Abstract

A miniature surface plasmon resonance sensor is fabricated from a gold-coated standard optical fiber with an in-core tilted fiber Bragg grating fabricated by UV exposure. The sensor has a measured refractive index sensitivity of 571.5 nm/RIU (refractive index unit) at constant temperature. We show here that the intrinsic temperature sensitivity of this device is reduced to less than 6.3 pm/°C (between 23 °C and 59 °C) when measurements are referenced to a core mode reflection resonance of the grating. This residual sensitivity is essentially that of the 50 nm thick deposited gold layer but it is bigger by one order of magnitude than the expected value (0.51 pm/°C) for a gold-water interface.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Matsubara, S. Kawata, and S. Minami, “Optical chemical sensor based on surface plasmon measurement,” Appl. Opt. 27(6), 1160–1163 (1988).
    [CrossRef] [PubMed]
  2. R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B Chem. 12(3), 213–220 (1993).
    [CrossRef]
  3. R. Slavík, J. Homola, J. Tyroký, and E. Brynda, “Novel spectral fiber optic sensor based on surface plasmon resonance,” Sens. Actuators B Chem. 74(1–3), 106–111 (2001).
    [CrossRef]
  4. J. L. Tang, S. F. Cheng, W. T. Hsu, T. Y. Chiang, and L. K. Chau, “Fiber-optic biochemical sensing with a colloidal gold-modified long period fiber grating,” Sens. Actuators B Chem. 119(1), 105–109 (2006).
    [CrossRef]
  5. J. Pollet, F. Delport, K. P. F. Janssen, K. Jans, G. Maes, H. Pfeiffer, M. Wevers, and J. Lammertyn, “Fiber optic SPR biosensing of DNA hybridization and DNA-protein interactions,” Biosens. Bioelectron. 25(4), 864–869 (2009).
    [CrossRef] [PubMed]
  6. B. Spacková and J. Homola, “Theoretical analysis of a fiber optic surface plasmon resonance sensor utilizing a Bragg grating,” Opt. Express 17(25), 23254–23264 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-25-23254 .
    [CrossRef]
  7. Y. Y. Shevchenko and J. Albert, “Plasmon resonances in gold-coated tilted fiber Bragg gratings,” Opt. Lett. 32(3), 211–213 (2007).
    [CrossRef] [PubMed]
  8. Y. Y. Shevchenko, D. A. D. Blair, M. C. Derosa, and J. Albert, “DNA Target Detection Using Gold-coated Tilted Fiber Bragg Gratings in Aqueous Media,” CLEO/QELS 2008, San Jose, CA, CMJ4 (2008).
  9. T. Allsop, R. Neal, S. Rehman, D. J. Webb, D. Mapps, and I. Bennion, “Generation of infrared surface plasmon resonances with high refractive index sensitivity utilizing tilted fiber Bragg gratings,” Appl. Opt. 46(22), 5456–5460 (2007).
    [CrossRef] [PubMed]
  10. S. M. Tripathi, A. Kumar, E. Marin, and J.-P. Meunier, ““Side-Polished Optical Fiber Grating-Based Refractive Index Sensors Utilizing the Pure Surface Plasmon Polariton,” IEEE/OSA,” J. Lightwave Technol. 26(13), 1980–1985 (2008).
    [CrossRef]
  11. G. Nemova and R. Kashyap, “Fiber-Bragg-grating-assisted surface plasmon-polariton sensor,” Opt. Lett. 31(14), 2118–2120 (2006).
    [CrossRef] [PubMed]
  12. Y. Shevchenko, C. Chen, M. A. Dakka, and J. Albert, “Polarization-selective grating excitation of plasmons in cylindrical optical fibers,” Opt. Lett. 35(5), 637–639 (2010).
    [CrossRef] [PubMed]
  13. C. F. Chan, C. Chen, A. Jafari, A. Laronche, D. J. Thomson, and J. Albert, “Optical fiber refractometer using narrowband cladding-mode resonance shifts,” Appl. Opt. 46(7), 1142–1149 (2007).
    [CrossRef] [PubMed]
  14. H.-P. Chiang, Y.-C. Wang, and P. T. Leung, “Effect of temperature on the incident angle-dependence of the sensitivity for surface plasmon resonance spectroscopy,” Thin Solid Films 425(1–2), 135–138 (2003).
    [CrossRef]
  15. K. Lin, Y. Lu, Z. Luo, R. Zheng, P. Wang, and H. Ming, “Numerical and experimental investigation of temperature effects on the surface plasmon resonance sensor,” Chin. Opt. Lett. 7(5), 428–431 (2009).
    [CrossRef]
  16. S. K. Ozdemir and G. Turhan-Sayan, ““Temperature effects on surface plasmon resonance: design considerations for an optical temperature sensor,” IEEE/OSA,” J. Lightwave Technol. 21(3), 805–814 (2003).
    [CrossRef]
  17. C. K. Chen, A. Laronche, G. Bouwmans, L. Bigot, Y. Quiquempois, and J. Albert, “Sensitivity of photonic crystal fiber modes to temperature, strain and external refractive index,” Opt. Express 16(13), 9645–9653 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-13-9645 .
    [CrossRef] [PubMed]
  18. The International Association for the Properties of Water and Steam, “Release on the refractive index of ordinary water substance as a function of wavelength, temperature and pressure,” IAPWS, Erlangen, pp.2 (1997).
  19. W.-J. Lee, J.-E. Kim, H. Y. Park, S. Park, M.-S. Kim, J. T. Kim, and J. J. Ju, “Optical constants of evaporated gold films measured by surface plasmon resonance at telecommunication wavelengths,” J. Appl. Phys. 103(7), 073713 (2008).
    [CrossRef]

2010

2009

2008

2007

2006

G. Nemova and R. Kashyap, “Fiber-Bragg-grating-assisted surface plasmon-polariton sensor,” Opt. Lett. 31(14), 2118–2120 (2006).
[CrossRef] [PubMed]

J. L. Tang, S. F. Cheng, W. T. Hsu, T. Y. Chiang, and L. K. Chau, “Fiber-optic biochemical sensing with a colloidal gold-modified long period fiber grating,” Sens. Actuators B Chem. 119(1), 105–109 (2006).
[CrossRef]

2003

S. K. Ozdemir and G. Turhan-Sayan, ““Temperature effects on surface plasmon resonance: design considerations for an optical temperature sensor,” IEEE/OSA,” J. Lightwave Technol. 21(3), 805–814 (2003).
[CrossRef]

H.-P. Chiang, Y.-C. Wang, and P. T. Leung, “Effect of temperature on the incident angle-dependence of the sensitivity for surface plasmon resonance spectroscopy,” Thin Solid Films 425(1–2), 135–138 (2003).
[CrossRef]

2001

R. Slavík, J. Homola, J. Tyroký, and E. Brynda, “Novel spectral fiber optic sensor based on surface plasmon resonance,” Sens. Actuators B Chem. 74(1–3), 106–111 (2001).
[CrossRef]

1993

R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B Chem. 12(3), 213–220 (1993).
[CrossRef]

1988

Albert, J.

Allsop, T.

Bennion, I.

Bigot, L.

Bouwmans, G.

Brynda, E.

R. Slavík, J. Homola, J. Tyroký, and E. Brynda, “Novel spectral fiber optic sensor based on surface plasmon resonance,” Sens. Actuators B Chem. 74(1–3), 106–111 (2001).
[CrossRef]

Chan, C. F.

Chau, L. K.

J. L. Tang, S. F. Cheng, W. T. Hsu, T. Y. Chiang, and L. K. Chau, “Fiber-optic biochemical sensing with a colloidal gold-modified long period fiber grating,” Sens. Actuators B Chem. 119(1), 105–109 (2006).
[CrossRef]

Chen, C.

Chen, C. K.

Cheng, S. F.

J. L. Tang, S. F. Cheng, W. T. Hsu, T. Y. Chiang, and L. K. Chau, “Fiber-optic biochemical sensing with a colloidal gold-modified long period fiber grating,” Sens. Actuators B Chem. 119(1), 105–109 (2006).
[CrossRef]

Chiang, H.-P.

H.-P. Chiang, Y.-C. Wang, and P. T. Leung, “Effect of temperature on the incident angle-dependence of the sensitivity for surface plasmon resonance spectroscopy,” Thin Solid Films 425(1–2), 135–138 (2003).
[CrossRef]

Chiang, T. Y.

J. L. Tang, S. F. Cheng, W. T. Hsu, T. Y. Chiang, and L. K. Chau, “Fiber-optic biochemical sensing with a colloidal gold-modified long period fiber grating,” Sens. Actuators B Chem. 119(1), 105–109 (2006).
[CrossRef]

Dakka, M. A.

Delport, F.

J. Pollet, F. Delport, K. P. F. Janssen, K. Jans, G. Maes, H. Pfeiffer, M. Wevers, and J. Lammertyn, “Fiber optic SPR biosensing of DNA hybridization and DNA-protein interactions,” Biosens. Bioelectron. 25(4), 864–869 (2009).
[CrossRef] [PubMed]

Homola, J.

B. Spacková and J. Homola, “Theoretical analysis of a fiber optic surface plasmon resonance sensor utilizing a Bragg grating,” Opt. Express 17(25), 23254–23264 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-25-23254 .
[CrossRef]

R. Slavík, J. Homola, J. Tyroký, and E. Brynda, “Novel spectral fiber optic sensor based on surface plasmon resonance,” Sens. Actuators B Chem. 74(1–3), 106–111 (2001).
[CrossRef]

Hsu, W. T.

J. L. Tang, S. F. Cheng, W. T. Hsu, T. Y. Chiang, and L. K. Chau, “Fiber-optic biochemical sensing with a colloidal gold-modified long period fiber grating,” Sens. Actuators B Chem. 119(1), 105–109 (2006).
[CrossRef]

Jafari, A.

Jans, K.

J. Pollet, F. Delport, K. P. F. Janssen, K. Jans, G. Maes, H. Pfeiffer, M. Wevers, and J. Lammertyn, “Fiber optic SPR biosensing of DNA hybridization and DNA-protein interactions,” Biosens. Bioelectron. 25(4), 864–869 (2009).
[CrossRef] [PubMed]

Janssen, K. P. F.

J. Pollet, F. Delport, K. P. F. Janssen, K. Jans, G. Maes, H. Pfeiffer, M. Wevers, and J. Lammertyn, “Fiber optic SPR biosensing of DNA hybridization and DNA-protein interactions,” Biosens. Bioelectron. 25(4), 864–869 (2009).
[CrossRef] [PubMed]

Jorgenson, R. C.

R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B Chem. 12(3), 213–220 (1993).
[CrossRef]

Ju, J. J.

W.-J. Lee, J.-E. Kim, H. Y. Park, S. Park, M.-S. Kim, J. T. Kim, and J. J. Ju, “Optical constants of evaporated gold films measured by surface plasmon resonance at telecommunication wavelengths,” J. Appl. Phys. 103(7), 073713 (2008).
[CrossRef]

Kashyap, R.

Kawata, S.

Kim, J. T.

W.-J. Lee, J.-E. Kim, H. Y. Park, S. Park, M.-S. Kim, J. T. Kim, and J. J. Ju, “Optical constants of evaporated gold films measured by surface plasmon resonance at telecommunication wavelengths,” J. Appl. Phys. 103(7), 073713 (2008).
[CrossRef]

Kim, J.-E.

W.-J. Lee, J.-E. Kim, H. Y. Park, S. Park, M.-S. Kim, J. T. Kim, and J. J. Ju, “Optical constants of evaporated gold films measured by surface plasmon resonance at telecommunication wavelengths,” J. Appl. Phys. 103(7), 073713 (2008).
[CrossRef]

Kim, M.-S.

W.-J. Lee, J.-E. Kim, H. Y. Park, S. Park, M.-S. Kim, J. T. Kim, and J. J. Ju, “Optical constants of evaporated gold films measured by surface plasmon resonance at telecommunication wavelengths,” J. Appl. Phys. 103(7), 073713 (2008).
[CrossRef]

Kumar, A.

Lammertyn, J.

J. Pollet, F. Delport, K. P. F. Janssen, K. Jans, G. Maes, H. Pfeiffer, M. Wevers, and J. Lammertyn, “Fiber optic SPR biosensing of DNA hybridization and DNA-protein interactions,” Biosens. Bioelectron. 25(4), 864–869 (2009).
[CrossRef] [PubMed]

Laronche, A.

Lee, W.-J.

W.-J. Lee, J.-E. Kim, H. Y. Park, S. Park, M.-S. Kim, J. T. Kim, and J. J. Ju, “Optical constants of evaporated gold films measured by surface plasmon resonance at telecommunication wavelengths,” J. Appl. Phys. 103(7), 073713 (2008).
[CrossRef]

Leung, P. T.

H.-P. Chiang, Y.-C. Wang, and P. T. Leung, “Effect of temperature on the incident angle-dependence of the sensitivity for surface plasmon resonance spectroscopy,” Thin Solid Films 425(1–2), 135–138 (2003).
[CrossRef]

Lin, K.

Lu, Y.

Luo, Z.

Maes, G.

J. Pollet, F. Delport, K. P. F. Janssen, K. Jans, G. Maes, H. Pfeiffer, M. Wevers, and J. Lammertyn, “Fiber optic SPR biosensing of DNA hybridization and DNA-protein interactions,” Biosens. Bioelectron. 25(4), 864–869 (2009).
[CrossRef] [PubMed]

Mapps, D.

Marin, E.

Matsubara, K.

Meunier, J.-P.

Minami, S.

Ming, H.

Neal, R.

Nemova, G.

Ozdemir, S. K.

Park, H. Y.

W.-J. Lee, J.-E. Kim, H. Y. Park, S. Park, M.-S. Kim, J. T. Kim, and J. J. Ju, “Optical constants of evaporated gold films measured by surface plasmon resonance at telecommunication wavelengths,” J. Appl. Phys. 103(7), 073713 (2008).
[CrossRef]

Park, S.

W.-J. Lee, J.-E. Kim, H. Y. Park, S. Park, M.-S. Kim, J. T. Kim, and J. J. Ju, “Optical constants of evaporated gold films measured by surface plasmon resonance at telecommunication wavelengths,” J. Appl. Phys. 103(7), 073713 (2008).
[CrossRef]

Pfeiffer, H.

J. Pollet, F. Delport, K. P. F. Janssen, K. Jans, G. Maes, H. Pfeiffer, M. Wevers, and J. Lammertyn, “Fiber optic SPR biosensing of DNA hybridization and DNA-protein interactions,” Biosens. Bioelectron. 25(4), 864–869 (2009).
[CrossRef] [PubMed]

Pollet, J.

J. Pollet, F. Delport, K. P. F. Janssen, K. Jans, G. Maes, H. Pfeiffer, M. Wevers, and J. Lammertyn, “Fiber optic SPR biosensing of DNA hybridization and DNA-protein interactions,” Biosens. Bioelectron. 25(4), 864–869 (2009).
[CrossRef] [PubMed]

Quiquempois, Y.

Rehman, S.

Shevchenko, Y.

Shevchenko, Y. Y.

Slavík, R.

R. Slavík, J. Homola, J. Tyroký, and E. Brynda, “Novel spectral fiber optic sensor based on surface plasmon resonance,” Sens. Actuators B Chem. 74(1–3), 106–111 (2001).
[CrossRef]

Spacková, B.

Tang, J. L.

J. L. Tang, S. F. Cheng, W. T. Hsu, T. Y. Chiang, and L. K. Chau, “Fiber-optic biochemical sensing with a colloidal gold-modified long period fiber grating,” Sens. Actuators B Chem. 119(1), 105–109 (2006).
[CrossRef]

Thomson, D. J.

Tripathi, S. M.

Turhan-Sayan, G.

Tyroký, J.

R. Slavík, J. Homola, J. Tyroký, and E. Brynda, “Novel spectral fiber optic sensor based on surface plasmon resonance,” Sens. Actuators B Chem. 74(1–3), 106–111 (2001).
[CrossRef]

Wang, P.

Wang, Y.-C.

H.-P. Chiang, Y.-C. Wang, and P. T. Leung, “Effect of temperature on the incident angle-dependence of the sensitivity for surface plasmon resonance spectroscopy,” Thin Solid Films 425(1–2), 135–138 (2003).
[CrossRef]

Webb, D. J.

Wevers, M.

J. Pollet, F. Delport, K. P. F. Janssen, K. Jans, G. Maes, H. Pfeiffer, M. Wevers, and J. Lammertyn, “Fiber optic SPR biosensing of DNA hybridization and DNA-protein interactions,” Biosens. Bioelectron. 25(4), 864–869 (2009).
[CrossRef] [PubMed]

Yee, S. S.

R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B Chem. 12(3), 213–220 (1993).
[CrossRef]

Zheng, R.

Appl. Opt.

Biosens. Bioelectron.

J. Pollet, F. Delport, K. P. F. Janssen, K. Jans, G. Maes, H. Pfeiffer, M. Wevers, and J. Lammertyn, “Fiber optic SPR biosensing of DNA hybridization and DNA-protein interactions,” Biosens. Bioelectron. 25(4), 864–869 (2009).
[CrossRef] [PubMed]

Chin. Opt. Lett.

J. Appl. Phys.

W.-J. Lee, J.-E. Kim, H. Y. Park, S. Park, M.-S. Kim, J. T. Kim, and J. J. Ju, “Optical constants of evaporated gold films measured by surface plasmon resonance at telecommunication wavelengths,” J. Appl. Phys. 103(7), 073713 (2008).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Opt. Lett.

Sens. Actuators B Chem.

R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B Chem. 12(3), 213–220 (1993).
[CrossRef]

R. Slavík, J. Homola, J. Tyroký, and E. Brynda, “Novel spectral fiber optic sensor based on surface plasmon resonance,” Sens. Actuators B Chem. 74(1–3), 106–111 (2001).
[CrossRef]

J. L. Tang, S. F. Cheng, W. T. Hsu, T. Y. Chiang, and L. K. Chau, “Fiber-optic biochemical sensing with a colloidal gold-modified long period fiber grating,” Sens. Actuators B Chem. 119(1), 105–109 (2006).
[CrossRef]

Thin Solid Films

H.-P. Chiang, Y.-C. Wang, and P. T. Leung, “Effect of temperature on the incident angle-dependence of the sensitivity for surface plasmon resonance spectroscopy,” Thin Solid Films 425(1–2), 135–138 (2003).
[CrossRef]

Other

The International Association for the Properties of Water and Steam, “Release on the refractive index of ordinary water substance as a function of wavelength, temperature and pressure,” IAPWS, Erlangen, pp.2 (1997).

Y. Y. Shevchenko, D. A. D. Blair, M. C. Derosa, and J. Albert, “DNA Target Detection Using Gold-coated Tilted Fiber Bragg Gratings in Aqueous Media,” CLEO/QELS 2008, San Jose, CA, CMJ4 (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of the TFBG-SPR sensor.

Fig. 2
Fig. 2

Schematic diagram of the experimental setup for temperature calibration.

Fig. 3
Fig. 3

Measured transmission spectrum of a TFBG-SPR sensor with a 50nm gold coating at two orthogonal linear polarization states (in distilled water).

Fig. 4
Fig. 4

Measured spectra of the TFBG-SPR sensor near the SPR resonance and near the Bragg wavelength, against temperature change in distilled water. The lines connecting the selected resonance peaks are used to calculate the SPR wavelength with the extrapolation method.

Fig. 5
Fig. 5

Measured spectra of TFBG-SPR sensor against refractive index changes. The lines at selected resonance peaks are employed to calculate the SPR wavelength with the extrapolation method (similar to Fig. 4).

Fig. 6
Fig. 6

SPR wavelength shifts against refractive index changes.

Fig. 7
Fig. 7

SPR measured net wavelength shifts, shift from the RI change of water, and the difference between the two (due to the inherent temperature sensitivity of the sensor itself).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

λ B r a g g = N e f f ( c o r e ) Λ / cos ( θ ) ,
λ c l a d i = ( N e f f ( c o r e ) + N e f f i ( c l a d ) ) Λ / cos ( θ ) ,
n 2 1 n 2 + 2 ( 1 / ρ ¯ ) = a 0 + a 1 ρ ¯ + a 2 T ¯ + a 3 λ ¯ 2 T ¯ + a 4 / λ ¯ 2 + a 5 λ ¯ 2 λ ¯ U V 2 + a 6 λ ¯ 2 λ ¯ I R 2 + a 7 ρ ¯ 2 ,
N s p = ε M n s 2 ε M + n s 2 .
ε M ( ω ) = 1 ω p 2 ω ( ω + i ω c ) ,

Metrics