Abstract

We present a new metal-insulator-metal (MIM)-based plasmonic Bragg reflector (PBR) design that solves the technical problems of conventional step profile MIM PBRs through the use of sawtooth profiles. Our numerical study revealed that the sawtooth PBRs exhibit lower insertion loss, narrower bandgap, and reduced rippling in the transmission spectrum when compared with the step PBRs. The defect mode of the sawtooth PBR also exhibits a higher transmission, narrower linewidth, and higher Q-factor.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Zia, M. Selker, P. Catrysse, and M. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. A 21(12), 2442–2446 (2004).
    [CrossRef]
  2. S. E. Kocabas, G. Veronis, D. A. B. Miller, and S. Fan, “Transmission line and equivalent circuit models for plasmonic waveguide components,” IEEE J. Sel. Top. Quantum Electron. 14(6), 1462–1472 (2008).
    [CrossRef]
  3. K. Tanaka and M. Tanaka, “Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide,” Appl. Phys. Lett. 82(8), 1158–1160 (2003).
    [CrossRef]
  4. A. Hosseini, and Y. Massoud, “Subwavelength plasmon Bragg reflector structures for on-chip optoelectronic applications,” in Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS) (IEEE, 2007), pp. 504–509.
  5. A. Noual, A. Akjouj, Y. Pennec, J. N. Gillet, and B. Djafari-Rouhani, “Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths,” N. J. Phys. 11(10), 103020 (2009).
    [CrossRef]
  6. J. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, M. U. Gonzalex, and A. Baudrion, “Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides,” Phys. Rev. B 70(23), 235406 (2004).
    [CrossRef]
  7. Y. Gong, L. Wang, X. Hu, X. Li, and X. Liu, “Broad-bandgap and low-sidelobe surface plasmon polariton reflector with Bragg-grating-based MIM waveguide,” Opt. Express 17(16), 13727–13736 (2009).
    [CrossRef] [PubMed]
  8. Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19(2), 91–93 (2007).
    [CrossRef]
  9. J. Q. Liu, L. L. Wang, M. D. He, W. Q. Huang, D. Wang, B. S. Zou, and S. Wen, “A wide bandgap plasmonic Bragg reflector,” Opt. Express 16(7), 4888–4894 (2008).
    [CrossRef] [PubMed]
  10. A. Kumar, S. F. Yu, and X. Li, “Design and analysis of a surface plasmon polariton modulator using the electro-optic effect,” Appl. Opt. 48(35), 6600–6605 (2009).
    [CrossRef] [PubMed]
  11. A. Hosseini and Y. Massoud, “A low-loss metal-insulator-metal plasmonic Bragg reflector,” Opt. Express 14(23), 11318–11323 (2006).
    [CrossRef]
  12. P. Yeh, Optical Waves in Layered Media (Wiley, 1988).
  13. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [CrossRef]
  14. J. Chilwell and I. Hodgkinson, “Thin-films field-transfer matrix theory of planar multilayer waveguides and reflection from prism-loaded waveguides,” J. Opt. Soc. Am. A 1(7), 742–753 (1984).
    [CrossRef]
  15. J. Joannopoulos, S. Johnson, J. Winn, and R. Meade, Photonic Crystals: Molding the Flow of Light, (Princeton University Press 2008).
  16. J. Tao, X. G. Huang, X. Lin, Q. Zhang, and X. Jin, “A narrow-band subwavelength plasmonic waveguide filter with asymmetrical multiple-teeth-shaped structure,” Opt. Express 17(16), 13989–13994 (2009).
    [CrossRef] [PubMed]

2009 (4)

2008 (2)

J. Q. Liu, L. L. Wang, M. D. He, W. Q. Huang, D. Wang, B. S. Zou, and S. Wen, “A wide bandgap plasmonic Bragg reflector,” Opt. Express 16(7), 4888–4894 (2008).
[CrossRef] [PubMed]

S. E. Kocabas, G. Veronis, D. A. B. Miller, and S. Fan, “Transmission line and equivalent circuit models for plasmonic waveguide components,” IEEE J. Sel. Top. Quantum Electron. 14(6), 1462–1472 (2008).
[CrossRef]

2007 (1)

Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19(2), 91–93 (2007).
[CrossRef]

2006 (1)

2004 (2)

R. Zia, M. Selker, P. Catrysse, and M. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. A 21(12), 2442–2446 (2004).
[CrossRef]

J. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, M. U. Gonzalex, and A. Baudrion, “Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides,” Phys. Rev. B 70(23), 235406 (2004).
[CrossRef]

2003 (1)

K. Tanaka and M. Tanaka, “Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide,” Appl. Phys. Lett. 82(8), 1158–1160 (2003).
[CrossRef]

1984 (1)

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Akjouj, A.

A. Noual, A. Akjouj, Y. Pennec, J. N. Gillet, and B. Djafari-Rouhani, “Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths,” N. J. Phys. 11(10), 103020 (2009).
[CrossRef]

Baudrion, A.

J. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, M. U. Gonzalex, and A. Baudrion, “Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides,” Phys. Rev. B 70(23), 235406 (2004).
[CrossRef]

Brongersma, M.

Catrysse, P.

Chilwell, J.

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Dereux, A.

J. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, M. U. Gonzalex, and A. Baudrion, “Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides,” Phys. Rev. B 70(23), 235406 (2004).
[CrossRef]

Devaux, E.

J. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, M. U. Gonzalex, and A. Baudrion, “Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides,” Phys. Rev. B 70(23), 235406 (2004).
[CrossRef]

Djafari-Rouhani, B.

A. Noual, A. Akjouj, Y. Pennec, J. N. Gillet, and B. Djafari-Rouhani, “Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths,” N. J. Phys. 11(10), 103020 (2009).
[CrossRef]

Ebbesen, T.

J. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, M. U. Gonzalex, and A. Baudrion, “Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides,” Phys. Rev. B 70(23), 235406 (2004).
[CrossRef]

Fan, S.

S. E. Kocabas, G. Veronis, D. A. B. Miller, and S. Fan, “Transmission line and equivalent circuit models for plasmonic waveguide components,” IEEE J. Sel. Top. Quantum Electron. 14(6), 1462–1472 (2008).
[CrossRef]

Forsberg, E.

Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19(2), 91–93 (2007).
[CrossRef]

Gillet, J. N.

A. Noual, A. Akjouj, Y. Pennec, J. N. Gillet, and B. Djafari-Rouhani, “Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths,” N. J. Phys. 11(10), 103020 (2009).
[CrossRef]

Girard, C.

J. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, M. U. Gonzalex, and A. Baudrion, “Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides,” Phys. Rev. B 70(23), 235406 (2004).
[CrossRef]

Gong, Y.

Gonzalex, M. U.

J. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, M. U. Gonzalex, and A. Baudrion, “Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides,” Phys. Rev. B 70(23), 235406 (2004).
[CrossRef]

Han, Z.

Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19(2), 91–93 (2007).
[CrossRef]

He, M. D.

He, S.

Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19(2), 91–93 (2007).
[CrossRef]

Hodgkinson, I.

Hosseini, A.

Hu, X.

Huang, W. Q.

Huang, X. G.

Jin, X.

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Kocabas, S. E.

S. E. Kocabas, G. Veronis, D. A. B. Miller, and S. Fan, “Transmission line and equivalent circuit models for plasmonic waveguide components,” IEEE J. Sel. Top. Quantum Electron. 14(6), 1462–1472 (2008).
[CrossRef]

Kumar, A.

Lacroute, Y.

J. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, M. U. Gonzalex, and A. Baudrion, “Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides,” Phys. Rev. B 70(23), 235406 (2004).
[CrossRef]

Li, X.

Lin, X.

Liu, J. Q.

Liu, X.

Massoud, Y.

Miller, D. A. B.

S. E. Kocabas, G. Veronis, D. A. B. Miller, and S. Fan, “Transmission line and equivalent circuit models for plasmonic waveguide components,” IEEE J. Sel. Top. Quantum Electron. 14(6), 1462–1472 (2008).
[CrossRef]

Noual, A.

A. Noual, A. Akjouj, Y. Pennec, J. N. Gillet, and B. Djafari-Rouhani, “Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths,” N. J. Phys. 11(10), 103020 (2009).
[CrossRef]

Pennec, Y.

A. Noual, A. Akjouj, Y. Pennec, J. N. Gillet, and B. Djafari-Rouhani, “Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths,” N. J. Phys. 11(10), 103020 (2009).
[CrossRef]

Selker, M.

Tanaka, K.

K. Tanaka and M. Tanaka, “Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide,” Appl. Phys. Lett. 82(8), 1158–1160 (2003).
[CrossRef]

Tanaka, M.

K. Tanaka and M. Tanaka, “Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide,” Appl. Phys. Lett. 82(8), 1158–1160 (2003).
[CrossRef]

Tao, J.

Veronis, G.

S. E. Kocabas, G. Veronis, D. A. B. Miller, and S. Fan, “Transmission line and equivalent circuit models for plasmonic waveguide components,” IEEE J. Sel. Top. Quantum Electron. 14(6), 1462–1472 (2008).
[CrossRef]

Wang, D.

Wang, L.

Wang, L. L.

Weeber, J.

J. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, M. U. Gonzalex, and A. Baudrion, “Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides,” Phys. Rev. B 70(23), 235406 (2004).
[CrossRef]

Wen, S.

Yu, S. F.

Zhang, Q.

Zia, R.

Zou, B. S.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

K. Tanaka and M. Tanaka, “Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide,” Appl. Phys. Lett. 82(8), 1158–1160 (2003).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

S. E. Kocabas, G. Veronis, D. A. B. Miller, and S. Fan, “Transmission line and equivalent circuit models for plasmonic waveguide components,” IEEE J. Sel. Top. Quantum Electron. 14(6), 1462–1472 (2008).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19(2), 91–93 (2007).
[CrossRef]

J. Opt. Soc. Am. A (2)

N. J. Phys. (1)

A. Noual, A. Akjouj, Y. Pennec, J. N. Gillet, and B. Djafari-Rouhani, “Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths,” N. J. Phys. 11(10), 103020 (2009).
[CrossRef]

Opt. Express (4)

Phys. Rev. B (2)

J. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, M. U. Gonzalex, and A. Baudrion, “Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides,” Phys. Rev. B 70(23), 235406 (2004).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Other (3)

J. Joannopoulos, S. Johnson, J. Winn, and R. Meade, Photonic Crystals: Molding the Flow of Light, (Princeton University Press 2008).

P. Yeh, Optical Waves in Layered Media (Wiley, 1988).

A. Hosseini, and Y. Massoud, “Subwavelength plasmon Bragg reflector structures for on-chip optoelectronic applications,” in Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS) (IEEE, 2007), pp. 504–509.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

The unit cells of (a) a step PBR and (b) a sawtooth PBR. (c) and (d) show the corresponding PBRs realized by concatenating the unit cells.

Fig. 2
Fig. 2

The transmission levels at 1.55 μm for the step and sawtooth PBRs (a = 100 nm) with different number of unit cells.

Fig. 3
Fig. 3

Transmission spectra for the step and sawtooth PBRs with (a) a = 100 nm, b = 30 nm and (b) a = 100 nm, b = 70 nm. The mode patterns for points (A) (at 1.6 μm) and (B), (C) (at 2 μm) marked in (a) are shown in Fig. 6.

Fig. 4
Fig. 4

Transmission spectra for (a) the step PBR and (b) the sawtooth PBR with different values of b, while a is fixed at 100 nm.

Fig. 5
Fig. 5

The impact of b on (a) the attenuation at λB and (b) the 3 dB bandwidth when the values of a, N1 and N2 were fixed.

Fig. 6
Fig. 6

Field profiles |Hz|2 at different wavelengths for the sawtooth PBR with N2 = 8, (a) λo = 1.6 μm (b) λo = 2.0 μm, and for the step PBR with N1 = 6, (c) λo = 2.0 μm.

Fig. 7
Fig. 7

The defect mode pattern |Hz|2 for (a) the step PBR at 1.552 μm and (b) the sawtooth PBR at 1.45 μm with the same defect: Ld = 195 nm and t = 100 nm. (a) and (b) share the same color bar for better comparison.

Fig. 8
Fig. 8

Transmission spectra of PBRs with defect modes. The black dotted line shows only the defect mode, not the whole spectrum for better visualization.

Fig. 9
Fig. 9

(a) Transmission spectrum of a 4-step approximated sawtooth PBR. The transmission spectra of regular step and sawtooth PBRs are superimposed for comparison. The high level of bandgap narrowing and ripple suppression observed from the 4-step structure indicates the validity of multiple step-transition approximation. (b) The schematic diagram of a sawtooth PBR unit cell approximated by a 3-step geometry involving a regular step PBR perturbed by a small third step. Δϕi represent the phase change incurred by the reflection at each junction Ji.

Metrics