Abstract

We propose a structureless method for focusing surface plasmon polaritons (SPPs) on a flat metal film under illumination of radially polarized cogwheel-like structured light beams. Without metal structures, the locally induced SPPs can further be propagated following the predefined patterns to form symmetric focal spots with dimensions beyond diffraction limit. Benefiting from the radial polarization, this method can be employed to pattern various center-symmetric evanescent distributions for generating SPPs reconfigurably. The SPPs will be propagating and focusing in radial directions.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface-Plasmons on Smooth and Rough Surfaces and on Gratings, Springer Tracts in Modern Physics (Springer, Berlin, 1988).
  2. M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477 (2007).
    [CrossRef]
  3. G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9(5), 2139–2143 (2009).
    [CrossRef] [PubMed]
  4. Q. Zhan, “Evanescent Bessel beam generation via surface plasmon resonance excitation by a radially polarized beam,” Opt. Lett. 31(11), 1726–1728 (2006).
    [CrossRef] [PubMed]
  5. W. B. Chen and Q. Zhan, “Realization of an evanescent Bessel beam via surface plasmon interference excited by a radially polarized beam,” Opt. Lett. 34(6), 722–724 (2009).
    [CrossRef] [PubMed]
  6. H. Kano, S. Mizuguchi, and S. Kawata, “Excitation of surface-plasmon polaritons by a focused laser beam,” J. Opt. Soc. Am. B 15(4), 1381–1386 (1998).
    [CrossRef]
  7. A. Bouhelier, F. Ignatovich, A. Bruyant, C. Huang, G. Colas des Francs, J.-C. Weeber, A. Dereux, G. P. Wiederrecht, and L. Novotny, “Surface plasmon interference excited by tightly focused laser beams,” Opt. Lett. 32(17), 2535–2537 (2007).
    [CrossRef] [PubMed]
  8. R. Vander and S. G. Lipson, “High-resolution surface-plasmon resonance real-time imaging,” Opt. Lett. 34(1), 37–39 (2009).
    [CrossRef]
  9. K. J. Moh, X.-C. Yuan, J. Bu, S. W. Zhu, and B. Z. Gao, “Radial polarization induced surface plasmon virtual probe for two-photon fluorescence microscopy,” Opt. Lett. 34(7), 971–973 (2009).
    [CrossRef] [PubMed]
  10. L. David, Andrews, Structured Light and Its Applications, Academic Press is an imprint of Elsevier (Elsevier, USA, 2008).
  11. D. W. Zhang and X.-C. Yuan, “Entangled double-helix phase,” Opt. Lett. 28(20), 1864–1866 (2003).
    [CrossRef] [PubMed]
  12. A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Size selective trapping with optical “cogwheel” tweezers,” Opt. Express 12(17), 4129–4135 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-17-4129 .
    [CrossRef] [PubMed]
  13. J. Lin, X.-C. Yuan, S. H. Tao, and R. E. Burge, “Variable-radius focused optical vortex with suppressed sidelobes,” Opt. Lett. 31(11), 1600–1602 (2006).
    [CrossRef] [PubMed]
  14. F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, “Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film,” Phys. Rev. Lett. 94(2), 023005 (2005).
    [CrossRef] [PubMed]
  15. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959).
    [CrossRef]
  16. E. Wolf, “Electromagnetic Diffraction in Optical Systems. I. An Integral Representation of the Image Field,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 349–357 (1959).
    [CrossRef]
  17. K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7(2), 77–87 (2000), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-7-2-77 .
    [CrossRef] [PubMed]
  18. Q. Zhan and J. R. Leger, “Focus shaping using cylindrical vector beams,” Opt. Express 10(7), 324–331 (2002), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-10-7-324 .
    [PubMed]
  19. Z. J. Hu, X.-C. Yuan, S. W. Zhu, G. H. Yuan, P. S. Tan, J. Lin, and Q. Wang, ““Dynamic surface Plasmon patterns generated by reconfigurable “cogwheel-shaped” beams,” Appl. Phys. Lett. 93(18), 181102 (2008).
    [CrossRef]
  20. http://www.rsoftdesign.com/

2009 (4)

2008 (1)

Z. J. Hu, X.-C. Yuan, S. W. Zhu, G. H. Yuan, P. S. Tan, J. Lin, and Q. Wang, ““Dynamic surface Plasmon patterns generated by reconfigurable “cogwheel-shaped” beams,” Appl. Phys. Lett. 93(18), 181102 (2008).
[CrossRef]

2007 (2)

2006 (2)

2005 (1)

F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, “Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film,” Phys. Rev. Lett. 94(2), 023005 (2005).
[CrossRef] [PubMed]

2004 (1)

2003 (1)

2002 (1)

2000 (1)

1998 (1)

1959 (2)

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959).
[CrossRef]

E. Wolf, “Electromagnetic Diffraction in Optical Systems. I. An Integral Representation of the Image Field,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 349–357 (1959).
[CrossRef]

Bernet, S.

Bocchio, N.

F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, “Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film,” Phys. Rev. Lett. 94(2), 023005 (2005).
[CrossRef] [PubMed]

Bouhelier, A.

Brown, T. G.

Bruyant, A.

Bu, J.

Burge, R. E.

Chen, W. B.

Colas des Francs, G.

Dereux, A.

Fürhapter, S.

Gao, B. Z.

Girard, C.

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477 (2007).
[CrossRef]

Hu, Z. J.

Z. J. Hu, X.-C. Yuan, S. W. Zhu, G. H. Yuan, P. S. Tan, J. Lin, and Q. Wang, ““Dynamic surface Plasmon patterns generated by reconfigurable “cogwheel-shaped” beams,” Appl. Phys. Lett. 93(18), 181102 (2008).
[CrossRef]

Huang, C.

Ignatovich, F.

Jesacher, A.

Kano, H.

Kawata, S.

Kreiter, M.

F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, “Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film,” Phys. Rev. Lett. 94(2), 023005 (2005).
[CrossRef] [PubMed]

Leger, J. R.

Lerman, G. M.

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9(5), 2139–2143 (2009).
[CrossRef] [PubMed]

Levy, U.

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9(5), 2139–2143 (2009).
[CrossRef] [PubMed]

Lin, J.

Z. J. Hu, X.-C. Yuan, S. W. Zhu, G. H. Yuan, P. S. Tan, J. Lin, and Q. Wang, ““Dynamic surface Plasmon patterns generated by reconfigurable “cogwheel-shaped” beams,” Appl. Phys. Lett. 93(18), 181102 (2008).
[CrossRef]

J. Lin, X.-C. Yuan, S. H. Tao, and R. E. Burge, “Variable-radius focused optical vortex with suppressed sidelobes,” Opt. Lett. 31(11), 1600–1602 (2006).
[CrossRef] [PubMed]

Lipson, S. G.

Mizuguchi, S.

Moh, K. J.

Novotny, L.

Quidant, R.

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477 (2007).
[CrossRef]

Richards, B.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959).
[CrossRef]

Righini, M.

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477 (2007).
[CrossRef]

Ritsch-Marte, M.

Stefani, F. D.

F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, “Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film,” Phys. Rev. Lett. 94(2), 023005 (2005).
[CrossRef] [PubMed]

Stoyanova, N.

F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, “Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film,” Phys. Rev. Lett. 94(2), 023005 (2005).
[CrossRef] [PubMed]

Tan, P. S.

Z. J. Hu, X.-C. Yuan, S. W. Zhu, G. H. Yuan, P. S. Tan, J. Lin, and Q. Wang, ““Dynamic surface Plasmon patterns generated by reconfigurable “cogwheel-shaped” beams,” Appl. Phys. Lett. 93(18), 181102 (2008).
[CrossRef]

Tao, S. H.

Vander, R.

Vasilev, K.

F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, “Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film,” Phys. Rev. Lett. 94(2), 023005 (2005).
[CrossRef] [PubMed]

Wang, Q.

Z. J. Hu, X.-C. Yuan, S. W. Zhu, G. H. Yuan, P. S. Tan, J. Lin, and Q. Wang, ““Dynamic surface Plasmon patterns generated by reconfigurable “cogwheel-shaped” beams,” Appl. Phys. Lett. 93(18), 181102 (2008).
[CrossRef]

Weeber, J.-C.

Wiederrecht, G. P.

Wolf, E.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959).
[CrossRef]

E. Wolf, “Electromagnetic Diffraction in Optical Systems. I. An Integral Representation of the Image Field,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 349–357 (1959).
[CrossRef]

Yanai, A.

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9(5), 2139–2143 (2009).
[CrossRef] [PubMed]

Youngworth, K. S.

Yuan, G. H.

Z. J. Hu, X.-C. Yuan, S. W. Zhu, G. H. Yuan, P. S. Tan, J. Lin, and Q. Wang, ““Dynamic surface Plasmon patterns generated by reconfigurable “cogwheel-shaped” beams,” Appl. Phys. Lett. 93(18), 181102 (2008).
[CrossRef]

Yuan, X.-C.

Zelenina, A. S.

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477 (2007).
[CrossRef]

Zhan, Q.

Zhang, D. W.

Zhu, S. W.

K. J. Moh, X.-C. Yuan, J. Bu, S. W. Zhu, and B. Z. Gao, “Radial polarization induced surface plasmon virtual probe for two-photon fluorescence microscopy,” Opt. Lett. 34(7), 971–973 (2009).
[CrossRef] [PubMed]

Z. J. Hu, X.-C. Yuan, S. W. Zhu, G. H. Yuan, P. S. Tan, J. Lin, and Q. Wang, ““Dynamic surface Plasmon patterns generated by reconfigurable “cogwheel-shaped” beams,” Appl. Phys. Lett. 93(18), 181102 (2008).
[CrossRef]

Appl. Phys. Lett. (1)

Z. J. Hu, X.-C. Yuan, S. W. Zhu, G. H. Yuan, P. S. Tan, J. Lin, and Q. Wang, ““Dynamic surface Plasmon patterns generated by reconfigurable “cogwheel-shaped” beams,” Appl. Phys. Lett. 93(18), 181102 (2008).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nano Lett. (1)

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9(5), 2139–2143 (2009).
[CrossRef] [PubMed]

Nat. Phys. (1)

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477 (2007).
[CrossRef]

Opt. Express (3)

Opt. Lett. (7)

Phys. Rev. Lett. (1)

F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, “Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film,” Phys. Rev. Lett. 94(2), 023005 (2005).
[CrossRef] [PubMed]

Proc. R. Soc. Lond. A Math. Phys. Sci. (2)

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959).
[CrossRef]

E. Wolf, “Electromagnetic Diffraction in Optical Systems. I. An Integral Representation of the Image Field,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 349–357 (1959).
[CrossRef]

Other (3)

http://www.rsoftdesign.com/

L. David, Andrews, Structured Light and Its Applications, Academic Press is an imprint of Elsevier (Elsevier, USA, 2008).

H. Raether, Surface-Plasmons on Smooth and Rough Surfaces and on Gratings, Springer Tracts in Modern Physics (Springer, Berlin, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of dynamic SPPs pattern generated by highly focused radially polarized “cogwheel” beam at SPR condition.

Fig. 2
Fig. 2

(a) Normalized focused SPPs patterns intensity distributions in the vicinity of focus for radially polarized “cogwheel” beams with l = 1 and l = 2. The transverse coordinates are normalized to wavelength. (b) Transverse profiles of SPPs intensity distributions for radially polarized “cogwheel” beams of different topological charges l.

Fig. 3
Fig. 3

SPPs intensity distributions for the linearly polarized “cogwheel” beam with l = 3. There are three components contributing to the total field (a): radial component (b), azimuthal component (c) and longitude component (d). The transverse coordinates are normalized to wavelength.

Fig. 4
Fig. 4

(a) 3D-FDTD results showing SPPs intensity distributions in the xz plane for radially polarized “cogwheel” beam with l = 6. The grid sizes used are Δx = Δy = 20 nm. The longitudinal nonuniform grid sizes Δz are 5 nm and 20 nm in the metal region and other regions to save the computation memory and time. (b) Normalized total field strength along the z axis (red curve) and the curve of function, exp (−2|kz||z|) (green curve).

Fig. 5
Fig. 5

Electric field intensity distributions in the xy plane at z = 50 nm with the Au film (a) and without the Au film (b) for radially polarized “cogwheel” beams with topological charge 6 by using 3D-FDTD method. The grid sizes used in the xy plane are Δx = Δy = 10 nm.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

ksp(ω)=ω/c*ε0εm(ω)/(ε0+εm(ω))
klight=k0εdsinθsp=ksp
|umn=(|um+exp(iϕ')|un)/2
E(r,ψ,z)=iλθ0θmax02πcosθE0(θ,ϕ)tp(θ)exp{i(k12(k2sinθ)2)1/2z}exp{ikrsinθcos(ϕψ)}[cosθcos(ϕψ)r^+sinθz^]sinθdθdϕ
tijkp=tijptjkpexp(ikzjd)1+rijprjkpexp(2ikzjd)
Er=πiλ(I1+I2)cos(lψ)Ez=πiλI3cos(lψ)
I1=(i)l+1θ0θmaxcos1/2(θ)RD(θ)exp{iz(k12(k2sinθ)2)1/2}tp(θ)Jl+1(k2rsinθ)dθI2=(i)l1θ0θmaxcos1/2(θ)RD(θ)exp{iz(k12(k2sinθ)2)1/2}tp(θ)Jl1(k2rsinθ)dθI3=(i)lθ0θmaxcos1/2(θ)RD(θ)exp{iz(k12(k2sinθ)2)1/2}tp(θ)Jl(k2rsinθ)dθ
02πcos(lϕ)exp{ikrsinθcos(ϕψ)}dϕ=(i)n2πcos(lψ)Jl(krsinθ)

Metrics