Abstract

Using focused ion beam etching techniques, micropillar cavities were fabricated from a high reflective AlAs/AlGaAs distributed Bragg reflector planar cavity containing self-assembled InP quantum dots in (Al0.20Ga0.80)0.51In0.49P barrier layers. The mode spectra of pillars with different diameters were investigated using micro-photoluminescence, showing excellent agreement with theory. Quality factors of the pillar cavities up to 3650 were observed. Furthermore, for a microcavity pillar with 1.26 µm diameter, single-photon emission is demonstrated by performing photon correlation measurements under pulsed excitation.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Arakawa, H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40, 939 (1982).
    [CrossRef]
  2. D. Bimberg, “Quantum dots for lasers, amplifiers and computing,” J. Phys. D: Appl. Phys. 38, 2055 (2005).
    [CrossRef]
  3. P. Michler, A. Kiraz, L. Zhang, C. Becher, E. Hu, A. Imamoglu, “Laser emission from quantum dots in microdisk structures,” Appl. Phys. Lett. 77, 184 (2000).
    [CrossRef]
  4. P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, A. Imamoglu, “A Quantum Dot Single-Photon Turnstile Device,” Science 290, 2282 (2000).
    [CrossRef] [PubMed]
  5. C. Santori, M. Pelton, G. Solomon, Y. Dale, Y. Yamamoto, “Triggered Single Photons from a Quantum Dot,” Phys. Rev. Lett. 86, 1502 (2001).
    [CrossRef] [PubMed]
  6. M. Pelton, J. Vučković, G. S. Solomon, A. Scherer, Y. Yamamoto, “Three-Dimensionally Confined Modes in Micropost Microcavities: Quality Factors and Purcell Factors,” IEEE J. Quantum Electron. 38, 170 (2002).
    [CrossRef]
  7. M. Kahl, T. Thomay, V. Kohnle, K. Beha, J. Merlein, M. Hagner, A. Halm, J. Ziegler, T. Nann, Y. Fedutik, U. Woggon, M. Artemyev, F. Pérez-Willard, A. Leitenstorfer, R. Bratschitsch, “Colloidal Quantum Dots in All-Dielectric High-Q Pillar Microcavities,” Nano Lett. 7, 2897 (2007).
    [CrossRef] [PubMed]
  8. H. Lohmeyer, J. Kalden, K. Sebald, C. Kruse, D. Hommel, J. Gutowski, “Fine tuning of quantum-dot pillar microcavities by focused ion beam milling,” Appl. Phys. Lett. 92, 011116 (2008).
    [CrossRef]
  9. K. Sebald, C. Kruse, J. Wiersig, “Properties and prospects of blue-green emitting II-VI-based monolithic microcavities,” Phys. Stat. Sol. B 246, 255 (2009).
    [CrossRef]
  10. T. Thomay, T. Hanke, M. Tomas, F. Sotier, K. Beha, V. Knittel, M. Kahl, K. M. Whitaker, D. R. Gamelin, A. Leitenstorfer, R. Bratschitsch, “Colloidal ZnO quantum dots in ultraviolet pillar microcavities,” Opt. Express 16, 9791 (2008).
    [CrossRef] [PubMed]
  11. H. Lohmeyer, K. Sebald, J. Gutowski, R. Kröoger, C. Kruse, D. Hommel, J. Wiersig, F. Jahnke, “Resonant modes in monolithic nitride pillar microcavities,” Eur. Phys. J. B 48, 291 (2005).
    [CrossRef]
  12. M. Karl, S. Li, T. Passow, W. Löffler, H. Kalt, M. Hetterich, “Localized and delocalized modes in coupled optical micropillar cavities,” Opt. Express 15, 8191 (2007).
    [CrossRef] [PubMed]
  13. T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96, 011107 (2010).
    [CrossRef]
  14. M. Reischle, G. J. Beirne, W.-M. Schulz, M. Eichfelder, R. Roβbach, M. Jetter, P. Michler, “Electrically pumped single-photon emission in the visible spectral range up to 80 K,” Opt. Express 16, 12771 (2008).
    [PubMed]
  15. W.-M. Schulz, R. Roβbach, M. Reischle, G. J. Beirne, M. Bommer, M. Jetter, P. Michler, “Optical and structural properties of InP quantum dots embedded in (AlxGa1−x)0.51In0.49P,” Phys. Rev. B 79, 035329 (2009).
    [CrossRef]
  16. G. Brassard, N. Lütkenhaus, T. Mor, B. C. Sanders, “Limitations on Practical Quantum Cryptography,” Phys. Rev. Lett. 85, 1330 (2000).
    [CrossRef] [PubMed]
  17. H. P. A. van den Boom, W. Li, P. K. van Bennekom, I. T. Monroy, G.-D. Khoe, “High-Capacity Transmission Over Polymer Optical Fiber,” IEEE J. Sel. Top. Quantum Electron. 7, 461 (2001).
    [CrossRef]
  18. I. N. Stranski, L. Krastanow, “Zur Theorie der orientierten Ausscheidung von Ionenkristailen aufeinander,” Akad. Wiss. Wien Kl.IIb 146, 797 (1938).
  19. M. Eichfelder, W.-M. Schulz, M. Reischle, M. Wiesner, R. Roβbach, M. Jetter, P. Michler, “Roomtemperature lasing of electrically pumped red-emitting InP/(Al0.20Ga0.80)0.51In0.49P quantum dots embedded in a vertical microcavity,” Appl. Phys. Lett. 95, 131107 (2009).
    [CrossRef]
  20. LayTec GmbH, Berlin, Germany, www.laytec.de.
  21. R. Hanbury-Brown, R. Q. Twiss, “The Question of Correlation Between Photonics in Coherent Light Rays,” Nature (London) 178, 1447 (1956).
    [CrossRef]
  22. J. M. Gérard, D. Barrier, J. Y. Marzin, R. Kuszelewicz, L. Manin, E. Costard, V. Thierry-Mieg, T. Rivera, “Quantum boxes as active probes for photonic microstructures: The pillar microcavity case,” Appl. Phys. Lett. 69, 449 (1996).
    [CrossRef]
  23. T. Rivera, J. P. Debray, J. M. Gerard, L. Manin-Ferlazzo, J. L. Oudar, “Optical losses in plasma-etched AlGaAs microresonators using reflection spectroscopy,” Appl. Phys. Lett. 74, 911 (1999).
    [CrossRef]
  24. S. Reyntjens, R. Puers, “A review of focused ion beam applications in microsystem technology,” J. Micromech. Microeng. 11, 287 (2001).
    [CrossRef]
  25. C. Schneider, T. Heindel, A. Huggenberger, P. Weinmann, C. Kistner, M. Kamp, S. Reitzenstein, S. Höfling, A. Forchel, “Single photon emission from a site-controlled quantum dot-micropillar cavity system,” Appl. Phys. Lett. 94, 111111 (2009).
    [CrossRef]
  26. R. Brouri, A. Beveratos, J.-P. Poizat, P. Grangier, “Photon antibunching in the fluorescence of individual color centers in diamond,” Opt. Lett. 25, 1294 (2000).
    [CrossRef]
  27. W. L. Barnes, G. Björk, J. M. Gérard, P. Jonsson, J. A. E. Wasey, P. T. Worthing, V. Zwiller, “Solid-state single photon sources: light collection strategies,” Eur. Phys. J. D 18, 197 (2002).
    [CrossRef]

2010 (1)

T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96, 011107 (2010).
[CrossRef]

2009 (4)

C. Schneider, T. Heindel, A. Huggenberger, P. Weinmann, C. Kistner, M. Kamp, S. Reitzenstein, S. Höfling, A. Forchel, “Single photon emission from a site-controlled quantum dot-micropillar cavity system,” Appl. Phys. Lett. 94, 111111 (2009).
[CrossRef]

K. Sebald, C. Kruse, J. Wiersig, “Properties and prospects of blue-green emitting II-VI-based monolithic microcavities,” Phys. Stat. Sol. B 246, 255 (2009).
[CrossRef]

W.-M. Schulz, R. Roβbach, M. Reischle, G. J. Beirne, M. Bommer, M. Jetter, P. Michler, “Optical and structural properties of InP quantum dots embedded in (AlxGa1−x)0.51In0.49P,” Phys. Rev. B 79, 035329 (2009).
[CrossRef]

M. Eichfelder, W.-M. Schulz, M. Reischle, M. Wiesner, R. Roβbach, M. Jetter, P. Michler, “Roomtemperature lasing of electrically pumped red-emitting InP/(Al0.20Ga0.80)0.51In0.49P quantum dots embedded in a vertical microcavity,” Appl. Phys. Lett. 95, 131107 (2009).
[CrossRef]

2008 (3)

2007 (2)

M. Karl, S. Li, T. Passow, W. Löffler, H. Kalt, M. Hetterich, “Localized and delocalized modes in coupled optical micropillar cavities,” Opt. Express 15, 8191 (2007).
[CrossRef] [PubMed]

M. Kahl, T. Thomay, V. Kohnle, K. Beha, J. Merlein, M. Hagner, A. Halm, J. Ziegler, T. Nann, Y. Fedutik, U. Woggon, M. Artemyev, F. Pérez-Willard, A. Leitenstorfer, R. Bratschitsch, “Colloidal Quantum Dots in All-Dielectric High-Q Pillar Microcavities,” Nano Lett. 7, 2897 (2007).
[CrossRef] [PubMed]

2005 (2)

D. Bimberg, “Quantum dots for lasers, amplifiers and computing,” J. Phys. D: Appl. Phys. 38, 2055 (2005).
[CrossRef]

H. Lohmeyer, K. Sebald, J. Gutowski, R. Kröoger, C. Kruse, D. Hommel, J. Wiersig, F. Jahnke, “Resonant modes in monolithic nitride pillar microcavities,” Eur. Phys. J. B 48, 291 (2005).
[CrossRef]

2002 (2)

W. L. Barnes, G. Björk, J. M. Gérard, P. Jonsson, J. A. E. Wasey, P. T. Worthing, V. Zwiller, “Solid-state single photon sources: light collection strategies,” Eur. Phys. J. D 18, 197 (2002).
[CrossRef]

M. Pelton, J. Vučković, G. S. Solomon, A. Scherer, Y. Yamamoto, “Three-Dimensionally Confined Modes in Micropost Microcavities: Quality Factors and Purcell Factors,” IEEE J. Quantum Electron. 38, 170 (2002).
[CrossRef]

2001 (3)

C. Santori, M. Pelton, G. Solomon, Y. Dale, Y. Yamamoto, “Triggered Single Photons from a Quantum Dot,” Phys. Rev. Lett. 86, 1502 (2001).
[CrossRef] [PubMed]

S. Reyntjens, R. Puers, “A review of focused ion beam applications in microsystem technology,” J. Micromech. Microeng. 11, 287 (2001).
[CrossRef]

H. P. A. van den Boom, W. Li, P. K. van Bennekom, I. T. Monroy, G.-D. Khoe, “High-Capacity Transmission Over Polymer Optical Fiber,” IEEE J. Sel. Top. Quantum Electron. 7, 461 (2001).
[CrossRef]

2000 (4)

P. Michler, A. Kiraz, L. Zhang, C. Becher, E. Hu, A. Imamoglu, “Laser emission from quantum dots in microdisk structures,” Appl. Phys. Lett. 77, 184 (2000).
[CrossRef]

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, A. Imamoglu, “A Quantum Dot Single-Photon Turnstile Device,” Science 290, 2282 (2000).
[CrossRef] [PubMed]

G. Brassard, N. Lütkenhaus, T. Mor, B. C. Sanders, “Limitations on Practical Quantum Cryptography,” Phys. Rev. Lett. 85, 1330 (2000).
[CrossRef] [PubMed]

R. Brouri, A. Beveratos, J.-P. Poizat, P. Grangier, “Photon antibunching in the fluorescence of individual color centers in diamond,” Opt. Lett. 25, 1294 (2000).
[CrossRef]

1999 (1)

T. Rivera, J. P. Debray, J. M. Gerard, L. Manin-Ferlazzo, J. L. Oudar, “Optical losses in plasma-etched AlGaAs microresonators using reflection spectroscopy,” Appl. Phys. Lett. 74, 911 (1999).
[CrossRef]

1996 (1)

J. M. Gérard, D. Barrier, J. Y. Marzin, R. Kuszelewicz, L. Manin, E. Costard, V. Thierry-Mieg, T. Rivera, “Quantum boxes as active probes for photonic microstructures: The pillar microcavity case,” Appl. Phys. Lett. 69, 449 (1996).
[CrossRef]

1982 (1)

Y. Arakawa, H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40, 939 (1982).
[CrossRef]

1956 (1)

R. Hanbury-Brown, R. Q. Twiss, “The Question of Correlation Between Photonics in Coherent Light Rays,” Nature (London) 178, 1447 (1956).
[CrossRef]

1938 (1)

I. N. Stranski, L. Krastanow, “Zur Theorie der orientierten Ausscheidung von Ionenkristailen aufeinander,” Akad. Wiss. Wien Kl.IIb 146, 797 (1938).

Arakawa, Y.

Y. Arakawa, H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40, 939 (1982).
[CrossRef]

Artemyev, M.

M. Kahl, T. Thomay, V. Kohnle, K. Beha, J. Merlein, M. Hagner, A. Halm, J. Ziegler, T. Nann, Y. Fedutik, U. Woggon, M. Artemyev, F. Pérez-Willard, A. Leitenstorfer, R. Bratschitsch, “Colloidal Quantum Dots in All-Dielectric High-Q Pillar Microcavities,” Nano Lett. 7, 2897 (2007).
[CrossRef] [PubMed]

Barnes, W. L.

W. L. Barnes, G. Björk, J. M. Gérard, P. Jonsson, J. A. E. Wasey, P. T. Worthing, V. Zwiller, “Solid-state single photon sources: light collection strategies,” Eur. Phys. J. D 18, 197 (2002).
[CrossRef]

Barrier, D.

J. M. Gérard, D. Barrier, J. Y. Marzin, R. Kuszelewicz, L. Manin, E. Costard, V. Thierry-Mieg, T. Rivera, “Quantum boxes as active probes for photonic microstructures: The pillar microcavity case,” Appl. Phys. Lett. 69, 449 (1996).
[CrossRef]

Becher, C.

P. Michler, A. Kiraz, L. Zhang, C. Becher, E. Hu, A. Imamoglu, “Laser emission from quantum dots in microdisk structures,” Appl. Phys. Lett. 77, 184 (2000).
[CrossRef]

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, A. Imamoglu, “A Quantum Dot Single-Photon Turnstile Device,” Science 290, 2282 (2000).
[CrossRef] [PubMed]

Beha, K.

T. Thomay, T. Hanke, M. Tomas, F. Sotier, K. Beha, V. Knittel, M. Kahl, K. M. Whitaker, D. R. Gamelin, A. Leitenstorfer, R. Bratschitsch, “Colloidal ZnO quantum dots in ultraviolet pillar microcavities,” Opt. Express 16, 9791 (2008).
[CrossRef] [PubMed]

M. Kahl, T. Thomay, V. Kohnle, K. Beha, J. Merlein, M. Hagner, A. Halm, J. Ziegler, T. Nann, Y. Fedutik, U. Woggon, M. Artemyev, F. Pérez-Willard, A. Leitenstorfer, R. Bratschitsch, “Colloidal Quantum Dots in All-Dielectric High-Q Pillar Microcavities,” Nano Lett. 7, 2897 (2007).
[CrossRef] [PubMed]

Beirne, G. J.

W.-M. Schulz, R. Roβbach, M. Reischle, G. J. Beirne, M. Bommer, M. Jetter, P. Michler, “Optical and structural properties of InP quantum dots embedded in (AlxGa1−x)0.51In0.49P,” Phys. Rev. B 79, 035329 (2009).
[CrossRef]

M. Reischle, G. J. Beirne, W.-M. Schulz, M. Eichfelder, R. Roβbach, M. Jetter, P. Michler, “Electrically pumped single-photon emission in the visible spectral range up to 80 K,” Opt. Express 16, 12771 (2008).
[PubMed]

Beveratos, A.

Bimberg, D.

D. Bimberg, “Quantum dots for lasers, amplifiers and computing,” J. Phys. D: Appl. Phys. 38, 2055 (2005).
[CrossRef]

Björk, G.

W. L. Barnes, G. Björk, J. M. Gérard, P. Jonsson, J. A. E. Wasey, P. T. Worthing, V. Zwiller, “Solid-state single photon sources: light collection strategies,” Eur. Phys. J. D 18, 197 (2002).
[CrossRef]

Bommer, M.

W.-M. Schulz, R. Roβbach, M. Reischle, G. J. Beirne, M. Bommer, M. Jetter, P. Michler, “Optical and structural properties of InP quantum dots embedded in (AlxGa1−x)0.51In0.49P,” Phys. Rev. B 79, 035329 (2009).
[CrossRef]

Brassard, G.

G. Brassard, N. Lütkenhaus, T. Mor, B. C. Sanders, “Limitations on Practical Quantum Cryptography,” Phys. Rev. Lett. 85, 1330 (2000).
[CrossRef] [PubMed]

Bratschitsch, R.

T. Thomay, T. Hanke, M. Tomas, F. Sotier, K. Beha, V. Knittel, M. Kahl, K. M. Whitaker, D. R. Gamelin, A. Leitenstorfer, R. Bratschitsch, “Colloidal ZnO quantum dots in ultraviolet pillar microcavities,” Opt. Express 16, 9791 (2008).
[CrossRef] [PubMed]

M. Kahl, T. Thomay, V. Kohnle, K. Beha, J. Merlein, M. Hagner, A. Halm, J. Ziegler, T. Nann, Y. Fedutik, U. Woggon, M. Artemyev, F. Pérez-Willard, A. Leitenstorfer, R. Bratschitsch, “Colloidal Quantum Dots in All-Dielectric High-Q Pillar Microcavities,” Nano Lett. 7, 2897 (2007).
[CrossRef] [PubMed]

Braun, T.

T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96, 011107 (2010).
[CrossRef]

Brouri, R.

Costard, E.

J. M. Gérard, D. Barrier, J. Y. Marzin, R. Kuszelewicz, L. Manin, E. Costard, V. Thierry-Mieg, T. Rivera, “Quantum boxes as active probes for photonic microstructures: The pillar microcavity case,” Appl. Phys. Lett. 69, 449 (1996).
[CrossRef]

Dale, Y.

C. Santori, M. Pelton, G. Solomon, Y. Dale, Y. Yamamoto, “Triggered Single Photons from a Quantum Dot,” Phys. Rev. Lett. 86, 1502 (2001).
[CrossRef] [PubMed]

Debray, J. P.

T. Rivera, J. P. Debray, J. M. Gerard, L. Manin-Ferlazzo, J. L. Oudar, “Optical losses in plasma-etched AlGaAs microresonators using reflection spectroscopy,” Appl. Phys. Lett. 74, 911 (1999).
[CrossRef]

Eichfelder, M.

M. Eichfelder, W.-M. Schulz, M. Reischle, M. Wiesner, R. Roβbach, M. Jetter, P. Michler, “Roomtemperature lasing of electrically pumped red-emitting InP/(Al0.20Ga0.80)0.51In0.49P quantum dots embedded in a vertical microcavity,” Appl. Phys. Lett. 95, 131107 (2009).
[CrossRef]

M. Reischle, G. J. Beirne, W.-M. Schulz, M. Eichfelder, R. Roβbach, M. Jetter, P. Michler, “Electrically pumped single-photon emission in the visible spectral range up to 80 K,” Opt. Express 16, 12771 (2008).
[PubMed]

Fedutik, Y.

M. Kahl, T. Thomay, V. Kohnle, K. Beha, J. Merlein, M. Hagner, A. Halm, J. Ziegler, T. Nann, Y. Fedutik, U. Woggon, M. Artemyev, F. Pérez-Willard, A. Leitenstorfer, R. Bratschitsch, “Colloidal Quantum Dots in All-Dielectric High-Q Pillar Microcavities,” Nano Lett. 7, 2897 (2007).
[CrossRef] [PubMed]

Forchel, A.

T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96, 011107 (2010).
[CrossRef]

C. Schneider, T. Heindel, A. Huggenberger, P. Weinmann, C. Kistner, M. Kamp, S. Reitzenstein, S. Höfling, A. Forchel, “Single photon emission from a site-controlled quantum dot-micropillar cavity system,” Appl. Phys. Lett. 94, 111111 (2009).
[CrossRef]

Gamelin, D. R.

Gerard, J. M.

T. Rivera, J. P. Debray, J. M. Gerard, L. Manin-Ferlazzo, J. L. Oudar, “Optical losses in plasma-etched AlGaAs microresonators using reflection spectroscopy,” Appl. Phys. Lett. 74, 911 (1999).
[CrossRef]

Gérard, J. M.

W. L. Barnes, G. Björk, J. M. Gérard, P. Jonsson, J. A. E. Wasey, P. T. Worthing, V. Zwiller, “Solid-state single photon sources: light collection strategies,” Eur. Phys. J. D 18, 197 (2002).
[CrossRef]

J. M. Gérard, D. Barrier, J. Y. Marzin, R. Kuszelewicz, L. Manin, E. Costard, V. Thierry-Mieg, T. Rivera, “Quantum boxes as active probes for photonic microstructures: The pillar microcavity case,” Appl. Phys. Lett. 69, 449 (1996).
[CrossRef]

Grangier, P.

Gutowski, J.

H. Lohmeyer, J. Kalden, K. Sebald, C. Kruse, D. Hommel, J. Gutowski, “Fine tuning of quantum-dot pillar microcavities by focused ion beam milling,” Appl. Phys. Lett. 92, 011116 (2008).
[CrossRef]

H. Lohmeyer, K. Sebald, J. Gutowski, R. Kröoger, C. Kruse, D. Hommel, J. Wiersig, F. Jahnke, “Resonant modes in monolithic nitride pillar microcavities,” Eur. Phys. J. B 48, 291 (2005).
[CrossRef]

Hagner, M.

M. Kahl, T. Thomay, V. Kohnle, K. Beha, J. Merlein, M. Hagner, A. Halm, J. Ziegler, T. Nann, Y. Fedutik, U. Woggon, M. Artemyev, F. Pérez-Willard, A. Leitenstorfer, R. Bratschitsch, “Colloidal Quantum Dots in All-Dielectric High-Q Pillar Microcavities,” Nano Lett. 7, 2897 (2007).
[CrossRef] [PubMed]

Halm, A.

M. Kahl, T. Thomay, V. Kohnle, K. Beha, J. Merlein, M. Hagner, A. Halm, J. Ziegler, T. Nann, Y. Fedutik, U. Woggon, M. Artemyev, F. Pérez-Willard, A. Leitenstorfer, R. Bratschitsch, “Colloidal Quantum Dots in All-Dielectric High-Q Pillar Microcavities,” Nano Lett. 7, 2897 (2007).
[CrossRef] [PubMed]

Hanbury-Brown, R.

R. Hanbury-Brown, R. Q. Twiss, “The Question of Correlation Between Photonics in Coherent Light Rays,” Nature (London) 178, 1447 (1956).
[CrossRef]

Hanke, T.

Heindel, T.

T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96, 011107 (2010).
[CrossRef]

C. Schneider, T. Heindel, A. Huggenberger, P. Weinmann, C. Kistner, M. Kamp, S. Reitzenstein, S. Höfling, A. Forchel, “Single photon emission from a site-controlled quantum dot-micropillar cavity system,” Appl. Phys. Lett. 94, 111111 (2009).
[CrossRef]

Hetterich, M.

Höfling, S.

T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96, 011107 (2010).
[CrossRef]

C. Schneider, T. Heindel, A. Huggenberger, P. Weinmann, C. Kistner, M. Kamp, S. Reitzenstein, S. Höfling, A. Forchel, “Single photon emission from a site-controlled quantum dot-micropillar cavity system,” Appl. Phys. Lett. 94, 111111 (2009).
[CrossRef]

Hommel, D.

H. Lohmeyer, J. Kalden, K. Sebald, C. Kruse, D. Hommel, J. Gutowski, “Fine tuning of quantum-dot pillar microcavities by focused ion beam milling,” Appl. Phys. Lett. 92, 011116 (2008).
[CrossRef]

H. Lohmeyer, K. Sebald, J. Gutowski, R. Kröoger, C. Kruse, D. Hommel, J. Wiersig, F. Jahnke, “Resonant modes in monolithic nitride pillar microcavities,” Eur. Phys. J. B 48, 291 (2005).
[CrossRef]

Hu, E.

P. Michler, A. Kiraz, L. Zhang, C. Becher, E. Hu, A. Imamoglu, “Laser emission from quantum dots in microdisk structures,” Appl. Phys. Lett. 77, 184 (2000).
[CrossRef]

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, A. Imamoglu, “A Quantum Dot Single-Photon Turnstile Device,” Science 290, 2282 (2000).
[CrossRef] [PubMed]

Huggenberger, A.

C. Schneider, T. Heindel, A. Huggenberger, P. Weinmann, C. Kistner, M. Kamp, S. Reitzenstein, S. Höfling, A. Forchel, “Single photon emission from a site-controlled quantum dot-micropillar cavity system,” Appl. Phys. Lett. 94, 111111 (2009).
[CrossRef]

Imamoglu, A.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, A. Imamoglu, “A Quantum Dot Single-Photon Turnstile Device,” Science 290, 2282 (2000).
[CrossRef] [PubMed]

P. Michler, A. Kiraz, L. Zhang, C. Becher, E. Hu, A. Imamoglu, “Laser emission from quantum dots in microdisk structures,” Appl. Phys. Lett. 77, 184 (2000).
[CrossRef]

Jahnke, F.

H. Lohmeyer, K. Sebald, J. Gutowski, R. Kröoger, C. Kruse, D. Hommel, J. Wiersig, F. Jahnke, “Resonant modes in monolithic nitride pillar microcavities,” Eur. Phys. J. B 48, 291 (2005).
[CrossRef]

Jetter, M.

M. Eichfelder, W.-M. Schulz, M. Reischle, M. Wiesner, R. Roβbach, M. Jetter, P. Michler, “Roomtemperature lasing of electrically pumped red-emitting InP/(Al0.20Ga0.80)0.51In0.49P quantum dots embedded in a vertical microcavity,” Appl. Phys. Lett. 95, 131107 (2009).
[CrossRef]

W.-M. Schulz, R. Roβbach, M. Reischle, G. J. Beirne, M. Bommer, M. Jetter, P. Michler, “Optical and structural properties of InP quantum dots embedded in (AlxGa1−x)0.51In0.49P,” Phys. Rev. B 79, 035329 (2009).
[CrossRef]

M. Reischle, G. J. Beirne, W.-M. Schulz, M. Eichfelder, R. Roβbach, M. Jetter, P. Michler, “Electrically pumped single-photon emission in the visible spectral range up to 80 K,” Opt. Express 16, 12771 (2008).
[PubMed]

Jonsson, P.

W. L. Barnes, G. Björk, J. M. Gérard, P. Jonsson, J. A. E. Wasey, P. T. Worthing, V. Zwiller, “Solid-state single photon sources: light collection strategies,” Eur. Phys. J. D 18, 197 (2002).
[CrossRef]

Kahl, M.

T. Thomay, T. Hanke, M. Tomas, F. Sotier, K. Beha, V. Knittel, M. Kahl, K. M. Whitaker, D. R. Gamelin, A. Leitenstorfer, R. Bratschitsch, “Colloidal ZnO quantum dots in ultraviolet pillar microcavities,” Opt. Express 16, 9791 (2008).
[CrossRef] [PubMed]

M. Kahl, T. Thomay, V. Kohnle, K. Beha, J. Merlein, M. Hagner, A. Halm, J. Ziegler, T. Nann, Y. Fedutik, U. Woggon, M. Artemyev, F. Pérez-Willard, A. Leitenstorfer, R. Bratschitsch, “Colloidal Quantum Dots in All-Dielectric High-Q Pillar Microcavities,” Nano Lett. 7, 2897 (2007).
[CrossRef] [PubMed]

Kalden, J.

H. Lohmeyer, J. Kalden, K. Sebald, C. Kruse, D. Hommel, J. Gutowski, “Fine tuning of quantum-dot pillar microcavities by focused ion beam milling,” Appl. Phys. Lett. 92, 011116 (2008).
[CrossRef]

Kalt, H.

Kamp, M.

T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96, 011107 (2010).
[CrossRef]

C. Schneider, T. Heindel, A. Huggenberger, P. Weinmann, C. Kistner, M. Kamp, S. Reitzenstein, S. Höfling, A. Forchel, “Single photon emission from a site-controlled quantum dot-micropillar cavity system,” Appl. Phys. Lett. 94, 111111 (2009).
[CrossRef]

Karl, M.

Khoe, G.-D.

H. P. A. van den Boom, W. Li, P. K. van Bennekom, I. T. Monroy, G.-D. Khoe, “High-Capacity Transmission Over Polymer Optical Fiber,” IEEE J. Sel. Top. Quantum Electron. 7, 461 (2001).
[CrossRef]

Kiraz, A.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, A. Imamoglu, “A Quantum Dot Single-Photon Turnstile Device,” Science 290, 2282 (2000).
[CrossRef] [PubMed]

P. Michler, A. Kiraz, L. Zhang, C. Becher, E. Hu, A. Imamoglu, “Laser emission from quantum dots in microdisk structures,” Appl. Phys. Lett. 77, 184 (2000).
[CrossRef]

Kistner, C.

C. Schneider, T. Heindel, A. Huggenberger, P. Weinmann, C. Kistner, M. Kamp, S. Reitzenstein, S. Höfling, A. Forchel, “Single photon emission from a site-controlled quantum dot-micropillar cavity system,” Appl. Phys. Lett. 94, 111111 (2009).
[CrossRef]

Knittel, V.

Kohnle, V.

M. Kahl, T. Thomay, V. Kohnle, K. Beha, J. Merlein, M. Hagner, A. Halm, J. Ziegler, T. Nann, Y. Fedutik, U. Woggon, M. Artemyev, F. Pérez-Willard, A. Leitenstorfer, R. Bratschitsch, “Colloidal Quantum Dots in All-Dielectric High-Q Pillar Microcavities,” Nano Lett. 7, 2897 (2007).
[CrossRef] [PubMed]

Krastanow, L.

I. N. Stranski, L. Krastanow, “Zur Theorie der orientierten Ausscheidung von Ionenkristailen aufeinander,” Akad. Wiss. Wien Kl.IIb 146, 797 (1938).

Kröoger, R.

H. Lohmeyer, K. Sebald, J. Gutowski, R. Kröoger, C. Kruse, D. Hommel, J. Wiersig, F. Jahnke, “Resonant modes in monolithic nitride pillar microcavities,” Eur. Phys. J. B 48, 291 (2005).
[CrossRef]

Kruse, C.

K. Sebald, C. Kruse, J. Wiersig, “Properties and prospects of blue-green emitting II-VI-based monolithic microcavities,” Phys. Stat. Sol. B 246, 255 (2009).
[CrossRef]

H. Lohmeyer, J. Kalden, K. Sebald, C. Kruse, D. Hommel, J. Gutowski, “Fine tuning of quantum-dot pillar microcavities by focused ion beam milling,” Appl. Phys. Lett. 92, 011116 (2008).
[CrossRef]

H. Lohmeyer, K. Sebald, J. Gutowski, R. Kröoger, C. Kruse, D. Hommel, J. Wiersig, F. Jahnke, “Resonant modes in monolithic nitride pillar microcavities,” Eur. Phys. J. B 48, 291 (2005).
[CrossRef]

Kuszelewicz, R.

J. M. Gérard, D. Barrier, J. Y. Marzin, R. Kuszelewicz, L. Manin, E. Costard, V. Thierry-Mieg, T. Rivera, “Quantum boxes as active probes for photonic microstructures: The pillar microcavity case,” Appl. Phys. Lett. 69, 449 (1996).
[CrossRef]

Kwon, S. H.

T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96, 011107 (2010).
[CrossRef]

Leitenstorfer, A.

T. Thomay, T. Hanke, M. Tomas, F. Sotier, K. Beha, V. Knittel, M. Kahl, K. M. Whitaker, D. R. Gamelin, A. Leitenstorfer, R. Bratschitsch, “Colloidal ZnO quantum dots in ultraviolet pillar microcavities,” Opt. Express 16, 9791 (2008).
[CrossRef] [PubMed]

M. Kahl, T. Thomay, V. Kohnle, K. Beha, J. Merlein, M. Hagner, A. Halm, J. Ziegler, T. Nann, Y. Fedutik, U. Woggon, M. Artemyev, F. Pérez-Willard, A. Leitenstorfer, R. Bratschitsch, “Colloidal Quantum Dots in All-Dielectric High-Q Pillar Microcavities,” Nano Lett. 7, 2897 (2007).
[CrossRef] [PubMed]

Lermer, M.

T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96, 011107 (2010).
[CrossRef]

Li, S.

Li, W.

H. P. A. van den Boom, W. Li, P. K. van Bennekom, I. T. Monroy, G.-D. Khoe, “High-Capacity Transmission Over Polymer Optical Fiber,” IEEE J. Sel. Top. Quantum Electron. 7, 461 (2001).
[CrossRef]

Löffler, W.

Lohmeyer, H.

H. Lohmeyer, J. Kalden, K. Sebald, C. Kruse, D. Hommel, J. Gutowski, “Fine tuning of quantum-dot pillar microcavities by focused ion beam milling,” Appl. Phys. Lett. 92, 011116 (2008).
[CrossRef]

H. Lohmeyer, K. Sebald, J. Gutowski, R. Kröoger, C. Kruse, D. Hommel, J. Wiersig, F. Jahnke, “Resonant modes in monolithic nitride pillar microcavities,” Eur. Phys. J. B 48, 291 (2005).
[CrossRef]

Lütkenhaus, N.

G. Brassard, N. Lütkenhaus, T. Mor, B. C. Sanders, “Limitations on Practical Quantum Cryptography,” Phys. Rev. Lett. 85, 1330 (2000).
[CrossRef] [PubMed]

Manin, L.

J. M. Gérard, D. Barrier, J. Y. Marzin, R. Kuszelewicz, L. Manin, E. Costard, V. Thierry-Mieg, T. Rivera, “Quantum boxes as active probes for photonic microstructures: The pillar microcavity case,” Appl. Phys. Lett. 69, 449 (1996).
[CrossRef]

Manin-Ferlazzo, L.

T. Rivera, J. P. Debray, J. M. Gerard, L. Manin-Ferlazzo, J. L. Oudar, “Optical losses in plasma-etched AlGaAs microresonators using reflection spectroscopy,” Appl. Phys. Lett. 74, 911 (1999).
[CrossRef]

Marzin, J. Y.

J. M. Gérard, D. Barrier, J. Y. Marzin, R. Kuszelewicz, L. Manin, E. Costard, V. Thierry-Mieg, T. Rivera, “Quantum boxes as active probes for photonic microstructures: The pillar microcavity case,” Appl. Phys. Lett. 69, 449 (1996).
[CrossRef]

Merlein, J.

M. Kahl, T. Thomay, V. Kohnle, K. Beha, J. Merlein, M. Hagner, A. Halm, J. Ziegler, T. Nann, Y. Fedutik, U. Woggon, M. Artemyev, F. Pérez-Willard, A. Leitenstorfer, R. Bratschitsch, “Colloidal Quantum Dots in All-Dielectric High-Q Pillar Microcavities,” Nano Lett. 7, 2897 (2007).
[CrossRef] [PubMed]

Michler, P.

W.-M. Schulz, R. Roβbach, M. Reischle, G. J. Beirne, M. Bommer, M. Jetter, P. Michler, “Optical and structural properties of InP quantum dots embedded in (AlxGa1−x)0.51In0.49P,” Phys. Rev. B 79, 035329 (2009).
[CrossRef]

M. Eichfelder, W.-M. Schulz, M. Reischle, M. Wiesner, R. Roβbach, M. Jetter, P. Michler, “Roomtemperature lasing of electrically pumped red-emitting InP/(Al0.20Ga0.80)0.51In0.49P quantum dots embedded in a vertical microcavity,” Appl. Phys. Lett. 95, 131107 (2009).
[CrossRef]

M. Reischle, G. J. Beirne, W.-M. Schulz, M. Eichfelder, R. Roβbach, M. Jetter, P. Michler, “Electrically pumped single-photon emission in the visible spectral range up to 80 K,” Opt. Express 16, 12771 (2008).
[PubMed]

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, A. Imamoglu, “A Quantum Dot Single-Photon Turnstile Device,” Science 290, 2282 (2000).
[CrossRef] [PubMed]

P. Michler, A. Kiraz, L. Zhang, C. Becher, E. Hu, A. Imamoglu, “Laser emission from quantum dots in microdisk structures,” Appl. Phys. Lett. 77, 184 (2000).
[CrossRef]

Monroy, I. T.

H. P. A. van den Boom, W. Li, P. K. van Bennekom, I. T. Monroy, G.-D. Khoe, “High-Capacity Transmission Over Polymer Optical Fiber,” IEEE J. Sel. Top. Quantum Electron. 7, 461 (2001).
[CrossRef]

Mor, T.

G. Brassard, N. Lütkenhaus, T. Mor, B. C. Sanders, “Limitations on Practical Quantum Cryptography,” Phys. Rev. Lett. 85, 1330 (2000).
[CrossRef] [PubMed]

Nann, T.

M. Kahl, T. Thomay, V. Kohnle, K. Beha, J. Merlein, M. Hagner, A. Halm, J. Ziegler, T. Nann, Y. Fedutik, U. Woggon, M. Artemyev, F. Pérez-Willard, A. Leitenstorfer, R. Bratschitsch, “Colloidal Quantum Dots in All-Dielectric High-Q Pillar Microcavities,” Nano Lett. 7, 2897 (2007).
[CrossRef] [PubMed]

Oudar, J. L.

T. Rivera, J. P. Debray, J. M. Gerard, L. Manin-Ferlazzo, J. L. Oudar, “Optical losses in plasma-etched AlGaAs microresonators using reflection spectroscopy,” Appl. Phys. Lett. 74, 911 (1999).
[CrossRef]

Passow, T.

Pelton, M.

M. Pelton, J. Vučković, G. S. Solomon, A. Scherer, Y. Yamamoto, “Three-Dimensionally Confined Modes in Micropost Microcavities: Quality Factors and Purcell Factors,” IEEE J. Quantum Electron. 38, 170 (2002).
[CrossRef]

C. Santori, M. Pelton, G. Solomon, Y. Dale, Y. Yamamoto, “Triggered Single Photons from a Quantum Dot,” Phys. Rev. Lett. 86, 1502 (2001).
[CrossRef] [PubMed]

Pérez-Willard, F.

M. Kahl, T. Thomay, V. Kohnle, K. Beha, J. Merlein, M. Hagner, A. Halm, J. Ziegler, T. Nann, Y. Fedutik, U. Woggon, M. Artemyev, F. Pérez-Willard, A. Leitenstorfer, R. Bratschitsch, “Colloidal Quantum Dots in All-Dielectric High-Q Pillar Microcavities,” Nano Lett. 7, 2897 (2007).
[CrossRef] [PubMed]

Petroff, P. M.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, A. Imamoglu, “A Quantum Dot Single-Photon Turnstile Device,” Science 290, 2282 (2000).
[CrossRef] [PubMed]

Poizat, J.-P.

Puers, R.

S. Reyntjens, R. Puers, “A review of focused ion beam applications in microsystem technology,” J. Micromech. Microeng. 11, 287 (2001).
[CrossRef]

Reischle, M.

M. Eichfelder, W.-M. Schulz, M. Reischle, M. Wiesner, R. Roβbach, M. Jetter, P. Michler, “Roomtemperature lasing of electrically pumped red-emitting InP/(Al0.20Ga0.80)0.51In0.49P quantum dots embedded in a vertical microcavity,” Appl. Phys. Lett. 95, 131107 (2009).
[CrossRef]

W.-M. Schulz, R. Roβbach, M. Reischle, G. J. Beirne, M. Bommer, M. Jetter, P. Michler, “Optical and structural properties of InP quantum dots embedded in (AlxGa1−x)0.51In0.49P,” Phys. Rev. B 79, 035329 (2009).
[CrossRef]

M. Reischle, G. J. Beirne, W.-M. Schulz, M. Eichfelder, R. Roβbach, M. Jetter, P. Michler, “Electrically pumped single-photon emission in the visible spectral range up to 80 K,” Opt. Express 16, 12771 (2008).
[PubMed]

Reitzenstein, S.

T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96, 011107 (2010).
[CrossRef]

C. Schneider, T. Heindel, A. Huggenberger, P. Weinmann, C. Kistner, M. Kamp, S. Reitzenstein, S. Höfling, A. Forchel, “Single photon emission from a site-controlled quantum dot-micropillar cavity system,” Appl. Phys. Lett. 94, 111111 (2009).
[CrossRef]

Reyntjens, S.

S. Reyntjens, R. Puers, “A review of focused ion beam applications in microsystem technology,” J. Micromech. Microeng. 11, 287 (2001).
[CrossRef]

Rivera, T.

T. Rivera, J. P. Debray, J. M. Gerard, L. Manin-Ferlazzo, J. L. Oudar, “Optical losses in plasma-etched AlGaAs microresonators using reflection spectroscopy,” Appl. Phys. Lett. 74, 911 (1999).
[CrossRef]

J. M. Gérard, D. Barrier, J. Y. Marzin, R. Kuszelewicz, L. Manin, E. Costard, V. Thierry-Mieg, T. Rivera, “Quantum boxes as active probes for photonic microstructures: The pillar microcavity case,” Appl. Phys. Lett. 69, 449 (1996).
[CrossRef]

Roßbach, R.

M. Eichfelder, W.-M. Schulz, M. Reischle, M. Wiesner, R. Roβbach, M. Jetter, P. Michler, “Roomtemperature lasing of electrically pumped red-emitting InP/(Al0.20Ga0.80)0.51In0.49P quantum dots embedded in a vertical microcavity,” Appl. Phys. Lett. 95, 131107 (2009).
[CrossRef]

W.-M. Schulz, R. Roβbach, M. Reischle, G. J. Beirne, M. Bommer, M. Jetter, P. Michler, “Optical and structural properties of InP quantum dots embedded in (AlxGa1−x)0.51In0.49P,” Phys. Rev. B 79, 035329 (2009).
[CrossRef]

M. Reischle, G. J. Beirne, W.-M. Schulz, M. Eichfelder, R. Roβbach, M. Jetter, P. Michler, “Electrically pumped single-photon emission in the visible spectral range up to 80 K,” Opt. Express 16, 12771 (2008).
[PubMed]

Sakaki, H.

Y. Arakawa, H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40, 939 (1982).
[CrossRef]

Sanders, B. C.

G. Brassard, N. Lütkenhaus, T. Mor, B. C. Sanders, “Limitations on Practical Quantum Cryptography,” Phys. Rev. Lett. 85, 1330 (2000).
[CrossRef] [PubMed]

Santori, C.

C. Santori, M. Pelton, G. Solomon, Y. Dale, Y. Yamamoto, “Triggered Single Photons from a Quantum Dot,” Phys. Rev. Lett. 86, 1502 (2001).
[CrossRef] [PubMed]

Scherer, A.

M. Pelton, J. Vučković, G. S. Solomon, A. Scherer, Y. Yamamoto, “Three-Dimensionally Confined Modes in Micropost Microcavities: Quality Factors and Purcell Factors,” IEEE J. Quantum Electron. 38, 170 (2002).
[CrossRef]

Schneider, C.

T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96, 011107 (2010).
[CrossRef]

C. Schneider, T. Heindel, A. Huggenberger, P. Weinmann, C. Kistner, M. Kamp, S. Reitzenstein, S. Höfling, A. Forchel, “Single photon emission from a site-controlled quantum dot-micropillar cavity system,” Appl. Phys. Lett. 94, 111111 (2009).
[CrossRef]

Schoenfeld, W. V.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, A. Imamoglu, “A Quantum Dot Single-Photon Turnstile Device,” Science 290, 2282 (2000).
[CrossRef] [PubMed]

Schulz, W.-M.

W.-M. Schulz, R. Roβbach, M. Reischle, G. J. Beirne, M. Bommer, M. Jetter, P. Michler, “Optical and structural properties of InP quantum dots embedded in (AlxGa1−x)0.51In0.49P,” Phys. Rev. B 79, 035329 (2009).
[CrossRef]

M. Eichfelder, W.-M. Schulz, M. Reischle, M. Wiesner, R. Roβbach, M. Jetter, P. Michler, “Roomtemperature lasing of electrically pumped red-emitting InP/(Al0.20Ga0.80)0.51In0.49P quantum dots embedded in a vertical microcavity,” Appl. Phys. Lett. 95, 131107 (2009).
[CrossRef]

M. Reischle, G. J. Beirne, W.-M. Schulz, M. Eichfelder, R. Roβbach, M. Jetter, P. Michler, “Electrically pumped single-photon emission in the visible spectral range up to 80 K,” Opt. Express 16, 12771 (2008).
[PubMed]

Sebald, K.

K. Sebald, C. Kruse, J. Wiersig, “Properties and prospects of blue-green emitting II-VI-based monolithic microcavities,” Phys. Stat. Sol. B 246, 255 (2009).
[CrossRef]

H. Lohmeyer, J. Kalden, K. Sebald, C. Kruse, D. Hommel, J. Gutowski, “Fine tuning of quantum-dot pillar microcavities by focused ion beam milling,” Appl. Phys. Lett. 92, 011116 (2008).
[CrossRef]

H. Lohmeyer, K. Sebald, J. Gutowski, R. Kröoger, C. Kruse, D. Hommel, J. Wiersig, F. Jahnke, “Resonant modes in monolithic nitride pillar microcavities,” Eur. Phys. J. B 48, 291 (2005).
[CrossRef]

Solomon, G.

C. Santori, M. Pelton, G. Solomon, Y. Dale, Y. Yamamoto, “Triggered Single Photons from a Quantum Dot,” Phys. Rev. Lett. 86, 1502 (2001).
[CrossRef] [PubMed]

Solomon, G. S.

M. Pelton, J. Vučković, G. S. Solomon, A. Scherer, Y. Yamamoto, “Three-Dimensionally Confined Modes in Micropost Microcavities: Quality Factors and Purcell Factors,” IEEE J. Quantum Electron. 38, 170 (2002).
[CrossRef]

Sotier, F.

Stranski, I. N.

I. N. Stranski, L. Krastanow, “Zur Theorie der orientierten Ausscheidung von Ionenkristailen aufeinander,” Akad. Wiss. Wien Kl.IIb 146, 797 (1938).

Thierry-Mieg, V.

J. M. Gérard, D. Barrier, J. Y. Marzin, R. Kuszelewicz, L. Manin, E. Costard, V. Thierry-Mieg, T. Rivera, “Quantum boxes as active probes for photonic microstructures: The pillar microcavity case,” Appl. Phys. Lett. 69, 449 (1996).
[CrossRef]

Thomay, T.

T. Thomay, T. Hanke, M. Tomas, F. Sotier, K. Beha, V. Knittel, M. Kahl, K. M. Whitaker, D. R. Gamelin, A. Leitenstorfer, R. Bratschitsch, “Colloidal ZnO quantum dots in ultraviolet pillar microcavities,” Opt. Express 16, 9791 (2008).
[CrossRef] [PubMed]

M. Kahl, T. Thomay, V. Kohnle, K. Beha, J. Merlein, M. Hagner, A. Halm, J. Ziegler, T. Nann, Y. Fedutik, U. Woggon, M. Artemyev, F. Pérez-Willard, A. Leitenstorfer, R. Bratschitsch, “Colloidal Quantum Dots in All-Dielectric High-Q Pillar Microcavities,” Nano Lett. 7, 2897 (2007).
[CrossRef] [PubMed]

Tomas, M.

Twiss, R. Q.

R. Hanbury-Brown, R. Q. Twiss, “The Question of Correlation Between Photonics in Coherent Light Rays,” Nature (London) 178, 1447 (1956).
[CrossRef]

van Bennekom, P. K.

H. P. A. van den Boom, W. Li, P. K. van Bennekom, I. T. Monroy, G.-D. Khoe, “High-Capacity Transmission Over Polymer Optical Fiber,” IEEE J. Sel. Top. Quantum Electron. 7, 461 (2001).
[CrossRef]

van den Boom, H. P. A.

H. P. A. van den Boom, W. Li, P. K. van Bennekom, I. T. Monroy, G.-D. Khoe, “High-Capacity Transmission Over Polymer Optical Fiber,” IEEE J. Sel. Top. Quantum Electron. 7, 461 (2001).
[CrossRef]

Vuckovic, J.

M. Pelton, J. Vučković, G. S. Solomon, A. Scherer, Y. Yamamoto, “Three-Dimensionally Confined Modes in Micropost Microcavities: Quality Factors and Purcell Factors,” IEEE J. Quantum Electron. 38, 170 (2002).
[CrossRef]

Wasey, J. A. E.

W. L. Barnes, G. Björk, J. M. Gérard, P. Jonsson, J. A. E. Wasey, P. T. Worthing, V. Zwiller, “Solid-state single photon sources: light collection strategies,” Eur. Phys. J. D 18, 197 (2002).
[CrossRef]

Weinmann, P.

C. Schneider, T. Heindel, A. Huggenberger, P. Weinmann, C. Kistner, M. Kamp, S. Reitzenstein, S. Höfling, A. Forchel, “Single photon emission from a site-controlled quantum dot-micropillar cavity system,” Appl. Phys. Lett. 94, 111111 (2009).
[CrossRef]

Whitaker, K. M.

Wiersig, J.

K. Sebald, C. Kruse, J. Wiersig, “Properties and prospects of blue-green emitting II-VI-based monolithic microcavities,” Phys. Stat. Sol. B 246, 255 (2009).
[CrossRef]

H. Lohmeyer, K. Sebald, J. Gutowski, R. Kröoger, C. Kruse, D. Hommel, J. Wiersig, F. Jahnke, “Resonant modes in monolithic nitride pillar microcavities,” Eur. Phys. J. B 48, 291 (2005).
[CrossRef]

Wiesner, M.

M. Eichfelder, W.-M. Schulz, M. Reischle, M. Wiesner, R. Roβbach, M. Jetter, P. Michler, “Roomtemperature lasing of electrically pumped red-emitting InP/(Al0.20Ga0.80)0.51In0.49P quantum dots embedded in a vertical microcavity,” Appl. Phys. Lett. 95, 131107 (2009).
[CrossRef]

Woggon, U.

M. Kahl, T. Thomay, V. Kohnle, K. Beha, J. Merlein, M. Hagner, A. Halm, J. Ziegler, T. Nann, Y. Fedutik, U. Woggon, M. Artemyev, F. Pérez-Willard, A. Leitenstorfer, R. Bratschitsch, “Colloidal Quantum Dots in All-Dielectric High-Q Pillar Microcavities,” Nano Lett. 7, 2897 (2007).
[CrossRef] [PubMed]

Worthing, P. T.

W. L. Barnes, G. Björk, J. M. Gérard, P. Jonsson, J. A. E. Wasey, P. T. Worthing, V. Zwiller, “Solid-state single photon sources: light collection strategies,” Eur. Phys. J. D 18, 197 (2002).
[CrossRef]

Yamamoto, Y.

M. Pelton, J. Vučković, G. S. Solomon, A. Scherer, Y. Yamamoto, “Three-Dimensionally Confined Modes in Micropost Microcavities: Quality Factors and Purcell Factors,” IEEE J. Quantum Electron. 38, 170 (2002).
[CrossRef]

C. Santori, M. Pelton, G. Solomon, Y. Dale, Y. Yamamoto, “Triggered Single Photons from a Quantum Dot,” Phys. Rev. Lett. 86, 1502 (2001).
[CrossRef] [PubMed]

Zhang, L.

P. Michler, A. Kiraz, L. Zhang, C. Becher, E. Hu, A. Imamoglu, “Laser emission from quantum dots in microdisk structures,” Appl. Phys. Lett. 77, 184 (2000).
[CrossRef]

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, A. Imamoglu, “A Quantum Dot Single-Photon Turnstile Device,” Science 290, 2282 (2000).
[CrossRef] [PubMed]

Ziegler, J.

M. Kahl, T. Thomay, V. Kohnle, K. Beha, J. Merlein, M. Hagner, A. Halm, J. Ziegler, T. Nann, Y. Fedutik, U. Woggon, M. Artemyev, F. Pérez-Willard, A. Leitenstorfer, R. Bratschitsch, “Colloidal Quantum Dots in All-Dielectric High-Q Pillar Microcavities,” Nano Lett. 7, 2897 (2007).
[CrossRef] [PubMed]

Zwiller, V.

W. L. Barnes, G. Björk, J. M. Gérard, P. Jonsson, J. A. E. Wasey, P. T. Worthing, V. Zwiller, “Solid-state single photon sources: light collection strategies,” Eur. Phys. J. D 18, 197 (2002).
[CrossRef]

Akad. Wiss. Wien Kl.IIb (1)

I. N. Stranski, L. Krastanow, “Zur Theorie der orientierten Ausscheidung von Ionenkristailen aufeinander,” Akad. Wiss. Wien Kl.IIb 146, 797 (1938).

Appl. Phys. Lett. (8)

M. Eichfelder, W.-M. Schulz, M. Reischle, M. Wiesner, R. Roβbach, M. Jetter, P. Michler, “Roomtemperature lasing of electrically pumped red-emitting InP/(Al0.20Ga0.80)0.51In0.49P quantum dots embedded in a vertical microcavity,” Appl. Phys. Lett. 95, 131107 (2009).
[CrossRef]

J. M. Gérard, D. Barrier, J. Y. Marzin, R. Kuszelewicz, L. Manin, E. Costard, V. Thierry-Mieg, T. Rivera, “Quantum boxes as active probes for photonic microstructures: The pillar microcavity case,” Appl. Phys. Lett. 69, 449 (1996).
[CrossRef]

T. Rivera, J. P. Debray, J. M. Gerard, L. Manin-Ferlazzo, J. L. Oudar, “Optical losses in plasma-etched AlGaAs microresonators using reflection spectroscopy,” Appl. Phys. Lett. 74, 911 (1999).
[CrossRef]

Y. Arakawa, H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40, 939 (1982).
[CrossRef]

P. Michler, A. Kiraz, L. Zhang, C. Becher, E. Hu, A. Imamoglu, “Laser emission from quantum dots in microdisk structures,” Appl. Phys. Lett. 77, 184 (2000).
[CrossRef]

H. Lohmeyer, J. Kalden, K. Sebald, C. Kruse, D. Hommel, J. Gutowski, “Fine tuning of quantum-dot pillar microcavities by focused ion beam milling,” Appl. Phys. Lett. 92, 011116 (2008).
[CrossRef]

C. Schneider, T. Heindel, A. Huggenberger, P. Weinmann, C. Kistner, M. Kamp, S. Reitzenstein, S. Höfling, A. Forchel, “Single photon emission from a site-controlled quantum dot-micropillar cavity system,” Appl. Phys. Lett. 94, 111111 (2009).
[CrossRef]

T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96, 011107 (2010).
[CrossRef]

Eur. Phys. J. B (1)

H. Lohmeyer, K. Sebald, J. Gutowski, R. Kröoger, C. Kruse, D. Hommel, J. Wiersig, F. Jahnke, “Resonant modes in monolithic nitride pillar microcavities,” Eur. Phys. J. B 48, 291 (2005).
[CrossRef]

Eur. Phys. J. D (1)

W. L. Barnes, G. Björk, J. M. Gérard, P. Jonsson, J. A. E. Wasey, P. T. Worthing, V. Zwiller, “Solid-state single photon sources: light collection strategies,” Eur. Phys. J. D 18, 197 (2002).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Pelton, J. Vučković, G. S. Solomon, A. Scherer, Y. Yamamoto, “Three-Dimensionally Confined Modes in Micropost Microcavities: Quality Factors and Purcell Factors,” IEEE J. Quantum Electron. 38, 170 (2002).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

H. P. A. van den Boom, W. Li, P. K. van Bennekom, I. T. Monroy, G.-D. Khoe, “High-Capacity Transmission Over Polymer Optical Fiber,” IEEE J. Sel. Top. Quantum Electron. 7, 461 (2001).
[CrossRef]

J. Micromech. Microeng. (1)

S. Reyntjens, R. Puers, “A review of focused ion beam applications in microsystem technology,” J. Micromech. Microeng. 11, 287 (2001).
[CrossRef]

J. Phys. D: Appl. Phys. (1)

D. Bimberg, “Quantum dots for lasers, amplifiers and computing,” J. Phys. D: Appl. Phys. 38, 2055 (2005).
[CrossRef]

Nano Lett. (1)

M. Kahl, T. Thomay, V. Kohnle, K. Beha, J. Merlein, M. Hagner, A. Halm, J. Ziegler, T. Nann, Y. Fedutik, U. Woggon, M. Artemyev, F. Pérez-Willard, A. Leitenstorfer, R. Bratschitsch, “Colloidal Quantum Dots in All-Dielectric High-Q Pillar Microcavities,” Nano Lett. 7, 2897 (2007).
[CrossRef] [PubMed]

Nature (1)

R. Hanbury-Brown, R. Q. Twiss, “The Question of Correlation Between Photonics in Coherent Light Rays,” Nature (London) 178, 1447 (1956).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. B (1)

W.-M. Schulz, R. Roβbach, M. Reischle, G. J. Beirne, M. Bommer, M. Jetter, P. Michler, “Optical and structural properties of InP quantum dots embedded in (AlxGa1−x)0.51In0.49P,” Phys. Rev. B 79, 035329 (2009).
[CrossRef]

Phys. Rev. Lett. (2)

G. Brassard, N. Lütkenhaus, T. Mor, B. C. Sanders, “Limitations on Practical Quantum Cryptography,” Phys. Rev. Lett. 85, 1330 (2000).
[CrossRef] [PubMed]

C. Santori, M. Pelton, G. Solomon, Y. Dale, Y. Yamamoto, “Triggered Single Photons from a Quantum Dot,” Phys. Rev. Lett. 86, 1502 (2001).
[CrossRef] [PubMed]

Phys. Stat. Sol. B (1)

K. Sebald, C. Kruse, J. Wiersig, “Properties and prospects of blue-green emitting II-VI-based monolithic microcavities,” Phys. Stat. Sol. B 246, 255 (2009).
[CrossRef]

Science (1)

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, A. Imamoglu, “A Quantum Dot Single-Photon Turnstile Device,” Science 290, 2282 (2000).
[CrossRef] [PubMed]

Other (1)

LayTec GmbH, Berlin, Germany, www.laytec.de.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Scanning electron microscope images of the FIB milled structures. (a) Two micropillars with different diameters. The inset in (a) displays a cross section cut of the investigated DBR cavity and a magnification of the cavity region. (b) Magnification of one micropillar showing the smooth sidewalls.

Fig. 2.
Fig. 2.

(Color online) (a) Micro-photoluminescence spectrum of a micropillar with a radius of 2.1 µm. The vertical lines display the calculated energies of the transverse modes, showing excellent agreement with the measurement. (b) Calculated radius dependency (straight curves) of the first six higher transverse modes and measured mode energies (circles). The inset is showing the obtained quality factors (triangles) and the theoretical behavior (straight curve).

Fig. 3.
Fig. 3.

(Color online) Normalized micro-PL spectra of a microresonator pillar with a diameter of 1.26 µm excited with around 300 Wcm−2 (upper spectrum) and around 40 Wcm−2 (lower spectrum) at 4 K. The vertical lines display the calculated energies of the transverse modes, while the dashed rectangle marks the background contribution (B). The autocorrelation measurement (inset) showing the highly non-classical light statistic, was performed with around 375 Wcm−2 for shorter integration times.

Fig. 4.
Fig. 4.

(Color online) (a) Temperature dependent spectra of a micropillar with 1.26 µm diameter. The dashed vertical lines are guides to the eye and mark the positions of the higher transverse modes. The redshift of the emission energy of the fundamental mode (circles) is compared with the behavior of a typical QD in (Al0.20Ga0.80)0.51In0.49P barrier layers without cavity (triangles), showing an identical shift. In (c) the integrated intensities of the fundamental mode is shown.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

n 1 = n ( z ) E ( z ) 2 d z max E ( z ) 2 .
1 Q ( r ) = 1 Q 0 + 1 Q scattering = 1 Q 0 + ε J 0 2 ( k t r ) r ,
η extraction , optimal = Q ( r ) Q 0 F P F P + 1

Metrics