Abstract

A novel configuration for real-time measurement of space-variant polarizations is presented. The experimental results reveal that the full state of polarization at each location within the beam can be accurately obtained every 10msec, limited only by the detection camera frame rate. We also present a more compact configuration which can be modified to determine the real-time wavelength variant polarization measurements.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. P. Nordin, J. T. Meier, P. C. Deguzman, and M. W. Jones, “Micropolarizer array for infrared imaging polarimetry,” J. Opt. Soc. Am. A 16, 1168–1174 (1999).
    [CrossRef]
  2. M. Mujat, and A. Dogariu, “Real-time measurement of the polarization transfer function,” Appl. Opt. 40, 34–44 (2001).
    [CrossRef]
  3. R. M. A. Azzam, “In-line light-saving photopolarimeter and its fiber-optic analog,” Opt. Lett. 12, 558–560 (1987).
    [CrossRef] [PubMed]
  4. B. L. Heffner, “Automated Measurement of Polarization Mode Dispersion Using Jones Matrix Eigenanalysis,” IEEE Photon. Technol. Lett. 4, 1066–1069 (1992).
    [CrossRef]
  5. D. Martino, E. Garcia-Caurel, B. Laude, and B. Drvillon, “General methods for optimized design and calibration of Mueller polarimeters,” Thin Solid Films 112, 455–546 (2004).
  6. F. Gori, “Measuring Stokes parameters by means of a polarization grating,” Opt. Lett. 24, 584–586 (1999).
    [CrossRef]
  7. Y. Gorodetski, G. Biener, A. Niv, V. Kleiner, and E. Hasman, “Space-variant polarization manipulation for farfield polarimetry by use of subwavelength dielectric gratings,” Opt. Lett. 30, 2245–2247 (2005).
    [CrossRef] [PubMed]
  8. E. Hasman, V. Kleiner, G. Biener, and A. Niv, “Polarization dependent focusing lens by use of quantized Pancharatnam Berry phase diffractive optics,” Appl. Phys. Lett. 82, 328–330 (2003).
    [CrossRef]
  9. G. Biener, A. Niv, V. Kleiner, and E. Hasman, “Near-field Fourier transform polarimetry by use of a discrete space-variant subwavelength grating,” J. Opt. Soc. Am. A 20, 1940–1948 (2003).
    [CrossRef]
  10. J. Kim, and D. E. Kim, “Measurement of the degree of polarization of the spectra from laser produced recombining Al plasmas,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66, 017401 (2002).
    [CrossRef]
  11. J. C. Kieffer, J. P. Matte, H. Pepin, M. Chaker, Y. Beaudoin, T. W. Johnston, C. Y. Chien, S. Coe, G. Mourou, and J. Dubau, “Electron Distribution Anistropy in Laser-Produced Plasmas from X-Ray Line Polarization Measurements,” Phys. Rev. Lett. 68, 480–483 (1992).
    [CrossRef] [PubMed]
  12. W. J. Bock, and W. Urbanczyk, “Measurement of polarization mode dispersion and modal birefringence in highly birefringent fibers by means of electronically scanned shearing-type interferometry,” Appl. Opt. 32, 5841–5848 (1993).
    [CrossRef] [PubMed]
  13. J. B. Kortright, M. Rice, Z. Hussain, H. A. Padmore, A. Adamson, W. R. A. Huff, A. T. Young, E. J. Moler, S. A. Kellar, R. X. Ynzunza, F. J. Palomares, H. Daimon, E. D. Tober, and C. S. Fadley, “Polarization measurement and vertical aperture optimization for obtaining circularly polarized bend-magnet radiation,” Rev. Sci. Instrum. 67, 3363 (1996).
    [CrossRef]
  14. N. Chinone, and R. Ulrich, “Elasto-optic polarization measurement in optical fiber,” Opt. Lett. 6, 16–18 (1981).
    [CrossRef] [PubMed]
  15. M. Fridman, G. Machavariani, N. Davidson, and A. A. Friesem, “Fiber lasers generating radially and azimuthally polarized light,” Appl. Phys. Lett. 93, 191104 (2008).
    [CrossRef]
  16. R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77, 3322–3324 (2000).
    [CrossRef]
  17. K. S. Youngworth, and T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7, 77–87 (2000).
    [CrossRef] [PubMed]
  18. A. V. Nesterov, and V. G. Niziev, “Laser beams with axially symmetric polarization,” J. Phys. D Appl. Phys. 33, 1817–1822 (2000).
    [CrossRef]
  19. K. Venkatakrishnan, and B. Tan, “Interconnect microvia drilling with a radially polarized laser beam,” J. Micromech. Microeng. 16, 2603–2607 (2006).
    [CrossRef]
  20. M. O. Scully, “A simple laser linac,” Appl. Phys. B 51, 238–241 (1990).
    [CrossRef]
  21. E. J. Bochove, G. T. Moore, and M. O. Scully, “Acceleration of particles by an asymmetric Hermite-Gaussian laser beam,” Phys. Rev. A 46, 6640–6653 (1992).
    [CrossRef] [PubMed]
  22. I. Moshe, S. Jackel, and A. Meir, “Production of radially or azimuthally polarized beams in solid-state lasers and the elimination of thermally induced birefringence effects,” Opt. Lett. 28, 807–809 (2003).
    [CrossRef] [PubMed]
  23. G. Biener, A. Niv, V. Kleiner, and E. Hasman, “Space-variant polarization scrambling for image encryption obtained with subwavelength gratings,” Opt. Commun. 261, 5–12 (2006).
    [CrossRef]
  24. E. Hecht, Optics, (Addison Wesley, San Francisco, California) 2002, Chap. 8.

2008 (1)

M. Fridman, G. Machavariani, N. Davidson, and A. A. Friesem, “Fiber lasers generating radially and azimuthally polarized light,” Appl. Phys. Lett. 93, 191104 (2008).
[CrossRef]

2006 (2)

K. Venkatakrishnan, and B. Tan, “Interconnect microvia drilling with a radially polarized laser beam,” J. Micromech. Microeng. 16, 2603–2607 (2006).
[CrossRef]

G. Biener, A. Niv, V. Kleiner, and E. Hasman, “Space-variant polarization scrambling for image encryption obtained with subwavelength gratings,” Opt. Commun. 261, 5–12 (2006).
[CrossRef]

2005 (1)

2004 (1)

D. Martino, E. Garcia-Caurel, B. Laude, and B. Drvillon, “General methods for optimized design and calibration of Mueller polarimeters,” Thin Solid Films 112, 455–546 (2004).

2003 (3)

2002 (1)

J. Kim, and D. E. Kim, “Measurement of the degree of polarization of the spectra from laser produced recombining Al plasmas,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66, 017401 (2002).
[CrossRef]

2001 (1)

2000 (3)

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77, 3322–3324 (2000).
[CrossRef]

K. S. Youngworth, and T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7, 77–87 (2000).
[CrossRef] [PubMed]

A. V. Nesterov, and V. G. Niziev, “Laser beams with axially symmetric polarization,” J. Phys. D Appl. Phys. 33, 1817–1822 (2000).
[CrossRef]

1999 (2)

1996 (1)

J. B. Kortright, M. Rice, Z. Hussain, H. A. Padmore, A. Adamson, W. R. A. Huff, A. T. Young, E. J. Moler, S. A. Kellar, R. X. Ynzunza, F. J. Palomares, H. Daimon, E. D. Tober, and C. S. Fadley, “Polarization measurement and vertical aperture optimization for obtaining circularly polarized bend-magnet radiation,” Rev. Sci. Instrum. 67, 3363 (1996).
[CrossRef]

1993 (1)

1992 (3)

E. J. Bochove, G. T. Moore, and M. O. Scully, “Acceleration of particles by an asymmetric Hermite-Gaussian laser beam,” Phys. Rev. A 46, 6640–6653 (1992).
[CrossRef] [PubMed]

B. L. Heffner, “Automated Measurement of Polarization Mode Dispersion Using Jones Matrix Eigenanalysis,” IEEE Photon. Technol. Lett. 4, 1066–1069 (1992).
[CrossRef]

J. C. Kieffer, J. P. Matte, H. Pepin, M. Chaker, Y. Beaudoin, T. W. Johnston, C. Y. Chien, S. Coe, G. Mourou, and J. Dubau, “Electron Distribution Anistropy in Laser-Produced Plasmas from X-Ray Line Polarization Measurements,” Phys. Rev. Lett. 68, 480–483 (1992).
[CrossRef] [PubMed]

1990 (1)

M. O. Scully, “A simple laser linac,” Appl. Phys. B 51, 238–241 (1990).
[CrossRef]

1987 (1)

1981 (1)

Adamson, A.

J. B. Kortright, M. Rice, Z. Hussain, H. A. Padmore, A. Adamson, W. R. A. Huff, A. T. Young, E. J. Moler, S. A. Kellar, R. X. Ynzunza, F. J. Palomares, H. Daimon, E. D. Tober, and C. S. Fadley, “Polarization measurement and vertical aperture optimization for obtaining circularly polarized bend-magnet radiation,” Rev. Sci. Instrum. 67, 3363 (1996).
[CrossRef]

Azzam, R. M. A.

Beaudoin, Y.

J. C. Kieffer, J. P. Matte, H. Pepin, M. Chaker, Y. Beaudoin, T. W. Johnston, C. Y. Chien, S. Coe, G. Mourou, and J. Dubau, “Electron Distribution Anistropy in Laser-Produced Plasmas from X-Ray Line Polarization Measurements,” Phys. Rev. Lett. 68, 480–483 (1992).
[CrossRef] [PubMed]

Biener, G.

G. Biener, A. Niv, V. Kleiner, and E. Hasman, “Space-variant polarization scrambling for image encryption obtained with subwavelength gratings,” Opt. Commun. 261, 5–12 (2006).
[CrossRef]

Y. Gorodetski, G. Biener, A. Niv, V. Kleiner, and E. Hasman, “Space-variant polarization manipulation for farfield polarimetry by use of subwavelength dielectric gratings,” Opt. Lett. 30, 2245–2247 (2005).
[CrossRef] [PubMed]

E. Hasman, V. Kleiner, G. Biener, and A. Niv, “Polarization dependent focusing lens by use of quantized Pancharatnam Berry phase diffractive optics,” Appl. Phys. Lett. 82, 328–330 (2003).
[CrossRef]

G. Biener, A. Niv, V. Kleiner, and E. Hasman, “Near-field Fourier transform polarimetry by use of a discrete space-variant subwavelength grating,” J. Opt. Soc. Am. A 20, 1940–1948 (2003).
[CrossRef]

Blit, S.

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77, 3322–3324 (2000).
[CrossRef]

Bochove, E. J.

E. J. Bochove, G. T. Moore, and M. O. Scully, “Acceleration of particles by an asymmetric Hermite-Gaussian laser beam,” Phys. Rev. A 46, 6640–6653 (1992).
[CrossRef] [PubMed]

Bock, W. J.

Bomzon, Z.

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77, 3322–3324 (2000).
[CrossRef]

Brown, T. G.

Chaker, M.

J. C. Kieffer, J. P. Matte, H. Pepin, M. Chaker, Y. Beaudoin, T. W. Johnston, C. Y. Chien, S. Coe, G. Mourou, and J. Dubau, “Electron Distribution Anistropy in Laser-Produced Plasmas from X-Ray Line Polarization Measurements,” Phys. Rev. Lett. 68, 480–483 (1992).
[CrossRef] [PubMed]

Chien, C. Y.

J. C. Kieffer, J. P. Matte, H. Pepin, M. Chaker, Y. Beaudoin, T. W. Johnston, C. Y. Chien, S. Coe, G. Mourou, and J. Dubau, “Electron Distribution Anistropy in Laser-Produced Plasmas from X-Ray Line Polarization Measurements,” Phys. Rev. Lett. 68, 480–483 (1992).
[CrossRef] [PubMed]

Chinone, N.

Coe, S.

J. C. Kieffer, J. P. Matte, H. Pepin, M. Chaker, Y. Beaudoin, T. W. Johnston, C. Y. Chien, S. Coe, G. Mourou, and J. Dubau, “Electron Distribution Anistropy in Laser-Produced Plasmas from X-Ray Line Polarization Measurements,” Phys. Rev. Lett. 68, 480–483 (1992).
[CrossRef] [PubMed]

Daimon, H.

J. B. Kortright, M. Rice, Z. Hussain, H. A. Padmore, A. Adamson, W. R. A. Huff, A. T. Young, E. J. Moler, S. A. Kellar, R. X. Ynzunza, F. J. Palomares, H. Daimon, E. D. Tober, and C. S. Fadley, “Polarization measurement and vertical aperture optimization for obtaining circularly polarized bend-magnet radiation,” Rev. Sci. Instrum. 67, 3363 (1996).
[CrossRef]

Davidson, N.

M. Fridman, G. Machavariani, N. Davidson, and A. A. Friesem, “Fiber lasers generating radially and azimuthally polarized light,” Appl. Phys. Lett. 93, 191104 (2008).
[CrossRef]

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77, 3322–3324 (2000).
[CrossRef]

Deguzman, P. C.

Dogariu, A.

Drvillon, B.

D. Martino, E. Garcia-Caurel, B. Laude, and B. Drvillon, “General methods for optimized design and calibration of Mueller polarimeters,” Thin Solid Films 112, 455–546 (2004).

Dubau, J.

J. C. Kieffer, J. P. Matte, H. Pepin, M. Chaker, Y. Beaudoin, T. W. Johnston, C. Y. Chien, S. Coe, G. Mourou, and J. Dubau, “Electron Distribution Anistropy in Laser-Produced Plasmas from X-Ray Line Polarization Measurements,” Phys. Rev. Lett. 68, 480–483 (1992).
[CrossRef] [PubMed]

Fadley, C. S.

J. B. Kortright, M. Rice, Z. Hussain, H. A. Padmore, A. Adamson, W. R. A. Huff, A. T. Young, E. J. Moler, S. A. Kellar, R. X. Ynzunza, F. J. Palomares, H. Daimon, E. D. Tober, and C. S. Fadley, “Polarization measurement and vertical aperture optimization for obtaining circularly polarized bend-magnet radiation,” Rev. Sci. Instrum. 67, 3363 (1996).
[CrossRef]

Fridman, M.

M. Fridman, G. Machavariani, N. Davidson, and A. A. Friesem, “Fiber lasers generating radially and azimuthally polarized light,” Appl. Phys. Lett. 93, 191104 (2008).
[CrossRef]

Friesem, A. A.

M. Fridman, G. Machavariani, N. Davidson, and A. A. Friesem, “Fiber lasers generating radially and azimuthally polarized light,” Appl. Phys. Lett. 93, 191104 (2008).
[CrossRef]

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77, 3322–3324 (2000).
[CrossRef]

Garcia-Caurel, E.

D. Martino, E. Garcia-Caurel, B. Laude, and B. Drvillon, “General methods for optimized design and calibration of Mueller polarimeters,” Thin Solid Films 112, 455–546 (2004).

Gori, F.

Gorodetski, Y.

Hasman, E.

G. Biener, A. Niv, V. Kleiner, and E. Hasman, “Space-variant polarization scrambling for image encryption obtained with subwavelength gratings,” Opt. Commun. 261, 5–12 (2006).
[CrossRef]

Y. Gorodetski, G. Biener, A. Niv, V. Kleiner, and E. Hasman, “Space-variant polarization manipulation for farfield polarimetry by use of subwavelength dielectric gratings,” Opt. Lett. 30, 2245–2247 (2005).
[CrossRef] [PubMed]

E. Hasman, V. Kleiner, G. Biener, and A. Niv, “Polarization dependent focusing lens by use of quantized Pancharatnam Berry phase diffractive optics,” Appl. Phys. Lett. 82, 328–330 (2003).
[CrossRef]

G. Biener, A. Niv, V. Kleiner, and E. Hasman, “Near-field Fourier transform polarimetry by use of a discrete space-variant subwavelength grating,” J. Opt. Soc. Am. A 20, 1940–1948 (2003).
[CrossRef]

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77, 3322–3324 (2000).
[CrossRef]

Heffner, B. L.

B. L. Heffner, “Automated Measurement of Polarization Mode Dispersion Using Jones Matrix Eigenanalysis,” IEEE Photon. Technol. Lett. 4, 1066–1069 (1992).
[CrossRef]

Huff, W. R. A.

J. B. Kortright, M. Rice, Z. Hussain, H. A. Padmore, A. Adamson, W. R. A. Huff, A. T. Young, E. J. Moler, S. A. Kellar, R. X. Ynzunza, F. J. Palomares, H. Daimon, E. D. Tober, and C. S. Fadley, “Polarization measurement and vertical aperture optimization for obtaining circularly polarized bend-magnet radiation,” Rev. Sci. Instrum. 67, 3363 (1996).
[CrossRef]

Hussain, Z.

J. B. Kortright, M. Rice, Z. Hussain, H. A. Padmore, A. Adamson, W. R. A. Huff, A. T. Young, E. J. Moler, S. A. Kellar, R. X. Ynzunza, F. J. Palomares, H. Daimon, E. D. Tober, and C. S. Fadley, “Polarization measurement and vertical aperture optimization for obtaining circularly polarized bend-magnet radiation,” Rev. Sci. Instrum. 67, 3363 (1996).
[CrossRef]

Jackel, S.

Johnston, T. W.

J. C. Kieffer, J. P. Matte, H. Pepin, M. Chaker, Y. Beaudoin, T. W. Johnston, C. Y. Chien, S. Coe, G. Mourou, and J. Dubau, “Electron Distribution Anistropy in Laser-Produced Plasmas from X-Ray Line Polarization Measurements,” Phys. Rev. Lett. 68, 480–483 (1992).
[CrossRef] [PubMed]

Jones, M. W.

Kellar, S. A.

J. B. Kortright, M. Rice, Z. Hussain, H. A. Padmore, A. Adamson, W. R. A. Huff, A. T. Young, E. J. Moler, S. A. Kellar, R. X. Ynzunza, F. J. Palomares, H. Daimon, E. D. Tober, and C. S. Fadley, “Polarization measurement and vertical aperture optimization for obtaining circularly polarized bend-magnet radiation,” Rev. Sci. Instrum. 67, 3363 (1996).
[CrossRef]

Kieffer, J. C.

J. C. Kieffer, J. P. Matte, H. Pepin, M. Chaker, Y. Beaudoin, T. W. Johnston, C. Y. Chien, S. Coe, G. Mourou, and J. Dubau, “Electron Distribution Anistropy in Laser-Produced Plasmas from X-Ray Line Polarization Measurements,” Phys. Rev. Lett. 68, 480–483 (1992).
[CrossRef] [PubMed]

Kim, D. E.

J. Kim, and D. E. Kim, “Measurement of the degree of polarization of the spectra from laser produced recombining Al plasmas,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66, 017401 (2002).
[CrossRef]

Kim, J.

J. Kim, and D. E. Kim, “Measurement of the degree of polarization of the spectra from laser produced recombining Al plasmas,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66, 017401 (2002).
[CrossRef]

Kleiner, V.

G. Biener, A. Niv, V. Kleiner, and E. Hasman, “Space-variant polarization scrambling for image encryption obtained with subwavelength gratings,” Opt. Commun. 261, 5–12 (2006).
[CrossRef]

Y. Gorodetski, G. Biener, A. Niv, V. Kleiner, and E. Hasman, “Space-variant polarization manipulation for farfield polarimetry by use of subwavelength dielectric gratings,” Opt. Lett. 30, 2245–2247 (2005).
[CrossRef] [PubMed]

E. Hasman, V. Kleiner, G. Biener, and A. Niv, “Polarization dependent focusing lens by use of quantized Pancharatnam Berry phase diffractive optics,” Appl. Phys. Lett. 82, 328–330 (2003).
[CrossRef]

G. Biener, A. Niv, V. Kleiner, and E. Hasman, “Near-field Fourier transform polarimetry by use of a discrete space-variant subwavelength grating,” J. Opt. Soc. Am. A 20, 1940–1948 (2003).
[CrossRef]

Kortright, J. B.

J. B. Kortright, M. Rice, Z. Hussain, H. A. Padmore, A. Adamson, W. R. A. Huff, A. T. Young, E. J. Moler, S. A. Kellar, R. X. Ynzunza, F. J. Palomares, H. Daimon, E. D. Tober, and C. S. Fadley, “Polarization measurement and vertical aperture optimization for obtaining circularly polarized bend-magnet radiation,” Rev. Sci. Instrum. 67, 3363 (1996).
[CrossRef]

Laude, B.

D. Martino, E. Garcia-Caurel, B. Laude, and B. Drvillon, “General methods for optimized design and calibration of Mueller polarimeters,” Thin Solid Films 112, 455–546 (2004).

Machavariani, G.

M. Fridman, G. Machavariani, N. Davidson, and A. A. Friesem, “Fiber lasers generating radially and azimuthally polarized light,” Appl. Phys. Lett. 93, 191104 (2008).
[CrossRef]

Martino, D.

D. Martino, E. Garcia-Caurel, B. Laude, and B. Drvillon, “General methods for optimized design and calibration of Mueller polarimeters,” Thin Solid Films 112, 455–546 (2004).

Matte, J. P.

J. C. Kieffer, J. P. Matte, H. Pepin, M. Chaker, Y. Beaudoin, T. W. Johnston, C. Y. Chien, S. Coe, G. Mourou, and J. Dubau, “Electron Distribution Anistropy in Laser-Produced Plasmas from X-Ray Line Polarization Measurements,” Phys. Rev. Lett. 68, 480–483 (1992).
[CrossRef] [PubMed]

Meier, J. T.

Meir, A.

Moler, E. J.

J. B. Kortright, M. Rice, Z. Hussain, H. A. Padmore, A. Adamson, W. R. A. Huff, A. T. Young, E. J. Moler, S. A. Kellar, R. X. Ynzunza, F. J. Palomares, H. Daimon, E. D. Tober, and C. S. Fadley, “Polarization measurement and vertical aperture optimization for obtaining circularly polarized bend-magnet radiation,” Rev. Sci. Instrum. 67, 3363 (1996).
[CrossRef]

Moore, G. T.

E. J. Bochove, G. T. Moore, and M. O. Scully, “Acceleration of particles by an asymmetric Hermite-Gaussian laser beam,” Phys. Rev. A 46, 6640–6653 (1992).
[CrossRef] [PubMed]

Moshe, I.

Mourou, G.

J. C. Kieffer, J. P. Matte, H. Pepin, M. Chaker, Y. Beaudoin, T. W. Johnston, C. Y. Chien, S. Coe, G. Mourou, and J. Dubau, “Electron Distribution Anistropy in Laser-Produced Plasmas from X-Ray Line Polarization Measurements,” Phys. Rev. Lett. 68, 480–483 (1992).
[CrossRef] [PubMed]

Mujat, M.

Nesterov, A. V.

A. V. Nesterov, and V. G. Niziev, “Laser beams with axially symmetric polarization,” J. Phys. D Appl. Phys. 33, 1817–1822 (2000).
[CrossRef]

Niv, A.

G. Biener, A. Niv, V. Kleiner, and E. Hasman, “Space-variant polarization scrambling for image encryption obtained with subwavelength gratings,” Opt. Commun. 261, 5–12 (2006).
[CrossRef]

Y. Gorodetski, G. Biener, A. Niv, V. Kleiner, and E. Hasman, “Space-variant polarization manipulation for farfield polarimetry by use of subwavelength dielectric gratings,” Opt. Lett. 30, 2245–2247 (2005).
[CrossRef] [PubMed]

G. Biener, A. Niv, V. Kleiner, and E. Hasman, “Near-field Fourier transform polarimetry by use of a discrete space-variant subwavelength grating,” J. Opt. Soc. Am. A 20, 1940–1948 (2003).
[CrossRef]

E. Hasman, V. Kleiner, G. Biener, and A. Niv, “Polarization dependent focusing lens by use of quantized Pancharatnam Berry phase diffractive optics,” Appl. Phys. Lett. 82, 328–330 (2003).
[CrossRef]

Niziev, V. G.

A. V. Nesterov, and V. G. Niziev, “Laser beams with axially symmetric polarization,” J. Phys. D Appl. Phys. 33, 1817–1822 (2000).
[CrossRef]

Nordin, G. P.

Oron, R.

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77, 3322–3324 (2000).
[CrossRef]

Padmore, H. A.

J. B. Kortright, M. Rice, Z. Hussain, H. A. Padmore, A. Adamson, W. R. A. Huff, A. T. Young, E. J. Moler, S. A. Kellar, R. X. Ynzunza, F. J. Palomares, H. Daimon, E. D. Tober, and C. S. Fadley, “Polarization measurement and vertical aperture optimization for obtaining circularly polarized bend-magnet radiation,” Rev. Sci. Instrum. 67, 3363 (1996).
[CrossRef]

Palomares, F. J.

J. B. Kortright, M. Rice, Z. Hussain, H. A. Padmore, A. Adamson, W. R. A. Huff, A. T. Young, E. J. Moler, S. A. Kellar, R. X. Ynzunza, F. J. Palomares, H. Daimon, E. D. Tober, and C. S. Fadley, “Polarization measurement and vertical aperture optimization for obtaining circularly polarized bend-magnet radiation,” Rev. Sci. Instrum. 67, 3363 (1996).
[CrossRef]

Pepin, H.

J. C. Kieffer, J. P. Matte, H. Pepin, M. Chaker, Y. Beaudoin, T. W. Johnston, C. Y. Chien, S. Coe, G. Mourou, and J. Dubau, “Electron Distribution Anistropy in Laser-Produced Plasmas from X-Ray Line Polarization Measurements,” Phys. Rev. Lett. 68, 480–483 (1992).
[CrossRef] [PubMed]

Rice, M.

J. B. Kortright, M. Rice, Z. Hussain, H. A. Padmore, A. Adamson, W. R. A. Huff, A. T. Young, E. J. Moler, S. A. Kellar, R. X. Ynzunza, F. J. Palomares, H. Daimon, E. D. Tober, and C. S. Fadley, “Polarization measurement and vertical aperture optimization for obtaining circularly polarized bend-magnet radiation,” Rev. Sci. Instrum. 67, 3363 (1996).
[CrossRef]

Scully, M. O.

E. J. Bochove, G. T. Moore, and M. O. Scully, “Acceleration of particles by an asymmetric Hermite-Gaussian laser beam,” Phys. Rev. A 46, 6640–6653 (1992).
[CrossRef] [PubMed]

M. O. Scully, “A simple laser linac,” Appl. Phys. B 51, 238–241 (1990).
[CrossRef]

Tan, B.

K. Venkatakrishnan, and B. Tan, “Interconnect microvia drilling with a radially polarized laser beam,” J. Micromech. Microeng. 16, 2603–2607 (2006).
[CrossRef]

Tober, E. D.

J. B. Kortright, M. Rice, Z. Hussain, H. A. Padmore, A. Adamson, W. R. A. Huff, A. T. Young, E. J. Moler, S. A. Kellar, R. X. Ynzunza, F. J. Palomares, H. Daimon, E. D. Tober, and C. S. Fadley, “Polarization measurement and vertical aperture optimization for obtaining circularly polarized bend-magnet radiation,” Rev. Sci. Instrum. 67, 3363 (1996).
[CrossRef]

Ulrich, R.

Urbanczyk, W.

Venkatakrishnan, K.

K. Venkatakrishnan, and B. Tan, “Interconnect microvia drilling with a radially polarized laser beam,” J. Micromech. Microeng. 16, 2603–2607 (2006).
[CrossRef]

Ynzunza, R. X.

J. B. Kortright, M. Rice, Z. Hussain, H. A. Padmore, A. Adamson, W. R. A. Huff, A. T. Young, E. J. Moler, S. A. Kellar, R. X. Ynzunza, F. J. Palomares, H. Daimon, E. D. Tober, and C. S. Fadley, “Polarization measurement and vertical aperture optimization for obtaining circularly polarized bend-magnet radiation,” Rev. Sci. Instrum. 67, 3363 (1996).
[CrossRef]

Young, A. T.

J. B. Kortright, M. Rice, Z. Hussain, H. A. Padmore, A. Adamson, W. R. A. Huff, A. T. Young, E. J. Moler, S. A. Kellar, R. X. Ynzunza, F. J. Palomares, H. Daimon, E. D. Tober, and C. S. Fadley, “Polarization measurement and vertical aperture optimization for obtaining circularly polarized bend-magnet radiation,” Rev. Sci. Instrum. 67, 3363 (1996).
[CrossRef]

Youngworth, K. S.

Appl. Opt. (2)

Appl. Phys. B (1)

M. O. Scully, “A simple laser linac,” Appl. Phys. B 51, 238–241 (1990).
[CrossRef]

Appl. Phys. Lett. (3)

M. Fridman, G. Machavariani, N. Davidson, and A. A. Friesem, “Fiber lasers generating radially and azimuthally polarized light,” Appl. Phys. Lett. 93, 191104 (2008).
[CrossRef]

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77, 3322–3324 (2000).
[CrossRef]

E. Hasman, V. Kleiner, G. Biener, and A. Niv, “Polarization dependent focusing lens by use of quantized Pancharatnam Berry phase diffractive optics,” Appl. Phys. Lett. 82, 328–330 (2003).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

B. L. Heffner, “Automated Measurement of Polarization Mode Dispersion Using Jones Matrix Eigenanalysis,” IEEE Photon. Technol. Lett. 4, 1066–1069 (1992).
[CrossRef]

J. Micromech. Microeng. (1)

K. Venkatakrishnan, and B. Tan, “Interconnect microvia drilling with a radially polarized laser beam,” J. Micromech. Microeng. 16, 2603–2607 (2006).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Phys. D Appl. Phys. (1)

A. V. Nesterov, and V. G. Niziev, “Laser beams with axially symmetric polarization,” J. Phys. D Appl. Phys. 33, 1817–1822 (2000).
[CrossRef]

Opt. Commun. (1)

G. Biener, A. Niv, V. Kleiner, and E. Hasman, “Space-variant polarization scrambling for image encryption obtained with subwavelength gratings,” Opt. Commun. 261, 5–12 (2006).
[CrossRef]

Opt. Express (1)

Opt. Lett. (5)

Phys. Rev. A (1)

E. J. Bochove, G. T. Moore, and M. O. Scully, “Acceleration of particles by an asymmetric Hermite-Gaussian laser beam,” Phys. Rev. A 46, 6640–6653 (1992).
[CrossRef] [PubMed]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

J. Kim, and D. E. Kim, “Measurement of the degree of polarization of the spectra from laser produced recombining Al plasmas,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66, 017401 (2002).
[CrossRef]

Phys. Rev. Lett. (1)

J. C. Kieffer, J. P. Matte, H. Pepin, M. Chaker, Y. Beaudoin, T. W. Johnston, C. Y. Chien, S. Coe, G. Mourou, and J. Dubau, “Electron Distribution Anistropy in Laser-Produced Plasmas from X-Ray Line Polarization Measurements,” Phys. Rev. Lett. 68, 480–483 (1992).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

J. B. Kortright, M. Rice, Z. Hussain, H. A. Padmore, A. Adamson, W. R. A. Huff, A. T. Young, E. J. Moler, S. A. Kellar, R. X. Ynzunza, F. J. Palomares, H. Daimon, E. D. Tober, and C. S. Fadley, “Polarization measurement and vertical aperture optimization for obtaining circularly polarized bend-magnet radiation,” Rev. Sci. Instrum. 67, 3363 (1996).
[CrossRef]

Thin Solid Films (1)

D. Martino, E. Garcia-Caurel, B. Laude, and B. Drvillon, “General methods for optimized design and calibration of Mueller polarimeters,” Thin Solid Films 112, 455–546 (2004).

Other (1)

E. Hecht, Optics, (Addison Wesley, San Francisco, California) 2002, Chap. 8.

Supplementary Material (1)

» Media 1: MOV (5345 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Configuration for real-time space variant polarization measurements. HR - high reflection mirror, QWP - quarter wave plate and PR - partial reflection mirror.

Fig. 2.
Fig. 2.

Representative experimental intensity distributions of the six output beams for different polarized input beams. (a) For a horizontal linearly polarized input beam; (b) for a 45° linearly polarized input beam; (c) for a circularly polarized input beam.

Fig. 3.
Fig. 3.

Stokes parameters determined from the experimental results shown in Fig. 2. (a) For a horizontal linearly polarized input beam; (b) for a 45° linearly polarized input beam; (c) for a circularly polarized input beam.

Fig. 4.
Fig. 4.

Calculated and experimental Stokes parameters and full polarization state at each point for a radially polarized input beam.(a) Calculated Stokes parameters;(b) experimental Stokes parameters; (c) arrows representing the resulting main axis of the local polarization ellipse.

Fig. 5.
Fig. 5.

Calculated and experimental Stokes parameters and full polarization state at each point for a azimuthally polarized input beam.(a) Calculated Stokes parameters;(b) experimental Stokes parameters; (c) arrows representing the resulting main axis of the local polarization ellipse.

Fig. 6.
Fig. 6.

(Media 1) The trajectory of the state of polarization on the Poincar sphere. (a) The trajectory of three representative points (marked by crosses in the inset) in a radially polarized amplified beam as a function of time after the amplifier is turned on. For each trajectory 200 equally spaced measurements taken over 25sec are plotted. (b) Single frame from a movie presents all four Stokes parameters and the full polarization state on the the Poincar sphere as a function of time.

Fig. 7.
Fig. 7.

Compact configuration for real-time space-variant polarization measurement.

Fig. 8.
Fig. 8.

Configuration for real-time wavelength-variant polarization measurement.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

S0(x,y)=I1(x,y)+I2(x,y),
S1(x,y)=I1(x,y)I2(x,y),
S2(x,y)=2(aI3(x,y)+bI5(x,y))2S0(x,y)S1(x,y),
S3(x,y)=2(aI3(x,y)bI5(x,y)),
I1(x,y)+I2(x,y)=a(I3(x,y)+I4(x,y))=b(I5(x,y)+I6(x,y)).

Metrics