum-dot pillar microcavities by focused ion beam milling,” Appl. Phys. Lett. 92, 011116 (2008).
[Crossref]
H. Lohmeyer, K. Sebald, J. Gutowski, R. Kröoger, C. Kruse, D. Hommel, J. Wiersig, and F. Jahnke, “Resonant modes in monolithic nitride pillar microcavities,” Eur. Phys. J. B 48, 291 (2005).
[Crossref]
G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limitations on Practical Quantum Cryptography,” Phys. Rev. Lett. 85, 1330 (2000).
[Crossref]
[PubMed]
J. M. Gérard, D. Barrier, J. Y. Marzin, R. Kuszelewicz, L. Manin, E. Costard, V. Thierry-Mieg, and T. Rivera, “Quantum boxes as active probes for photonic microstructures: The pillar microcavity case,” Appl. Phys. Lett. 69, 449 (1996).
[Crossref]
T. Rivera, J. P. Debray, J. M. Gerard, L. Manin-Ferlazzo, and J. L. Oudar, “Optical losses in plasma-etched AlGaAs microresonators using reflection spectroscopy,” Appl. Phys. Lett. 74, 911 (1999).
[Crossref]
J. M. Gérard, D. Barrier, J. Y. Marzin, R. Kuszelewicz, L. Manin, E. Costard, V. Thierry-Mieg, and T. Rivera, “Quantum boxes as active probes for photonic microstructures: The pillar microcavity case,” Appl. Phys. Lett. 69, 449 (1996).
[Crossref]
M. Kahl, T. Thomay, V. Kohnle, K. Beha, J. Merlein, M. Hagner, A. Halm, J. Ziegler, T. Nann, Y. Fedutik, U. Woggon, M. Artemyev, F. Pérez-Willard, A. Leitenstorfer, and R. Bratschitsch, “Colloidal Quantum Dots in All-Dielectric High-Q Pillar Microcavities,” Nano Lett. 7, 2897 (2007).
[Crossref]
[PubMed]
M. Eichfelder, W.-M. Schulz, M. Reischle, M. Wiesner, R. Roβbach, M. Jetter, and P. Michler, “Roomtemperature lasing of electrically pumped red-emitting InP/(Al0.20Ga0.80)0.51In0.49P quantum dots embedded in a vertical microcavity,” Appl. Phys. Lett. 95, 131107 (2009).
[Crossref]
W.-M. Schulz, R. Roβbach, M. Reischle, G. J. Beirne, M. Bommer, M. Jetter, and P. Michler, “Optical and structural properties of InP quantum dots embedded in (AlxGa1−x)0.51In0.49P,” Phys. Rev. B 79, 035329 (2009).
[Crossref]
M. Reischle, G. J. Beirne, W.-M. Schulz, M. Eichfelder, R. Roβbach, M. Jetter, and P. Michler, “Electrically pumped single-photon emission in the visible spectral range up to 80 K,” Opt. Express 16, 12771 (2008).
[PubMed]
P. Michler, A. Kiraz, L. Zhang, C. Becher, E. Hu, and A. Imamoglu, “Laser emission from quantum dots in microdisk structures,” Appl. Phys. Lett. 77, 184 (2000).
[Crossref]
P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A Quantum Dot Single-Photon Turnstile Device,” Science 290, 2282 (2000).
[Crossref]
[PubMed]
H. P. A. van den Boom, W. Li, P. K. van Bennekom, I. T. Monroy, and G.-D. Khoe, “High-Capacity Transmission Over Polymer Optical Fiber,” IEEE J. Sel. Top. Quantum Electron. 7, 461 (2001).
[Crossref]
G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limitations on Practical Quantum Cryptography,” Phys. Rev. Lett. 85, 1330 (2000).
[Crossref]
[PubMed]
M. Kahl, T. Thomay, V. Kohnle, K. Beha, J. Merlein, M. Hagner, A. Halm, J. Ziegler, T. Nann, Y. Fedutik, U. Woggon, M. Artemyev, F. Pérez-Willard, A. Leitenstorfer, and R. Bratschitsch, “Colloidal Quantum Dots in All-Dielectric High-Q Pillar Microcavities,” Nano Lett. 7, 2897 (2007).
[Crossref]
[PubMed]
T. Rivera, J. P. Debray, J. M. Gerard, L. Manin-Ferlazzo, and J. L. Oudar, “Optical losses in plasma-etched AlGaAs microresonators using reflection spectroscopy,” Appl. Phys. Lett. 74, 911 (1999).
[Crossref]
M. Pelton, J. Vučković, G. S. Solomon, A. Scherer, and Y. Yamamoto, “Three-Dimensionally Confined Modes in Micropost Microcavities: Quality Factors and Purcell Factors,” IEEE J. Quantum Electron. 38, 170 (2002).
[Crossref]
C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered Single Photons from a Quantum Dot,” Phys. Rev. Lett. 86, 1502 (2001).
[Crossref]
[PubMed]
M. Kahl, T. Thomay, V. Kohnle, K. Beha, J. Merlein, M. Hagner, A. Halm, J. Ziegler, T. Nann, Y. Fedutik, U. Woggon, M. Artemyev, F. Pérez-Willard, A. Leitenstorfer, and R. Bratschitsch, “Colloidal Quantum Dots in All-Dielectric High-Q Pillar Microcavities,” Nano Lett. 7, 2897 (2007).
[Crossref]
[PubMed]
P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A Quantum Dot Single-Photon Turnstile Device,” Science 290, 2282 (2000).
[Crossref]
[PubMed]
S. Reyntjens and R. Puers, “A review of focused ion beam applications in microsystem technology,” J. Micromech. Microeng. 11, 287 (2001).
[Crossref]
M. Eichfelder, W.-M. Schulz, M. Reischle, M. Wiesner, R. Roβbach, M. Jetter, and P. Michler, “Roomtemperature lasing of electrically pumped red-emitting InP/(Al0.20Ga0.80)0.51In0.49P quantum dots embedded in a vertical microcavity,” Appl. Phys. Lett. 95, 131107 (2009).
[Crossref]
W.-M. Schulz, R. Roβbach, M. Reischle, G. J. Beirne, M. Bommer, M. Jetter, and P. Michler, “Optical and structural properties of InP quantum dots embedded in (AlxGa1−x)0.51In0.49P,” Phys. Rev. B 79, 035329 (2009).
[Crossref]
M. Reischle, G. J. Beirne, W.-M. Schulz, M. Eichfelder, R. Roβbach, M. Jetter, and P. Michler, “Electrically pumped single-photon emission in the visible spectral range up to 80 K,” Opt. Express 16, 12771 (2008).
[PubMed]
T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, and A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96, 011107 (2010).
[Crossref]
C. Schneider, T. Heindel, A. Huggenberger, P. Weinmann, C. Kistner, M. Kamp, S. Reitzenstein, S. Höfling, and A. Forchel, “Single photon emission from a site-controlled quantum dot-micropillar cavity system,” Appl. Phys. Lett. 94, 111111 (2009).
[Crossref]
S. Reyntjens and R. Puers, “A review of focused ion beam applications in microsystem technology,” J. Micromech. Microeng. 11, 287 (2001).
[Crossref]
T. Rivera, J. P. Debray, J. M. Gerard, L. Manin-Ferlazzo, and J. L. Oudar, “Optical losses in plasma-etched AlGaAs microresonators using reflection spectroscopy,” Appl. Phys. Lett. 74, 911 (1999).
[Crossref]
J. M. Gérard, D. Barrier, J. Y. Marzin, R. Kuszelewicz, L. Manin, E. Costard, V. Thierry-Mieg, and T. Rivera, “Quantum boxes as active probes for photonic microstructures: The pillar microcavity case,” Appl. Phys. Lett. 69, 449 (1996).
[Crossref]
W.-M. Schulz, R. Roβbach, M. Reischle, G. J. Beirne, M. Bommer, M. Jetter, and P. Michler, “Optical and structural properties of InP quantum dots embedded in (AlxGa1−x)0.51In0.49P,” Phys. Rev. B 79, 035329 (2009).
[Crossref]
M. Eichfelder, W.-M. Schulz, M. Reischle, M. Wiesner, R. Roβbach, M. Jetter, and P. Michler, “Roomtemperature lasing of electrically pumped red-emitting InP/(Al0.20Ga0.80)0.51In0.49P quantum dots embedded in a vertical microcavity,” Appl. Phys. Lett. 95, 131107 (2009).
[Crossref]
M. Reischle, G. J. Beirne, W.-M. Schulz, M. Eichfelder, R. Roβbach, M. Jetter, and P. Michler, “Electrically pumped single-photon emission in the visible spectral range up to 80 K,” Opt. Express 16, 12771 (2008).
[PubMed]
Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40, 939 (1982).
[Crossref]
G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limitations on Practical Quantum Cryptography,” Phys. Rev. Lett. 85, 1330 (2000).
[Crossref]
[PubMed]
C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered Single Photons from a Quantum Dot,” Phys. Rev. Lett. 86, 1502 (2001).
[Crossref]
[PubMed]
M. Pelton, J. Vučković, G. S. Solomon, A. Scherer, and Y. Yamamoto, “Three-Dimensionally Confined Modes in Micropost Microcavities: Quality Factors and Purcell Factors,” IEEE J. Quantum Electron. 38, 170 (2002).
[Crossref]
T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, and A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96, 011107 (2010).
[Crossref]
C. Schneider, T. Heindel, A. Huggenberger, P. Weinmann, C. Kistner, M. Kamp, S. Reitzenstein, S. Höfling, and A. Forchel, “Single photon emission from a site-controlled quantum dot-micropillar cavity system,” Appl. Phys. Lett. 94, 111111 (2009).
[Crossref]
P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A Quantum Dot Single-Photon Turnstile Device,” Science 290, 2282 (2000).
[Crossref]
[PubMed]
W.-M. Schulz, R. Roβbach, M. Reischle, G. J. Beirne, M. Bommer, M. Jetter, and P. Michler, “Optical and structural properties of InP quantum dots embedded in (AlxGa1−x)0.51In0.49P,” Phys. Rev. B 79, 035329 (2009).
[Crossref]
M. Eichfelder, W.-M. Schulz, M. Reischle, M. Wiesner, R. Roβbach, M. Jetter, and P. Michler, “Roomtemperature lasing of electrically pumped red-emitting InP/(Al0.20Ga0.80)0.51In0.49P quantum dots embedded in a vertical microcavity,” Appl. Phys. Lett. 95, 131107 (2009).
[Crossref]
M. Reischle, G. J. Beirne, W.-M. Schulz, M. Eichfelder, R. Roβbach, M. Jetter, and P. Michler, “Electrically pumped single-photon emission in the visible spectral range up to 80 K,” Opt. Express 16, 12771 (2008).
[PubMed]
K. Sebald, C. Kruse, and J. Wiersig, “Properties and prospects of blue-green emitting II-VI-based monolithic microcavities,” Phys. Stat. Sol. B 246, 255 (2009).
[Crossref]
H. Lohmeyer, J. Kalden, K. Sebald, C. Kruse, D. Hommel, and J. Gutowski, “Fine tuning of quantum-dot pillar microcavities by focused ion beam milling,” Appl. Phys. Lett. 92, 011116 (2008).
[Crossref]
H. Lohmeyer, K. Sebald, J. Gutowski, R. Kröoger, C. Kruse, D. Hommel, J. Wiersig, and F. Jahnke, “Resonant modes in monolithic nitride pillar microcavities,” Eur. Phys. J. B 48, 291 (2005).
[Crossref]
C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered Single Photons from a Quantum Dot,” Phys. Rev. Lett. 86, 1502 (2001).
[Crossref]
[PubMed]
M. Pelton, J. Vučković, G. S. Solomon, A. Scherer, and Y. Yamamoto, “Three-Dimensionally Confined Modes in Micropost Microcavities: Quality Factors and Purcell Factors,” IEEE J. Quantum Electron. 38, 170 (2002).
[Crossref]
T. Thomay, T. Hanke, M. Tomas, F. Sotier, K. Beha, V. Knittel, M. Kahl, K. M. Whitaker, D. R. Gamelin, A. Leitenstorfer, and R. Bratschitsch, “Colloidal ZnO quantum dots in ultraviolet pillar microcavities,” Opt. Express 16, 9791 (2008).
[Crossref]
[PubMed]
I. N. Stranski and L. Krastanow, “Zur Theorie der orientierten Ausscheidung von Ionenkristailen aufeinander,” Akad. Wiss. Wien Kl.IIb 146, 797 (1938).
J. M. Gérard, D. Barrier, J. Y. Marzin, R. Kuszelewicz, L. Manin, E. Costard, V. Thierry-Mieg, and T. Rivera, “Quantum boxes as active probes for photonic microstructures: The pillar microcavity case,” Appl. Phys. Lett. 69, 449 (1996).
[Crossref]
T. Thomay, T. Hanke, M. Tomas, F. Sotier, K. Beha, V. Knittel, M. Kahl, K. M. Whitaker, D. R. Gamelin, A. Leitenstorfer, and R. Bratschitsch, “Colloidal ZnO quantum dots in ultraviolet pillar microcavities,” Opt. Express 16, 9791 (2008).
[Crossref]
[PubMed]
M. Kahl, T. Thomay, V. Kohnle, K. Beha, J. Merlein, M. Hagner, A. Halm, J. Ziegler, T. Nann, Y. Fedutik, U. Woggon, M. Artemyev, F. Pérez-Willard, A. Leitenstorfer, and R. Bratschitsch, “Colloidal Quantum Dots in All-Dielectric High-Q Pillar Microcavities,” Nano Lett. 7, 2897 (2007).
[Crossref]
[PubMed]
T. Thomay, T. Hanke, M. Tomas, F. Sotier, K. Beha, V. Knittel, M. Kahl, K. M. Whitaker, D. R. Gamelin, A. Leitenstorfer, and R. Bratschitsch, “Colloidal ZnO quantum dots in ultraviolet pillar microcavities,” Opt. Express 16, 9791 (2008).
[Crossref]
[PubMed]
R. Hanbury-Brown and R. Q. Twiss, “The Question of Correlation Between Photonics in Coherent Light Rays,” Nature (London) 178, 1447 (1956).
[Crossref]
H. P. A. van den Boom, W. Li, P. K. van Bennekom, I. T. Monroy, and G.-D. Khoe, “High-Capacity Transmission Over Polymer Optical Fiber,” IEEE J. Sel. Top. Quantum Electron. 7, 461 (2001).
[Crossref]
H. P. A. van den Boom, W. Li, P. K. van Bennekom, I. T. Monroy, and G.-D. Khoe, “High-Capacity Transmission Over Polymer Optical Fiber,” IEEE J. Sel. Top. Quantum Electron. 7, 461 (2001).
[Crossref]
M. Pelton, J. Vučković, G. S. Solomon, A. Scherer, and Y. Yamamoto, “Three-Dimensionally Confined Modes in Micropost Microcavities: Quality Factors and Purcell Factors,” IEEE J. Quantum Electron. 38, 170 (2002).
[Crossref]
W. L. Barnes, G. Björk, J. M. Gérard, P. Jonsson, J. A. E. Wasey, P. T. Worthing, and V. Zwiller, “Solid-state single photon sources: light collection strategies,” Eur. Phys. J. D 18, 197 (2002).
[Crossref]
C. Schneider, T. Heindel, A. Huggenberger, P. Weinmann, C. Kistner, M. Kamp, S. Reitzenstein, S. Höfling, and A. Forchel, “Single photon emission from a site-controlled quantum dot-micropillar cavity system,” Appl. Phys. Lett. 94, 111111 (2009).
[Crossref]
T. Thomay, T. Hanke, M. Tomas, F. Sotier, K. Beha, V. Knittel, M. Kahl, K. M. Whitaker, D. R. Gamelin, A. Leitenstorfer, and R. Bratschitsch, “Colloidal ZnO quantum dots in ultraviolet pillar microcavities,” Opt. Express 16, 9791 (2008).
[Crossref]
[PubMed]
K. Sebald, C. Kruse, and J. Wiersig, “Properties and prospects of blue-green emitting II-VI-based monolithic microcavities,” Phys. Stat. Sol. B 246, 255 (2009).
[Crossref]
H. Lohmeyer, K. Sebald, J. Gutowski, R. Kröoger, C. Kruse, D. Hommel, J. Wiersig, and F. Jahnke, “Resonant modes in monolithic nitride pillar microcavities,” Eur. Phys. J. B 48, 291 (2005).
[Crossref]
M. Eichfelder, W.-M. Schulz, M. Reischle, M. Wiesner, R. Roβbach, M. Jetter, and P. Michler, “Roomtemperature lasing of electrically pumped red-emitting InP/(Al0.20Ga0.80)0.51In0.49P quantum dots embedded in a vertical microcavity,” Appl. Phys. Lett. 95, 131107 (2009).
[Crossref]
M. Kahl, T. Thomay, V. Kohnle, K. Beha, J. Merlein, M. Hagner, A. Halm, J. Ziegler, T. Nann, Y. Fedutik, U. Woggon, M. Artemyev, F. Pérez-Willard, A. Leitenstorfer, and R. Bratschitsch, “Colloidal Quantum Dots in All-Dielectric High-Q Pillar Microcavities,” Nano Lett. 7, 2897 (2007).
[Crossref]
[PubMed]
W. L. Barnes, G. Björk, J. M. Gérard, P. Jonsson, J. A. E. Wasey, P. T. Worthing, and V. Zwiller, “Solid-state single photon sources: light collection strategies,” Eur. Phys. J. D 18, 197 (2002).
[Crossref]
M. Pelton, J. Vučković, G. S. Solomon, A. Scherer, and Y. Yamamoto, “Three-Dimensionally Confined Modes in Micropost Microcavities: Quality Factors and Purcell Factors,” IEEE J. Quantum Electron. 38, 170 (2002).
[Crossref]
C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered Single Photons from a Quantum Dot,” Phys. Rev. Lett. 86, 1502 (2001).
[Crossref]
[PubMed]
P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A Quantum Dot Single-Photon Turnstile Device,” Science 290, 2282 (2000).
[Crossref]
[PubMed]
P. Michler, A. Kiraz, L. Zhang, C. Becher, E. Hu, and A. Imamoglu, “Laser emission from quantum dots in microdisk structures,” Appl. Phys. Lett. 77, 184 (2000).
[Crossref]
M. Kahl, T. Thomay, V. Kohnle, K. Beha, J. Merlein, M. Hagner, A. Halm, J. Ziegler, T. Nann, Y. Fedutik, U. Woggon, M. Artemyev, F. Pérez-Willard, A. Leitenstorfer, and R. Bratschitsch, “Colloidal Quantum Dots in All-Dielectric High-Q Pillar Microcavities,” Nano Lett. 7, 2897 (2007).
[Crossref]
[PubMed]
W. L. Barnes, G. Björk, J. M. Gérard, P. Jonsson, J. A. E. Wasey, P. T. Worthing, and V. Zwiller, “Solid-state single photon sources: light collection strategies,” Eur. Phys. J. D 18, 197 (2002).
[Crossref]