Abstract

In this paper we investigate the polarization properties of a fiber laser with an intracavity c-cut calcite crystal that is capable of producing reconfigurable vectorial output modes. Vectorial modes with radial, azimuthal and generalized cylindrical vector polarizations can be generated by translating one lens within the laser cavity. Detailed studies of the mode polarization evolution show that the modes inside the laser cavity can be spatially homogeneously polarized in one section of the cavity while being spatially inhomogeneously polarized in another section of the cavity, which opens the opportunities for many potential new fiber laser design possibilities and applications. Furthermore, more complicated vectorial vortex output modes are also observed by purposefully introducing angular misalignments.

© 2010 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7(2), 77–87 (2000).
    [CrossRef]
  2. C. J. R. Sheppard and K. G. Larkin, “Optimal concentration of electromagnetic radiation,” J. Mod. Opt. 41(7), 1495–1505 (1994).
    [CrossRef]
  3. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
    [CrossRef]
  4. H. F. Wang, L. P. Shi, B. Lukyanchuk, C. J. R. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2(8), 501–505 (2008).
    [CrossRef]
  5. R. Borghi, M. Santarsiero, and M. A. Alonso, “Highly focused spirally polarized beams,” J. Opt. Soc. Am. A 22(7), 1420–1431 (2005).
    [CrossRef]
  6. J. T. Fourkas, “Rapid determination of the three-dimensional orientation of single molecules,” Opt. Lett. 26(4), 211–213 (2001).
    [CrossRef]
  7. L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
    [CrossRef]
  8. D. P. Biss and T. G. Brown, “Polarization-vortex-driven second-harmonic generation,” Opt. Lett. 28(11), 923–925 (2003).
    [CrossRef]
  9. F. Lu, W. Zheng, and Z. Huang, “Coherent anti-Stokes Raman scattering microscopy using tightly focused radially polarized light,” Opt. Lett. 34(12), 1870–1872 (2009).
    [CrossRef]
  10. M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys., A Mater. Sci. Process. 86(3), 329–334 (2007).
    [CrossRef]
  11. B. Jia, H. Kang, J. Li, and M. Gu, “Use of radially polarized beams in three-dimensional photonic crystal fabrication with the two-photon polymerization method,” Opt. Lett. 34(13), 1918–1920 (2009).
    [CrossRef]
  12. Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express 12(15), 3377–3382 (2004).
    [CrossRef]
  13. M. Michihata, T. Hayashi, and Y. Takaya, “Measurement of axial and transverse trapping stiffness of optical tweezers in air using a radially polarized beam,” Appl. Opt. 48(32), 6143–6151 (2009).
    [CrossRef]
  14. W. Chen and Q. Zhan, “Numerical study of an apertureless near field scanning optical microscope probe under radial polarization illumination,” Opt. Express 15(7), 4106–4111 (2007).
    [CrossRef]
  15. X.-W. Chen, V. Sandoghdar, and M. Agio, “Highly efficient interfacing of guided plasmons and photons in nanowires,” Nano Lett. 9(11), 3756–3761 (2009).
    [CrossRef]
  16. W. Chen and Q. Zhan, “Realization of an evanescent Bessel beam via surface plasmon interference excited by a radially polarized beam,” Opt. Lett. 34(6), 722–724 (2009).
    [CrossRef]
  17. K. J. Moh, X.-C. Yuan, J. Bu, S. W. Zhu, and B. Z. Gao, “Surface plasmon resonance imaging of cell-substrate contacts with radially polarized beams,” Opt. Express 16(25), 20734–20741 (2008).
    [CrossRef]
  18. G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9(5), 2139–2143 (2009).
    [CrossRef]
  19. W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Plasmonic lens made of multiple concentric metallic rings under radially polarized illumination,” Nano Lett. 9(12), 4320–4325 (2009).
    [CrossRef]
  20. A. V. Failla, H. Qian, H. H. Qian, A. Hartschuh, and A. J. Meixner, “Orientational imaging of subwavelength Au particles with higher order laser modes,” Nano Lett. 6(7), 1374–1378 (2006).
    [CrossRef]
  21. Q. Zhan and J. R. Leger, “Microellipsometer with radial symmetry,” Appl. Opt. 41(22), 4630–4637 (2002).
    [CrossRef]
  22. G. M. Lerman and U. Levy, “Radial polarization interferometer,” Opt. Express 17(25), 23234–23246 (2009).
    [CrossRef]
  23. S. Tripathi and K. C. Toussaint., “Rapid Mueller matrix polarimetry based on parallelized polarization state generation and detection,” Opt. Express 17(24), 21396–21407 (2009).
    [CrossRef]
  24. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon. 1(1), 1–57 (2009).
    [CrossRef]
  25. J. L. Li, K. I. Ueda, M. Musha, A. Shirakawa, and Z. M. Zhang, “Converging-axicon-based radially polarized ytterbium fiber laser and evidence on the mode profile inside the gain fiber,” Opt. Lett. 32(11), 1360–1362 (2007).
    [CrossRef]
  26. J. L. Li, K. I. Ueda, A. Shirakawa, M. Musha, L. X. Zhong, and Z. M. Zhang, “39-mW annular excitation of ytterbium fiber laser with radial polarization,” Laser Phys. Lett. 4(11), 814–818 (2007).
    [CrossRef]
  27. M. Fridman, G. Machavariai, N. Davidson, and A. A. Friesem, “Fiber lasers generating radially and azimuthally polarized light,” Appl. Phys. Lett. 93(19), 191104 (2008).
    [CrossRef]
  28. R. Zhou, B. Ibarra-Escamilla, J. W. Haus, P. E. Powers, and Q. Zhan, “Fiber laser generating switchable radially and azimuthally polarized beams with 140 mW output power at 1.6 µm wavelength,” Appl. Phys. Lett. 95(19), 191111 (2009).
    [CrossRef]
  29. Q. Zhan and J. R. Leger, “Focus shaping using cylindrical vector beams,” Opt. Express 10(7), 324–331 (2002).
  30. K. Otsuka, S.-C. Chu, C.-C. Lin, K. Tokunaga, and T. Ohtomo, “Spatial and polarization entanglement of lasing patterns and related dynamic behaviors in laser-diode-pumped solid-state lasers,” Opt. Express 17(24), 21615–21627 (2009).
    [CrossRef]
  31. G. Volpe and D. Petrov, “Generation of cylindrical vector beams with few-mode fibers excited by Laguerre–Gaussian beams,” Opt. Commun. 237(1-3), 89–95 (2004).
    [CrossRef]

2009 (12)

X.-W. Chen, V. Sandoghdar, and M. Agio, “Highly efficient interfacing of guided plasmons and photons in nanowires,” Nano Lett. 9(11), 3756–3761 (2009).
[CrossRef]

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9(5), 2139–2143 (2009).
[CrossRef]

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Plasmonic lens made of multiple concentric metallic rings under radially polarized illumination,” Nano Lett. 9(12), 4320–4325 (2009).
[CrossRef]

R. Zhou, B. Ibarra-Escamilla, J. W. Haus, P. E. Powers, and Q. Zhan, “Fiber laser generating switchable radially and azimuthally polarized beams with 140 mW output power at 1.6 µm wavelength,” Appl. Phys. Lett. 95(19), 191111 (2009).
[CrossRef]

Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon. 1(1), 1–57 (2009).
[CrossRef]

W. Chen and Q. Zhan, “Realization of an evanescent Bessel beam via surface plasmon interference excited by a radially polarized beam,” Opt. Lett. 34(6), 722–724 (2009).
[CrossRef]

F. Lu, W. Zheng, and Z. Huang, “Coherent anti-Stokes Raman scattering microscopy using tightly focused radially polarized light,” Opt. Lett. 34(12), 1870–1872 (2009).
[CrossRef]

B. Jia, H. Kang, J. Li, and M. Gu, “Use of radially polarized beams in three-dimensional photonic crystal fabrication with the two-photon polymerization method,” Opt. Lett. 34(13), 1918–1920 (2009).
[CrossRef]

M. Michihata, T. Hayashi, and Y. Takaya, “Measurement of axial and transverse trapping stiffness of optical tweezers in air using a radially polarized beam,” Appl. Opt. 48(32), 6143–6151 (2009).
[CrossRef]

S. Tripathi and K. C. Toussaint., “Rapid Mueller matrix polarimetry based on parallelized polarization state generation and detection,” Opt. Express 17(24), 21396–21407 (2009).
[CrossRef]

K. Otsuka, S.-C. Chu, C.-C. Lin, K. Tokunaga, and T. Ohtomo, “Spatial and polarization entanglement of lasing patterns and related dynamic behaviors in laser-diode-pumped solid-state lasers,” Opt. Express 17(24), 21615–21627 (2009).
[CrossRef]

G. M. Lerman and U. Levy, “Radial polarization interferometer,” Opt. Express 17(25), 23234–23246 (2009).
[CrossRef]

2008 (3)

K. J. Moh, X.-C. Yuan, J. Bu, S. W. Zhu, and B. Z. Gao, “Surface plasmon resonance imaging of cell-substrate contacts with radially polarized beams,” Opt. Express 16(25), 20734–20741 (2008).
[CrossRef]

M. Fridman, G. Machavariai, N. Davidson, and A. A. Friesem, “Fiber lasers generating radially and azimuthally polarized light,” Appl. Phys. Lett. 93(19), 191104 (2008).
[CrossRef]

H. F. Wang, L. P. Shi, B. Lukyanchuk, C. J. R. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2(8), 501–505 (2008).
[CrossRef]

2007 (4)

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys., A Mater. Sci. Process. 86(3), 329–334 (2007).
[CrossRef]

J. L. Li, K. I. Ueda, A. Shirakawa, M. Musha, L. X. Zhong, and Z. M. Zhang, “39-mW annular excitation of ytterbium fiber laser with radial polarization,” Laser Phys. Lett. 4(11), 814–818 (2007).
[CrossRef]

W. Chen and Q. Zhan, “Numerical study of an apertureless near field scanning optical microscope probe under radial polarization illumination,” Opt. Express 15(7), 4106–4111 (2007).
[CrossRef]

J. L. Li, K. I. Ueda, M. Musha, A. Shirakawa, and Z. M. Zhang, “Converging-axicon-based radially polarized ytterbium fiber laser and evidence on the mode profile inside the gain fiber,” Opt. Lett. 32(11), 1360–1362 (2007).
[CrossRef]

2006 (1)

A. V. Failla, H. Qian, H. H. Qian, A. Hartschuh, and A. J. Meixner, “Orientational imaging of subwavelength Au particles with higher order laser modes,” Nano Lett. 6(7), 1374–1378 (2006).
[CrossRef]

2005 (1)

2004 (2)

Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express 12(15), 3377–3382 (2004).
[CrossRef]

G. Volpe and D. Petrov, “Generation of cylindrical vector beams with few-mode fibers excited by Laguerre–Gaussian beams,” Opt. Commun. 237(1-3), 89–95 (2004).
[CrossRef]

2003 (2)

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[CrossRef]

D. P. Biss and T. G. Brown, “Polarization-vortex-driven second-harmonic generation,” Opt. Lett. 28(11), 923–925 (2003).
[CrossRef]

2002 (2)

2001 (2)

J. T. Fourkas, “Rapid determination of the three-dimensional orientation of single molecules,” Opt. Lett. 26(4), 211–213 (2001).
[CrossRef]

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[CrossRef]

2000 (1)

1994 (1)

C. J. R. Sheppard and K. G. Larkin, “Optimal concentration of electromagnetic radiation,” J. Mod. Opt. 41(7), 1495–1505 (1994).
[CrossRef]

Abeysinghe, D. C.

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Plasmonic lens made of multiple concentric metallic rings under radially polarized illumination,” Nano Lett. 9(12), 4320–4325 (2009).
[CrossRef]

Agio, M.

X.-W. Chen, V. Sandoghdar, and M. Agio, “Highly efficient interfacing of guided plasmons and photons in nanowires,” Nano Lett. 9(11), 3756–3761 (2009).
[CrossRef]

Alonso, M. A.

Beversluis, M. R.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[CrossRef]

Biss, D. P.

Borghi, R.

Brown, T. G.

Bu, J.

Chen, W.

Chen, X.-W.

X.-W. Chen, V. Sandoghdar, and M. Agio, “Highly efficient interfacing of guided plasmons and photons in nanowires,” Nano Lett. 9(11), 3756–3761 (2009).
[CrossRef]

Chong, C. T.

H. F. Wang, L. P. Shi, B. Lukyanchuk, C. J. R. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2(8), 501–505 (2008).
[CrossRef]

Chu, S.-C.

Davidson, N.

M. Fridman, G. Machavariai, N. Davidson, and A. A. Friesem, “Fiber lasers generating radially and azimuthally polarized light,” Appl. Phys. Lett. 93(19), 191104 (2008).
[CrossRef]

Dorn, R.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[CrossRef]

Failla, A. V.

A. V. Failla, H. Qian, H. H. Qian, A. Hartschuh, and A. J. Meixner, “Orientational imaging of subwavelength Au particles with higher order laser modes,” Nano Lett. 6(7), 1374–1378 (2006).
[CrossRef]

Feurer, T.

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys., A Mater. Sci. Process. 86(3), 329–334 (2007).
[CrossRef]

Fourkas, J. T.

Fridman, M.

M. Fridman, G. Machavariai, N. Davidson, and A. A. Friesem, “Fiber lasers generating radially and azimuthally polarized light,” Appl. Phys. Lett. 93(19), 191104 (2008).
[CrossRef]

Friesem, A. A.

M. Fridman, G. Machavariai, N. Davidson, and A. A. Friesem, “Fiber lasers generating radially and azimuthally polarized light,” Appl. Phys. Lett. 93(19), 191104 (2008).
[CrossRef]

Gao, B. Z.

Gu, M.

Hartschuh, A.

A. V. Failla, H. Qian, H. H. Qian, A. Hartschuh, and A. J. Meixner, “Orientational imaging of subwavelength Au particles with higher order laser modes,” Nano Lett. 6(7), 1374–1378 (2006).
[CrossRef]

Haus, J. W.

R. Zhou, B. Ibarra-Escamilla, J. W. Haus, P. E. Powers, and Q. Zhan, “Fiber laser generating switchable radially and azimuthally polarized beams with 140 mW output power at 1.6 µm wavelength,” Appl. Phys. Lett. 95(19), 191111 (2009).
[CrossRef]

Hayashi, T.

Huang, Z.

Ibarra-Escamilla, B.

R. Zhou, B. Ibarra-Escamilla, J. W. Haus, P. E. Powers, and Q. Zhan, “Fiber laser generating switchable radially and azimuthally polarized beams with 140 mW output power at 1.6 µm wavelength,” Appl. Phys. Lett. 95(19), 191111 (2009).
[CrossRef]

Jia, B.

Kang, H.

Larkin, K. G.

C. J. R. Sheppard and K. G. Larkin, “Optimal concentration of electromagnetic radiation,” J. Mod. Opt. 41(7), 1495–1505 (1994).
[CrossRef]

Leger, J. R.

Lerman, G. M.

G. M. Lerman and U. Levy, “Radial polarization interferometer,” Opt. Express 17(25), 23234–23246 (2009).
[CrossRef]

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9(5), 2139–2143 (2009).
[CrossRef]

Leuchs, G.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[CrossRef]

Levy, U.

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9(5), 2139–2143 (2009).
[CrossRef]

G. M. Lerman and U. Levy, “Radial polarization interferometer,” Opt. Express 17(25), 23234–23246 (2009).
[CrossRef]

Li, J.

Li, J. L.

J. L. Li, K. I. Ueda, M. Musha, A. Shirakawa, and Z. M. Zhang, “Converging-axicon-based radially polarized ytterbium fiber laser and evidence on the mode profile inside the gain fiber,” Opt. Lett. 32(11), 1360–1362 (2007).
[CrossRef]

J. L. Li, K. I. Ueda, A. Shirakawa, M. Musha, L. X. Zhong, and Z. M. Zhang, “39-mW annular excitation of ytterbium fiber laser with radial polarization,” Laser Phys. Lett. 4(11), 814–818 (2007).
[CrossRef]

Lin, C.-C.

Lu, F.

Lukyanchuk, B.

H. F. Wang, L. P. Shi, B. Lukyanchuk, C. J. R. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2(8), 501–505 (2008).
[CrossRef]

Machavariai, G.

M. Fridman, G. Machavariai, N. Davidson, and A. A. Friesem, “Fiber lasers generating radially and azimuthally polarized light,” Appl. Phys. Lett. 93(19), 191104 (2008).
[CrossRef]

Meier, M.

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys., A Mater. Sci. Process. 86(3), 329–334 (2007).
[CrossRef]

Meixner, A. J.

A. V. Failla, H. Qian, H. H. Qian, A. Hartschuh, and A. J. Meixner, “Orientational imaging of subwavelength Au particles with higher order laser modes,” Nano Lett. 6(7), 1374–1378 (2006).
[CrossRef]

Michihata, M.

Moh, K. J.

Musha, M.

J. L. Li, K. I. Ueda, M. Musha, A. Shirakawa, and Z. M. Zhang, “Converging-axicon-based radially polarized ytterbium fiber laser and evidence on the mode profile inside the gain fiber,” Opt. Lett. 32(11), 1360–1362 (2007).
[CrossRef]

J. L. Li, K. I. Ueda, A. Shirakawa, M. Musha, L. X. Zhong, and Z. M. Zhang, “39-mW annular excitation of ytterbium fiber laser with radial polarization,” Laser Phys. Lett. 4(11), 814–818 (2007).
[CrossRef]

Nelson, R. L.

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Plasmonic lens made of multiple concentric metallic rings under radially polarized illumination,” Nano Lett. 9(12), 4320–4325 (2009).
[CrossRef]

Novotny, L.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[CrossRef]

Ohtomo, T.

Otsuka, K.

Petrov, D.

G. Volpe and D. Petrov, “Generation of cylindrical vector beams with few-mode fibers excited by Laguerre–Gaussian beams,” Opt. Commun. 237(1-3), 89–95 (2004).
[CrossRef]

Powers, P. E.

R. Zhou, B. Ibarra-Escamilla, J. W. Haus, P. E. Powers, and Q. Zhan, “Fiber laser generating switchable radially and azimuthally polarized beams with 140 mW output power at 1.6 µm wavelength,” Appl. Phys. Lett. 95(19), 191111 (2009).
[CrossRef]

Qian, H.

A. V. Failla, H. Qian, H. H. Qian, A. Hartschuh, and A. J. Meixner, “Orientational imaging of subwavelength Au particles with higher order laser modes,” Nano Lett. 6(7), 1374–1378 (2006).
[CrossRef]

Qian, H. H.

A. V. Failla, H. Qian, H. H. Qian, A. Hartschuh, and A. J. Meixner, “Orientational imaging of subwavelength Au particles with higher order laser modes,” Nano Lett. 6(7), 1374–1378 (2006).
[CrossRef]

Quabis, S.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[CrossRef]

Romano, V.

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys., A Mater. Sci. Process. 86(3), 329–334 (2007).
[CrossRef]

Sandoghdar, V.

X.-W. Chen, V. Sandoghdar, and M. Agio, “Highly efficient interfacing of guided plasmons and photons in nanowires,” Nano Lett. 9(11), 3756–3761 (2009).
[CrossRef]

Santarsiero, M.

Sheppard, C. J. R.

H. F. Wang, L. P. Shi, B. Lukyanchuk, C. J. R. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2(8), 501–505 (2008).
[CrossRef]

C. J. R. Sheppard and K. G. Larkin, “Optimal concentration of electromagnetic radiation,” J. Mod. Opt. 41(7), 1495–1505 (1994).
[CrossRef]

Shi, L. P.

H. F. Wang, L. P. Shi, B. Lukyanchuk, C. J. R. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2(8), 501–505 (2008).
[CrossRef]

Shirakawa, A.

J. L. Li, K. I. Ueda, M. Musha, A. Shirakawa, and Z. M. Zhang, “Converging-axicon-based radially polarized ytterbium fiber laser and evidence on the mode profile inside the gain fiber,” Opt. Lett. 32(11), 1360–1362 (2007).
[CrossRef]

J. L. Li, K. I. Ueda, A. Shirakawa, M. Musha, L. X. Zhong, and Z. M. Zhang, “39-mW annular excitation of ytterbium fiber laser with radial polarization,” Laser Phys. Lett. 4(11), 814–818 (2007).
[CrossRef]

Takaya, Y.

Tokunaga, K.

Toussaint, K. C.

Tripathi, S.

Ueda, K. I.

J. L. Li, K. I. Ueda, M. Musha, A. Shirakawa, and Z. M. Zhang, “Converging-axicon-based radially polarized ytterbium fiber laser and evidence on the mode profile inside the gain fiber,” Opt. Lett. 32(11), 1360–1362 (2007).
[CrossRef]

J. L. Li, K. I. Ueda, A. Shirakawa, M. Musha, L. X. Zhong, and Z. M. Zhang, “39-mW annular excitation of ytterbium fiber laser with radial polarization,” Laser Phys. Lett. 4(11), 814–818 (2007).
[CrossRef]

Volpe, G.

G. Volpe and D. Petrov, “Generation of cylindrical vector beams with few-mode fibers excited by Laguerre–Gaussian beams,” Opt. Commun. 237(1-3), 89–95 (2004).
[CrossRef]

Wang, H. F.

H. F. Wang, L. P. Shi, B. Lukyanchuk, C. J. R. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2(8), 501–505 (2008).
[CrossRef]

Yanai, A.

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9(5), 2139–2143 (2009).
[CrossRef]

Youngworth, K. S.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[CrossRef]

K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7(2), 77–87 (2000).
[CrossRef]

Yuan, X.-C.

Zhan, Q.

Zhang, Z. M.

J. L. Li, K. I. Ueda, A. Shirakawa, M. Musha, L. X. Zhong, and Z. M. Zhang, “39-mW annular excitation of ytterbium fiber laser with radial polarization,” Laser Phys. Lett. 4(11), 814–818 (2007).
[CrossRef]

J. L. Li, K. I. Ueda, M. Musha, A. Shirakawa, and Z. M. Zhang, “Converging-axicon-based radially polarized ytterbium fiber laser and evidence on the mode profile inside the gain fiber,” Opt. Lett. 32(11), 1360–1362 (2007).
[CrossRef]

Zheng, W.

Zhong, L. X.

J. L. Li, K. I. Ueda, A. Shirakawa, M. Musha, L. X. Zhong, and Z. M. Zhang, “39-mW annular excitation of ytterbium fiber laser with radial polarization,” Laser Phys. Lett. 4(11), 814–818 (2007).
[CrossRef]

Zhou, R.

R. Zhou, B. Ibarra-Escamilla, J. W. Haus, P. E. Powers, and Q. Zhan, “Fiber laser generating switchable radially and azimuthally polarized beams with 140 mW output power at 1.6 µm wavelength,” Appl. Phys. Lett. 95(19), 191111 (2009).
[CrossRef]

Zhu, S. W.

Adv. Opt. Photon. (1)

Appl. Opt. (2)

Appl. Phys. Lett. (2)

M. Fridman, G. Machavariai, N. Davidson, and A. A. Friesem, “Fiber lasers generating radially and azimuthally polarized light,” Appl. Phys. Lett. 93(19), 191104 (2008).
[CrossRef]

R. Zhou, B. Ibarra-Escamilla, J. W. Haus, P. E. Powers, and Q. Zhan, “Fiber laser generating switchable radially and azimuthally polarized beams with 140 mW output power at 1.6 µm wavelength,” Appl. Phys. Lett. 95(19), 191111 (2009).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys., A Mater. Sci. Process. 86(3), 329–334 (2007).
[CrossRef]

J. Mod. Opt. (1)

C. J. R. Sheppard and K. G. Larkin, “Optimal concentration of electromagnetic radiation,” J. Mod. Opt. 41(7), 1495–1505 (1994).
[CrossRef]

J. Opt. Soc. Am. A (1)

Laser Phys. Lett. (1)

J. L. Li, K. I. Ueda, A. Shirakawa, M. Musha, L. X. Zhong, and Z. M. Zhang, “39-mW annular excitation of ytterbium fiber laser with radial polarization,” Laser Phys. Lett. 4(11), 814–818 (2007).
[CrossRef]

Nano Lett. (4)

X.-W. Chen, V. Sandoghdar, and M. Agio, “Highly efficient interfacing of guided plasmons and photons in nanowires,” Nano Lett. 9(11), 3756–3761 (2009).
[CrossRef]

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9(5), 2139–2143 (2009).
[CrossRef]

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Plasmonic lens made of multiple concentric metallic rings under radially polarized illumination,” Nano Lett. 9(12), 4320–4325 (2009).
[CrossRef]

A. V. Failla, H. Qian, H. H. Qian, A. Hartschuh, and A. J. Meixner, “Orientational imaging of subwavelength Au particles with higher order laser modes,” Nano Lett. 6(7), 1374–1378 (2006).
[CrossRef]

Nat. Photonics (1)

H. F. Wang, L. P. Shi, B. Lukyanchuk, C. J. R. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2(8), 501–505 (2008).
[CrossRef]

Opt. Commun. (1)

G. Volpe and D. Petrov, “Generation of cylindrical vector beams with few-mode fibers excited by Laguerre–Gaussian beams,” Opt. Commun. 237(1-3), 89–95 (2004).
[CrossRef]

Opt. Express (8)

Opt. Lett. (6)

Phys. Rev. Lett. (2)

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[CrossRef]

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics