Abstract

In this paper the polarization states of linearly and radially polarized plane wave and doughnut beams in the focal volume of high numerical aperture objectives are studied. Through manipulating the incident polarization states of laser beams as well as the apodization of an objective and adjusting the numerical aperture of an objective, focal fields dominantly with either one transverse component or one longitudinal component can be generated. Furthermore, tailored polarization distributions with three polarization components of the same strength are also found.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
    [CrossRef] [PubMed]
  2. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
    [CrossRef] [PubMed]
  3. A. Ashkin, “Acceleration and traping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
    [CrossRef]
  4. H. Blume, T. Bader, and F. Luty, “Bi-directional holographic information storage based on the optical reorientation of FA centers in KCl:Na,” Opt. Commun. 12(2), 147–151 (1974).
    [CrossRef]
  5. P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
    [CrossRef] [PubMed]
  6. N. D. Lai, J. H. Lin, P. W. Chen, J. L. Tang, and C. C. Hsu, “Controlling aspect ratio of focal spots of high numerical aperture objective lens in multi-photon absorption process,” Opt. Commun. 258(2), 97–102 (2006).
    [CrossRef]
  7. B. Jia, H. Kang, J. Li, and M. Gu, “Use of radially polarized beams in three-dimensional photonic crystal fabrication with the two-photon polymerization method,” Opt. Lett. 34(13), 1918–1920 (2009).
    [CrossRef] [PubMed]
  8. H. Kano, S. Mizuguchi, and S. Kawata, “Excitation of surface-plasmon polaritons by a focused laser beam,” J. Opt. Soc. Am. B 15(4), 1381–1386 (1998).
    [CrossRef]
  9. X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
    [CrossRef] [PubMed]
  10. J. Li, D. Day, and M. Gu, “Ultra-low energy threshold for cancer photothermal therapy using transferrin-conjugated gold nanorods,” Adv. Mater. 20(20), 3866–3871 (2008).
    [CrossRef]
  11. H. Kang, B. Jia, J. Li, D. Morrish, and M. Gu, “Enhanced photothermal therapy assisted with gold nanorods using a radially polarized beam,” Appl. Phys. Lett. 96(6), 063702 (2010).
    [CrossRef]
  12. Min Gu, Advanced optical imaging theory, (Springer, Heidelberg, 2000).
  13. S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, “Focusing light into a tighter spot,” Opt. Commun. 179(1-6), 1–7 (2000).
    [CrossRef]
  14. K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7(2), 77–87 (2000).
    [CrossRef] [PubMed]
  15. Q. Zhan and J. R. Leger, “Focus shaping using cylindrical vector beams,” Opt. Express 10(7), 324–331 (2002).
    [PubMed]
  16. J. W. Chon, X. Gan, and M. Gu, “Splitting of the focal spot of a high numerical-aperture objective in free space,” Appl. Phys. Lett. 81(9), 1576–1578 (2002).
    [CrossRef]
  17. B. Jia, X. Gan, and M. Gu, “Direct observation of a pure focused evanescent field of a high numerical aperture objective lens by scanning near-field optical microscopy,” Appl. Phys. Lett. 86(13), 131110 (2005).
    [CrossRef]
  18. I. Iglesias and B. Vohnsen, “Polarization structuring for focal volume shaping in high-resolution microscopy,” Opt. Commun. 271(1), 40–47 (2007).
    [CrossRef]
  19. L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
    [CrossRef] [PubMed]
  20. J. R. Cole, N. A. Mirin, M. W. Knight, G. P. Goodrich, and N. J. Halas, “Photothermal efficiencies of nanoshells and nanorods for clinical therapeutic applications,” J. Phys. Chem. C 113(28), 12090–12094 (2009).
    [CrossRef]
  21. M. Born, and E. Wolf, Principle of Optics, (Pergamon, New York, 1980).
  22. B. Jia, X. Gan, and M. Gu, “Direct measurement of a radially polarized focused evanescent field facilitated by a single LCD,” Opt. Express 13(18), 6821–6827 (2005).
    [CrossRef] [PubMed]
  23. C. J. R. Sheppard, “High-aperture beams,” J. Opt. Soc. Am. A 18(7), 1579–1587 (2001).
    [CrossRef]
  24. T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78(25), 4713–4716 (1997).
    [CrossRef]
  25. D. Ganic, X. Gan, and M. Gu, “Focusing of doughnut laser beams by a high numerical-aperture objective in free space,” Opt. Express 11(21), 2747–2752 (2003).
    [CrossRef] [PubMed]
  26. B. Jia, X. Gan, and M. Gu, “Anomalous phenomenon of a focused evanescent Laguerre-Gaussian beam,” Opt. Express 13(25), 10360–10366 (2005).
    [CrossRef] [PubMed]
  27. S. Takeuchi, R. Sugihara, and K. Shimoda, “Electron acceleration by longitudinal electric field of a Gaussian laser beam,” J. Phys. Soc. Jpn. 63(3), 1186–1193 (1994).
    [CrossRef]

2010 (1)

H. Kang, B. Jia, J. Li, D. Morrish, and M. Gu, “Enhanced photothermal therapy assisted with gold nanorods using a radially polarized beam,” Appl. Phys. Lett. 96(6), 063702 (2010).
[CrossRef]

2009 (3)

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[CrossRef] [PubMed]

J. R. Cole, N. A. Mirin, M. W. Knight, G. P. Goodrich, and N. J. Halas, “Photothermal efficiencies of nanoshells and nanorods for clinical therapeutic applications,” J. Phys. Chem. C 113(28), 12090–12094 (2009).
[CrossRef]

B. Jia, H. Kang, J. Li, and M. Gu, “Use of radially polarized beams in three-dimensional photonic crystal fabrication with the two-photon polymerization method,” Opt. Lett. 34(13), 1918–1920 (2009).
[CrossRef] [PubMed]

2008 (1)

J. Li, D. Day, and M. Gu, “Ultra-low energy threshold for cancer photothermal therapy using transferrin-conjugated gold nanorods,” Adv. Mater. 20(20), 3866–3871 (2008).
[CrossRef]

2007 (1)

I. Iglesias and B. Vohnsen, “Polarization structuring for focal volume shaping in high-resolution microscopy,” Opt. Commun. 271(1), 40–47 (2007).
[CrossRef]

2006 (2)

N. D. Lai, J. H. Lin, P. W. Chen, J. L. Tang, and C. C. Hsu, “Controlling aspect ratio of focal spots of high numerical aperture objective lens in multi-photon absorption process,” Opt. Commun. 258(2), 97–102 (2006).
[CrossRef]

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[CrossRef] [PubMed]

2005 (3)

2003 (2)

D. Ganic, X. Gan, and M. Gu, “Focusing of doughnut laser beams by a high numerical-aperture objective in free space,” Opt. Express 11(21), 2747–2752 (2003).
[CrossRef] [PubMed]

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

2002 (2)

J. W. Chon, X. Gan, and M. Gu, “Splitting of the focal spot of a high numerical-aperture objective in free space,” Appl. Phys. Lett. 81(9), 1576–1578 (2002).
[CrossRef]

Q. Zhan and J. R. Leger, “Focus shaping using cylindrical vector beams,” Opt. Express 10(7), 324–331 (2002).
[PubMed]

2001 (2)

C. J. R. Sheppard, “High-aperture beams,” J. Opt. Soc. Am. A 18(7), 1579–1587 (2001).
[CrossRef]

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[CrossRef] [PubMed]

2000 (2)

K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7(2), 77–87 (2000).
[CrossRef] [PubMed]

S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, “Focusing light into a tighter spot,” Opt. Commun. 179(1-6), 1–7 (2000).
[CrossRef]

1998 (1)

1997 (1)

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78(25), 4713–4716 (1997).
[CrossRef]

1994 (1)

S. Takeuchi, R. Sugihara, and K. Shimoda, “Electron acceleration by longitudinal electric field of a Gaussian laser beam,” J. Phys. Soc. Jpn. 63(3), 1186–1193 (1994).
[CrossRef]

1990 (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[CrossRef] [PubMed]

1974 (1)

H. Blume, T. Bader, and F. Luty, “Bi-directional holographic information storage based on the optical reorientation of FA centers in KCl:Na,” Opt. Commun. 12(2), 147–151 (1974).
[CrossRef]

1970 (1)

A. Ashkin, “Acceleration and traping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[CrossRef]

Ashkin, A.

A. Ashkin, “Acceleration and traping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[CrossRef]

Bader, T.

H. Blume, T. Bader, and F. Luty, “Bi-directional holographic information storage based on the optical reorientation of FA centers in KCl:Na,” Opt. Commun. 12(2), 147–151 (1974).
[CrossRef]

Beversluis, M. R.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[CrossRef] [PubMed]

Blume, H.

H. Blume, T. Bader, and F. Luty, “Bi-directional holographic information storage based on the optical reorientation of FA centers in KCl:Na,” Opt. Commun. 12(2), 147–151 (1974).
[CrossRef]

Brown, T. G.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[CrossRef] [PubMed]

K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7(2), 77–87 (2000).
[CrossRef] [PubMed]

Chen, P. W.

N. D. Lai, J. H. Lin, P. W. Chen, J. L. Tang, and C. C. Hsu, “Controlling aspect ratio of focal spots of high numerical aperture objective lens in multi-photon absorption process,” Opt. Commun. 258(2), 97–102 (2006).
[CrossRef]

Chon, J. W.

J. W. Chon, X. Gan, and M. Gu, “Splitting of the focal spot of a high numerical-aperture objective in free space,” Appl. Phys. Lett. 81(9), 1576–1578 (2002).
[CrossRef]

Chon, J. W. M.

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[CrossRef] [PubMed]

Cole, J. R.

J. R. Cole, N. A. Mirin, M. W. Knight, G. P. Goodrich, and N. J. Halas, “Photothermal efficiencies of nanoshells and nanorods for clinical therapeutic applications,” J. Phys. Chem. C 113(28), 12090–12094 (2009).
[CrossRef]

Day, D.

J. Li, D. Day, and M. Gu, “Ultra-low energy threshold for cancer photothermal therapy using transferrin-conjugated gold nanorods,” Adv. Mater. 20(20), 3866–3871 (2008).
[CrossRef]

Denk, W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Dorn, R.

S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, “Focusing light into a tighter spot,” Opt. Commun. 179(1-6), 1–7 (2000).
[CrossRef]

Eberler, M.

S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, “Focusing light into a tighter spot,” Opt. Commun. 179(1-6), 1–7 (2000).
[CrossRef]

El-Sayed, I. H.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[CrossRef] [PubMed]

El-Sayed, M. A.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[CrossRef] [PubMed]

Gan, X.

B. Jia, X. Gan, and M. Gu, “Anomalous phenomenon of a focused evanescent Laguerre-Gaussian beam,” Opt. Express 13(25), 10360–10366 (2005).
[CrossRef] [PubMed]

B. Jia, X. Gan, and M. Gu, “Direct measurement of a radially polarized focused evanescent field facilitated by a single LCD,” Opt. Express 13(18), 6821–6827 (2005).
[CrossRef] [PubMed]

B. Jia, X. Gan, and M. Gu, “Direct observation of a pure focused evanescent field of a high numerical aperture objective lens by scanning near-field optical microscopy,” Appl. Phys. Lett. 86(13), 131110 (2005).
[CrossRef]

D. Ganic, X. Gan, and M. Gu, “Focusing of doughnut laser beams by a high numerical-aperture objective in free space,” Opt. Express 11(21), 2747–2752 (2003).
[CrossRef] [PubMed]

J. W. Chon, X. Gan, and M. Gu, “Splitting of the focal spot of a high numerical-aperture objective in free space,” Appl. Phys. Lett. 81(9), 1576–1578 (2002).
[CrossRef]

Ganic, D.

Glockl, O.

S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, “Focusing light into a tighter spot,” Opt. Commun. 179(1-6), 1–7 (2000).
[CrossRef]

Goodrich, G. P.

J. R. Cole, N. A. Mirin, M. W. Knight, G. P. Goodrich, and N. J. Halas, “Photothermal efficiencies of nanoshells and nanorods for clinical therapeutic applications,” J. Phys. Chem. C 113(28), 12090–12094 (2009).
[CrossRef]

Gu, M.

H. Kang, B. Jia, J. Li, D. Morrish, and M. Gu, “Enhanced photothermal therapy assisted with gold nanorods using a radially polarized beam,” Appl. Phys. Lett. 96(6), 063702 (2010).
[CrossRef]

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[CrossRef] [PubMed]

B. Jia, H. Kang, J. Li, and M. Gu, “Use of radially polarized beams in three-dimensional photonic crystal fabrication with the two-photon polymerization method,” Opt. Lett. 34(13), 1918–1920 (2009).
[CrossRef] [PubMed]

J. Li, D. Day, and M. Gu, “Ultra-low energy threshold for cancer photothermal therapy using transferrin-conjugated gold nanorods,” Adv. Mater. 20(20), 3866–3871 (2008).
[CrossRef]

B. Jia, X. Gan, and M. Gu, “Direct observation of a pure focused evanescent field of a high numerical aperture objective lens by scanning near-field optical microscopy,” Appl. Phys. Lett. 86(13), 131110 (2005).
[CrossRef]

B. Jia, X. Gan, and M. Gu, “Anomalous phenomenon of a focused evanescent Laguerre-Gaussian beam,” Opt. Express 13(25), 10360–10366 (2005).
[CrossRef] [PubMed]

B. Jia, X. Gan, and M. Gu, “Direct measurement of a radially polarized focused evanescent field facilitated by a single LCD,” Opt. Express 13(18), 6821–6827 (2005).
[CrossRef] [PubMed]

D. Ganic, X. Gan, and M. Gu, “Focusing of doughnut laser beams by a high numerical-aperture objective in free space,” Opt. Express 11(21), 2747–2752 (2003).
[CrossRef] [PubMed]

J. W. Chon, X. Gan, and M. Gu, “Splitting of the focal spot of a high numerical-aperture objective in free space,” Appl. Phys. Lett. 81(9), 1576–1578 (2002).
[CrossRef]

Halas, N. J.

J. R. Cole, N. A. Mirin, M. W. Knight, G. P. Goodrich, and N. J. Halas, “Photothermal efficiencies of nanoshells and nanorods for clinical therapeutic applications,” J. Phys. Chem. C 113(28), 12090–12094 (2009).
[CrossRef]

Hirano, T.

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78(25), 4713–4716 (1997).
[CrossRef]

Hsu, C. C.

N. D. Lai, J. H. Lin, P. W. Chen, J. L. Tang, and C. C. Hsu, “Controlling aspect ratio of focal spots of high numerical aperture objective lens in multi-photon absorption process,” Opt. Commun. 258(2), 97–102 (2006).
[CrossRef]

Huang, X.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[CrossRef] [PubMed]

Iglesias, I.

I. Iglesias and B. Vohnsen, “Polarization structuring for focal volume shaping in high-resolution microscopy,” Opt. Commun. 271(1), 40–47 (2007).
[CrossRef]

Jia, B.

H. Kang, B. Jia, J. Li, D. Morrish, and M. Gu, “Enhanced photothermal therapy assisted with gold nanorods using a radially polarized beam,” Appl. Phys. Lett. 96(6), 063702 (2010).
[CrossRef]

B. Jia, H. Kang, J. Li, and M. Gu, “Use of radially polarized beams in three-dimensional photonic crystal fabrication with the two-photon polymerization method,” Opt. Lett. 34(13), 1918–1920 (2009).
[CrossRef] [PubMed]

B. Jia, X. Gan, and M. Gu, “Anomalous phenomenon of a focused evanescent Laguerre-Gaussian beam,” Opt. Express 13(25), 10360–10366 (2005).
[CrossRef] [PubMed]

B. Jia, X. Gan, and M. Gu, “Direct measurement of a radially polarized focused evanescent field facilitated by a single LCD,” Opt. Express 13(18), 6821–6827 (2005).
[CrossRef] [PubMed]

B. Jia, X. Gan, and M. Gu, “Direct observation of a pure focused evanescent field of a high numerical aperture objective lens by scanning near-field optical microscopy,” Appl. Phys. Lett. 86(13), 131110 (2005).
[CrossRef]

Kang, H.

H. Kang, B. Jia, J. Li, D. Morrish, and M. Gu, “Enhanced photothermal therapy assisted with gold nanorods using a radially polarized beam,” Appl. Phys. Lett. 96(6), 063702 (2010).
[CrossRef]

B. Jia, H. Kang, J. Li, and M. Gu, “Use of radially polarized beams in three-dimensional photonic crystal fabrication with the two-photon polymerization method,” Opt. Lett. 34(13), 1918–1920 (2009).
[CrossRef] [PubMed]

Kano, H.

Kawata, S.

Knight, M. W.

J. R. Cole, N. A. Mirin, M. W. Knight, G. P. Goodrich, and N. J. Halas, “Photothermal efficiencies of nanoshells and nanorods for clinical therapeutic applications,” J. Phys. Chem. C 113(28), 12090–12094 (2009).
[CrossRef]

Kuga, T.

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78(25), 4713–4716 (1997).
[CrossRef]

Lai, N. D.

N. D. Lai, J. H. Lin, P. W. Chen, J. L. Tang, and C. C. Hsu, “Controlling aspect ratio of focal spots of high numerical aperture objective lens in multi-photon absorption process,” Opt. Commun. 258(2), 97–102 (2006).
[CrossRef]

Leger, J. R.

Leuchs, G.

S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, “Focusing light into a tighter spot,” Opt. Commun. 179(1-6), 1–7 (2000).
[CrossRef]

Li, J.

H. Kang, B. Jia, J. Li, D. Morrish, and M. Gu, “Enhanced photothermal therapy assisted with gold nanorods using a radially polarized beam,” Appl. Phys. Lett. 96(6), 063702 (2010).
[CrossRef]

B. Jia, H. Kang, J. Li, and M. Gu, “Use of radially polarized beams in three-dimensional photonic crystal fabrication with the two-photon polymerization method,” Opt. Lett. 34(13), 1918–1920 (2009).
[CrossRef] [PubMed]

J. Li, D. Day, and M. Gu, “Ultra-low energy threshold for cancer photothermal therapy using transferrin-conjugated gold nanorods,” Adv. Mater. 20(20), 3866–3871 (2008).
[CrossRef]

Lin, J. H.

N. D. Lai, J. H. Lin, P. W. Chen, J. L. Tang, and C. C. Hsu, “Controlling aspect ratio of focal spots of high numerical aperture objective lens in multi-photon absorption process,” Opt. Commun. 258(2), 97–102 (2006).
[CrossRef]

Luty, F.

H. Blume, T. Bader, and F. Luty, “Bi-directional holographic information storage based on the optical reorientation of FA centers in KCl:Na,” Opt. Commun. 12(2), 147–151 (1974).
[CrossRef]

Mirin, N. A.

J. R. Cole, N. A. Mirin, M. W. Knight, G. P. Goodrich, and N. J. Halas, “Photothermal efficiencies of nanoshells and nanorods for clinical therapeutic applications,” J. Phys. Chem. C 113(28), 12090–12094 (2009).
[CrossRef]

Mizuguchi, S.

Morrish, D.

H. Kang, B. Jia, J. Li, D. Morrish, and M. Gu, “Enhanced photothermal therapy assisted with gold nanorods using a radially polarized beam,” Appl. Phys. Lett. 96(6), 063702 (2010).
[CrossRef]

Novotny, L.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[CrossRef] [PubMed]

Qian, W.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[CrossRef] [PubMed]

Quabis, S.

S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, “Focusing light into a tighter spot,” Opt. Commun. 179(1-6), 1–7 (2000).
[CrossRef]

Sasada, H.

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78(25), 4713–4716 (1997).
[CrossRef]

Sheppard, C. J. R.

Shimizu, Y.

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78(25), 4713–4716 (1997).
[CrossRef]

Shimoda, K.

S. Takeuchi, R. Sugihara, and K. Shimoda, “Electron acceleration by longitudinal electric field of a Gaussian laser beam,” J. Phys. Soc. Jpn. 63(3), 1186–1193 (1994).
[CrossRef]

Shiokawa, N.

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78(25), 4713–4716 (1997).
[CrossRef]

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Sugihara, R.

S. Takeuchi, R. Sugihara, and K. Shimoda, “Electron acceleration by longitudinal electric field of a Gaussian laser beam,” J. Phys. Soc. Jpn. 63(3), 1186–1193 (1994).
[CrossRef]

Takeuchi, S.

S. Takeuchi, R. Sugihara, and K. Shimoda, “Electron acceleration by longitudinal electric field of a Gaussian laser beam,” J. Phys. Soc. Jpn. 63(3), 1186–1193 (1994).
[CrossRef]

Tang, J. L.

N. D. Lai, J. H. Lin, P. W. Chen, J. L. Tang, and C. C. Hsu, “Controlling aspect ratio of focal spots of high numerical aperture objective lens in multi-photon absorption process,” Opt. Commun. 258(2), 97–102 (2006).
[CrossRef]

Torii, Y.

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78(25), 4713–4716 (1997).
[CrossRef]

Vohnsen, B.

I. Iglesias and B. Vohnsen, “Polarization structuring for focal volume shaping in high-resolution microscopy,” Opt. Commun. 271(1), 40–47 (2007).
[CrossRef]

Webb, W. W.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Williams, R. M.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

Youngworth, K. S.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[CrossRef] [PubMed]

K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7(2), 77–87 (2000).
[CrossRef] [PubMed]

Zhan, Q.

Zijlstra, P.

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[CrossRef] [PubMed]

Zipfel, W. R.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

Adv. Mater. (1)

J. Li, D. Day, and M. Gu, “Ultra-low energy threshold for cancer photothermal therapy using transferrin-conjugated gold nanorods,” Adv. Mater. 20(20), 3866–3871 (2008).
[CrossRef]

Appl. Phys. Lett. (3)

H. Kang, B. Jia, J. Li, D. Morrish, and M. Gu, “Enhanced photothermal therapy assisted with gold nanorods using a radially polarized beam,” Appl. Phys. Lett. 96(6), 063702 (2010).
[CrossRef]

J. W. Chon, X. Gan, and M. Gu, “Splitting of the focal spot of a high numerical-aperture objective in free space,” Appl. Phys. Lett. 81(9), 1576–1578 (2002).
[CrossRef]

B. Jia, X. Gan, and M. Gu, “Direct observation of a pure focused evanescent field of a high numerical aperture objective lens by scanning near-field optical microscopy,” Appl. Phys. Lett. 86(13), 131110 (2005).
[CrossRef]

J. Am. Chem. Soc. (1)

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

J. Phys. Chem. C (1)

J. R. Cole, N. A. Mirin, M. W. Knight, G. P. Goodrich, and N. J. Halas, “Photothermal efficiencies of nanoshells and nanorods for clinical therapeutic applications,” J. Phys. Chem. C 113(28), 12090–12094 (2009).
[CrossRef]

J. Phys. Soc. Jpn. (1)

S. Takeuchi, R. Sugihara, and K. Shimoda, “Electron acceleration by longitudinal electric field of a Gaussian laser beam,” J. Phys. Soc. Jpn. 63(3), 1186–1193 (1994).
[CrossRef]

Nat. Biotechnol. (1)

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

Nature (1)

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[CrossRef] [PubMed]

Opt. Commun. (4)

N. D. Lai, J. H. Lin, P. W. Chen, J. L. Tang, and C. C. Hsu, “Controlling aspect ratio of focal spots of high numerical aperture objective lens in multi-photon absorption process,” Opt. Commun. 258(2), 97–102 (2006).
[CrossRef]

H. Blume, T. Bader, and F. Luty, “Bi-directional holographic information storage based on the optical reorientation of FA centers in KCl:Na,” Opt. Commun. 12(2), 147–151 (1974).
[CrossRef]

S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, “Focusing light into a tighter spot,” Opt. Commun. 179(1-6), 1–7 (2000).
[CrossRef]

I. Iglesias and B. Vohnsen, “Polarization structuring for focal volume shaping in high-resolution microscopy,” Opt. Commun. 271(1), 40–47 (2007).
[CrossRef]

Opt. Express (5)

Opt. Lett. (1)

Phys. Rev. Lett. (3)

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78(25), 4713–4716 (1997).
[CrossRef]

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[CrossRef] [PubMed]

A. Ashkin, “Acceleration and traping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[CrossRef]

Science (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Other (2)

Min Gu, Advanced optical imaging theory, (Springer, Heidelberg, 2000).

M. Born, and E. Wolf, Principle of Optics, (Pergamon, New York, 1980).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic focusing of a radially polarized beam. θ1 is the angle of convergence on the spherical surface of an objective and θ2 is the angle of refraction at the interface. n1 and n2 are the refractive indices in media 1 and 2 before and after an interface, respectively. f is the focal length of the objective. r1 is the radius of obstructed part of the incident beam. r2 is the radius of the objective aperture. d is the distance between the interface and the observation plane.

Fig. 2
Fig. 2

(a) Peak intensity ratio of Iz/Ix and Iy/Ix versus NA ranging from 1.0 to 1.4 at a coverglass/water interface (n1/n2 = 1.515/1.33) under linear and radial polarization illumination, respectively. (b) Peak intensity ratio of Iz/Ix and Iy/Ix versus ε with an objective of NA 1.3 at a coverglass/water interface (n1/n2 = 1.515/1.33) under linear and radial polarization illumination, respectively. Note: Peak intensity ratios of Iz/Ix under linear polarization illumination in (a) and (b) are 10 times magnified.

Fig. 3
Fig. 3

Intensity and polarization distributions at a coverglass/water interface (n1/n2 = 1.515/1.33) in the focal volume. (a) and (b) are the EM field vectors projected in the x-y and the x-z planes, respectively, for NA = 1.1 and ε = 0 under linear polarization illumination. (c) and (d) are the EM field vectors projected in the x-y and the x-z planes, respectively, for NA = 1.3 and ε = 0.8 under radial polarization illumination. The maximal intensity is normalized to 1 for each case.

Fig. 4
Fig. 4

(a) Peak intensity ratio of Iz/Ix (Iz/Iy) and FWHM versus NA (0<NA<1) under radial polarization illumination. (b) Peak intensity ratio of Iz/Ix (Iz/Iy) and FWHM versus ε under radial polarization illumination for NA of 0.6.

Fig. 5
Fig. 5

Intensity and polarization distributions under radial polarization illumination with NA = 0.65 and ε = 0 in the focal volume. The arrows in (a) and (b) are the EM field vectors projected in the x-y and the x-z planes, respectively. The maximal intensity is normalized to 1.

Fig. 6
Fig. 6

(a) Peak intensity ratio of Iz/Ix and Iy/Ix versus NA (0<NA<1) for a linearly polarized beam of topological charges 1 and 2. (b) Peak intensity ratio of Iz/Ix and Iy/Ix versus NA ranging from 1.0 to 1.4 at a coverglass/water interface (n1/n2 = 1.515/1.33) for a linearly polarized beam of topological charges 1 and 2. (c) Peak intensity ratio of Iz/Ix and Iy/Ix versus ε for NA 1.3 at a coverglass/water interface (n1/n2 = 1.515/1.33) for a linearly polarized beam of topological charges 1 and 2.

Fig. 7
Fig. 7

(a) Peak intensity ratio of Iz/Ix (Iz/Iy) versus NA (0<NA<1) for a radially polarized beam of topological charges 1 and 2. (b) Peak intensity ratio of Iz/Ix (Iz/Iy) versus NA ranging from 1.0 to 1.4 at a coverglass/water interface ((n1/n2 = 1.515/1.33) for a radially polarized beam of topological charges 1 and 2. (c) Peak intensity ratio of Iz/Ix (Iz/Iy) versus ε for NA 1.3 at a coverglass/water interface (n1/n2 = 1.515/1.33) for a radially polarized beam of topological charges 1 and 2.

Fig. 8
Fig. 8

Intensity and polarization distributions under radially polarized doughnut beam illumination with an objective of NA = 1.3 and ε = 0.8 at a coverglass/water interface (n1/n2 = 1.515/1.33) in the focal volume. (a) and (b) are the EM field vectors projected in the x-y and the x-z planes for topological charge 1. (c) and (d) are the EM field vectors projected in the x-y and the x-z planes for topological charge 2. The maximal intensity is normalized to 1 for each case.

Fig. 9
Fig. 9

Intensity and polarization distributions under radially polarized doughnut beam illumination at a coverglass/water interface (n1/n2 = 1.515/1.33) for a similar strength of the x, y and z components in the focal volume. (a) and (b) are the EM field vectors projected in the x-y and the x-z planes for topological charge 1 with NA = 1.25 and ε = 0. (c) and (d) are the EM field vectors projected in the x-y and the x-z planes for topological charge 2 with NA = 1.1 and ε = 0. The maximal intensity is normalized to 1 for each case.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E(r,ψ,z)=iλ1α1α202πcosθ1exp(inφ)exp[ik1rsinθ1cos(φψ)]exp(ik2zcosθ2)  (tpcosθ2cosφi+tpcosθ2sinφj+tpsinθ2k)sinθ1dθ1dφ

Metrics