Abstract

We present light harvesting of aqueous colloidal quantum dots to nonradiatively transfer their excitonic excitation energy efficiently to dye molecules in water, without requiring ligand exchange. These as-synthesized CdTe quantum dots that are used as donors to serve as light-harvesting antennas are carefully optimized to match the electronic structure of Rhodamine B molecules used as acceptors for light harvesting in aqueous medium. By varying the acceptor to donor concentration ratio, we measure the light harvesting factor, along with substantial lifetime modifications of these water-soluble quantum dots, from 25.3 ns to 7.2 ns as a result of their energy transfer with efficiency levels up to 86%. Such nonradiative energy transfer mediated light harvesting in aqueous medium holds great promise for future quantum dot multiplexed dye biodetection systems.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Georgi, C. Mottola-Hartshorn, A. N. Warner, B. Fields, and L. B. Chen, “Detection of individual fluorescently labeled reovirions in living cells,” Proc. Natl. Acad. Sci. U.S.A. 87(17), 6579–6583 (1990).
    [CrossRef] [PubMed]
  2. Y. Li, Y. T. H. Cu, and D. Luo, “Multiplexed detection of pathogen DNA with DNA- based fluorescence nanobarcodes,” Nat. Biotechnol. 23(7), 885–889 (2005).
    [CrossRef] [PubMed]
  3. K. Bacia, S. A. Kim, and P. Schwille, “Fluorescence cross-correlation spectroscopy in living cells,” Nat. Methods 3(2), 83–89 (2006).
    [CrossRef] [PubMed]
  4. C. Fang, A. Agarwal, K. D. Buddharaju, N. M. Khalid, S. M. Salim, E. Widjaja, M. V. Garland, N. Balasubramanian, and D. L. Kwong, “DNA detection using nanostructured SERS substrates with Rhodamine B as Raman label,” Biosens. Bioelectron. 24(2), 216–221 (2008).
    [CrossRef] [PubMed]
  5. H. Tokudome, Y. Yamada, S. Sonezaki, H. Ishikawa, M. Bekki, K. Kanehira, and M. Miyauchi, “Photoelectrochemical deoxyribonucleic acid sensing on a nanostructured TiO2 electrode,” Appl. Phys. Lett. 87(21), 213901 (2005).
    [CrossRef]
  6. B. O’Reagen and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature 353(6346), 737–740 (1991).
    [CrossRef]
  7. S. L. Li, K. J. Jiang, K. F. Shao, and L. M. Yang, “Novel organic dyes for efficient dye-sensitized solar cells,” Chem. Commun. (Camb.) 26(26), 2792–2794 (2006).
    [CrossRef]
  8. E. Mutlugün, S. Nizamoglu, and H. V. Demir, “Highly efficient nonradiative energy transfer using charged CdSe/ZnS nanocrystals for light-harvesting in solution,” Appl. Phys. Lett. 95(3), 033106 (2009).
    [CrossRef]
  9. W. W. Yu, E. Chang, R. Drezek, and V. L. Colvin, “Water-soluble quantum dots for biomedical applications,” Biochem. Biophys. Res. Commun. 348(3), 781–786 (2006).
    [CrossRef] [PubMed]
  10. S. Kim and M. G. Bawendi, “Oligomeric Ligands for Luminescent and Stable Nanocrystal Quantum Dots,” J. Am. Chem. Soc. 125(48), 14652–14653 (2003).
    [CrossRef] [PubMed]
  11. M. Grabolle, M. Spieles, V. Lesnyak, N. Gaponik, A. Eychmüller, and U. Resch-Genger, “Determination of the Fluorescence Quantum Yield of Quantum Dots: Suitable Procedures and Achievable Uncertainties,” Anal. Chem. 81(15), 6285–6294 (2009).
    [CrossRef]
  12. N. Gaponik, D. V. Talapin, A. L. Rogach, K. Hoppe, E. V. Shevchenko, A. Kornowski, A. Eychmüller, and H. Weller, “Thiol-Capping of CdTe nanocrystals: An alternative to organometallic synthetic routes,” J. Phys. Chem. B 106(29), 7177–7185 (2002).
    [CrossRef]
  13. A. L. Rogach, T. Franzl, T. A. Klar, J. Feldmann, N. Gaponik, V. Lesnyak, A. Shavel, A. Eychmüller, Y. P. Rakovich, and J. F. Donegan, “Aqueous synthesis of thiol-capped CdTe nanocrystals: State-of-the-art,” J. Phys. Chem. C 111(40), 14628–14637 (2007).
    [CrossRef]
  14. T. Förster, “Zwischenmolekulare Energiewanderung und Fluoreszenz,” Ann. Phys. 437(1-2), 55–75 (1948).
    [CrossRef]
  15. A. R. Clapp, I. L. Medintz, J. M. Mauro, B. R. Fisher, M. G. Bawendi, and H. Mattoussi, “Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors,” J. Am. Chem. Soc. 126(1), 301–310 (2004).
    [CrossRef] [PubMed]
  16. D. M. Willard and A. Van Orden, “Quantum dots: Resonant energy-transfer sensor,” Nat. Mater. 2(9), 575–576 (2003).
    [CrossRef] [PubMed]
  17. I. L. Medintz, A. R. Clapp, F. M. Brunel, T. Tiefenbrunn, H. T. Uyeda, E. L. Chang, J. R. Deschamps, P. E. Dawson, and H. Mattoussi, “Proteolytic activity monitored by fluorescence resonance energy transfer through quantum-dot-peptide conjugates,” Nat. Mater. 5(7), 581–589 (2006).
    [CrossRef] [PubMed]
  18. S. Sadhu and A. Patra, “Composition effects on quantum dot-based resonance energy transfer,” Appl. Phys. Lett. 93(18), 183104 (2008).
    [CrossRef]
  19. P. S. Chowdhury, P. Sen, and A. Patra, “Optical properties of CdS nanoparticles and the energy transfer from CdS nanoparticles to Rhodamine 6G,” Chem. Phys. Lett. 413(4-6), 311–314 (2005).
    [CrossRef]
  20. T. Pons, I. L. Medintz, M. Sykora, and H. Mattoussi, “Spectrally resolved energy transfer using quantum dot donors: Ensemble and single-molecule photoluminescence studies,” Phys. Rev. B 73(24), 245302 (2006).
    [CrossRef]
  21. E. Alphandery, L. M. Walsh, Y. Rakovich, A. L. Bradley, J. F. Donegan, and N. Gaponik, “Highly efficient Förster resonance energy transfer between CdTe nanocrystals and Rhodamine B in mixed solid films,” Chem. Phys. Lett. 388(1-3), 100–104 (2004).
    [CrossRef]
  22. X. Y. Wang, Q. Maa, Y. B. Lia, B. Li, X. G. Su, and Q. H. Jin, “Studies on fluorescence resonance energy transfer between dyes and water-soluble quantum dots,” Can. J. Anal. Sci. Spectrosc. 50, 141–146 (2005).
  23. J. Li, F. Mei, W. Y. Li, X. W. He, and Y. K. Zhang, “Study on the fluorescence resonance energy transfer between CdTe QDs and butyl-rhodamine B in the presence of CTMAB and its application on the detection of Hg(II),” Spectrochimica Acta Part A 70(4), 811–817 (2008).
    [CrossRef]
  24. Q. Chen, Q. Ma, Y. Wan, X. Su, Z. Lin, and Q. Jin, “Studies on fluorescence resonance energy transfer between dyes and water-soluble quantum dots,” J. Biolumin. Chemilumin. 20(4-5), 251–255 (2005).
  25. A. R. Clapp, I. L. Medintz, and H. Mattoussi, “Förster resonance energy transfer investigations using quantum-dot fluorophores,” Chem. Phys. Chem 7(1), 47–57 (2006).
    [CrossRef]
  26. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (New York: Springer,2006).
  27. V. K. Komarala, A. L. Bradley, Y. P. Rakovich, S. J. Byrne, Y. K. Gun’ko, and A. L. Rogach, “Surface plasmon enhanced Förster resonance energy transfer between the CdTe quantum dots,” Appl. Phys. Lett. 93(12), 123102 (2008).
    [CrossRef]
  28. S. Chanyawadee, R. T. Harley, M. Henini, D. V. Talapin, and P. G. Lagoudakis, “Photocurrent Enhancement in Hybrid Nanocrystal Quantum-Dot p-i-n Photovoltaic Devices,” Phys. Rev. Lett. 102(7), 077402 (2009).
    [CrossRef] [PubMed]

2009

E. Mutlugün, S. Nizamoglu, and H. V. Demir, “Highly efficient nonradiative energy transfer using charged CdSe/ZnS nanocrystals for light-harvesting in solution,” Appl. Phys. Lett. 95(3), 033106 (2009).
[CrossRef]

M. Grabolle, M. Spieles, V. Lesnyak, N. Gaponik, A. Eychmüller, and U. Resch-Genger, “Determination of the Fluorescence Quantum Yield of Quantum Dots: Suitable Procedures and Achievable Uncertainties,” Anal. Chem. 81(15), 6285–6294 (2009).
[CrossRef]

S. Chanyawadee, R. T. Harley, M. Henini, D. V. Talapin, and P. G. Lagoudakis, “Photocurrent Enhancement in Hybrid Nanocrystal Quantum-Dot p-i-n Photovoltaic Devices,” Phys. Rev. Lett. 102(7), 077402 (2009).
[CrossRef] [PubMed]

2008

J. Li, F. Mei, W. Y. Li, X. W. He, and Y. K. Zhang, “Study on the fluorescence resonance energy transfer between CdTe QDs and butyl-rhodamine B in the presence of CTMAB and its application on the detection of Hg(II),” Spectrochimica Acta Part A 70(4), 811–817 (2008).
[CrossRef]

V. K. Komarala, A. L. Bradley, Y. P. Rakovich, S. J. Byrne, Y. K. Gun’ko, and A. L. Rogach, “Surface plasmon enhanced Förster resonance energy transfer between the CdTe quantum dots,” Appl. Phys. Lett. 93(12), 123102 (2008).
[CrossRef]

S. Sadhu and A. Patra, “Composition effects on quantum dot-based resonance energy transfer,” Appl. Phys. Lett. 93(18), 183104 (2008).
[CrossRef]

C. Fang, A. Agarwal, K. D. Buddharaju, N. M. Khalid, S. M. Salim, E. Widjaja, M. V. Garland, N. Balasubramanian, and D. L. Kwong, “DNA detection using nanostructured SERS substrates with Rhodamine B as Raman label,” Biosens. Bioelectron. 24(2), 216–221 (2008).
[CrossRef] [PubMed]

2007

A. L. Rogach, T. Franzl, T. A. Klar, J. Feldmann, N. Gaponik, V. Lesnyak, A. Shavel, A. Eychmüller, Y. P. Rakovich, and J. F. Donegan, “Aqueous synthesis of thiol-capped CdTe nanocrystals: State-of-the-art,” J. Phys. Chem. C 111(40), 14628–14637 (2007).
[CrossRef]

2006

W. W. Yu, E. Chang, R. Drezek, and V. L. Colvin, “Water-soluble quantum dots for biomedical applications,” Biochem. Biophys. Res. Commun. 348(3), 781–786 (2006).
[CrossRef] [PubMed]

K. Bacia, S. A. Kim, and P. Schwille, “Fluorescence cross-correlation spectroscopy in living cells,” Nat. Methods 3(2), 83–89 (2006).
[CrossRef] [PubMed]

S. L. Li, K. J. Jiang, K. F. Shao, and L. M. Yang, “Novel organic dyes for efficient dye-sensitized solar cells,” Chem. Commun. (Camb.) 26(26), 2792–2794 (2006).
[CrossRef]

A. R. Clapp, I. L. Medintz, and H. Mattoussi, “Förster resonance energy transfer investigations using quantum-dot fluorophores,” Chem. Phys. Chem 7(1), 47–57 (2006).
[CrossRef]

T. Pons, I. L. Medintz, M. Sykora, and H. Mattoussi, “Spectrally resolved energy transfer using quantum dot donors: Ensemble and single-molecule photoluminescence studies,” Phys. Rev. B 73(24), 245302 (2006).
[CrossRef]

I. L. Medintz, A. R. Clapp, F. M. Brunel, T. Tiefenbrunn, H. T. Uyeda, E. L. Chang, J. R. Deschamps, P. E. Dawson, and H. Mattoussi, “Proteolytic activity monitored by fluorescence resonance energy transfer through quantum-dot-peptide conjugates,” Nat. Mater. 5(7), 581–589 (2006).
[CrossRef] [PubMed]

2005

X. Y. Wang, Q. Maa, Y. B. Lia, B. Li, X. G. Su, and Q. H. Jin, “Studies on fluorescence resonance energy transfer between dyes and water-soluble quantum dots,” Can. J. Anal. Sci. Spectrosc. 50, 141–146 (2005).

Q. Chen, Q. Ma, Y. Wan, X. Su, Z. Lin, and Q. Jin, “Studies on fluorescence resonance energy transfer between dyes and water-soluble quantum dots,” J. Biolumin. Chemilumin. 20(4-5), 251–255 (2005).

H. Tokudome, Y. Yamada, S. Sonezaki, H. Ishikawa, M. Bekki, K. Kanehira, and M. Miyauchi, “Photoelectrochemical deoxyribonucleic acid sensing on a nanostructured TiO2 electrode,” Appl. Phys. Lett. 87(21), 213901 (2005).
[CrossRef]

Y. Li, Y. T. H. Cu, and D. Luo, “Multiplexed detection of pathogen DNA with DNA- based fluorescence nanobarcodes,” Nat. Biotechnol. 23(7), 885–889 (2005).
[CrossRef] [PubMed]

P. S. Chowdhury, P. Sen, and A. Patra, “Optical properties of CdS nanoparticles and the energy transfer from CdS nanoparticles to Rhodamine 6G,” Chem. Phys. Lett. 413(4-6), 311–314 (2005).
[CrossRef]

2004

A. R. Clapp, I. L. Medintz, J. M. Mauro, B. R. Fisher, M. G. Bawendi, and H. Mattoussi, “Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors,” J. Am. Chem. Soc. 126(1), 301–310 (2004).
[CrossRef] [PubMed]

E. Alphandery, L. M. Walsh, Y. Rakovich, A. L. Bradley, J. F. Donegan, and N. Gaponik, “Highly efficient Förster resonance energy transfer between CdTe nanocrystals and Rhodamine B in mixed solid films,” Chem. Phys. Lett. 388(1-3), 100–104 (2004).
[CrossRef]

2003

D. M. Willard and A. Van Orden, “Quantum dots: Resonant energy-transfer sensor,” Nat. Mater. 2(9), 575–576 (2003).
[CrossRef] [PubMed]

S. Kim and M. G. Bawendi, “Oligomeric Ligands for Luminescent and Stable Nanocrystal Quantum Dots,” J. Am. Chem. Soc. 125(48), 14652–14653 (2003).
[CrossRef] [PubMed]

2002

N. Gaponik, D. V. Talapin, A. L. Rogach, K. Hoppe, E. V. Shevchenko, A. Kornowski, A. Eychmüller, and H. Weller, “Thiol-Capping of CdTe nanocrystals: An alternative to organometallic synthetic routes,” J. Phys. Chem. B 106(29), 7177–7185 (2002).
[CrossRef]

1991

B. O’Reagen and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature 353(6346), 737–740 (1991).
[CrossRef]

1990

A. Georgi, C. Mottola-Hartshorn, A. N. Warner, B. Fields, and L. B. Chen, “Detection of individual fluorescently labeled reovirions in living cells,” Proc. Natl. Acad. Sci. U.S.A. 87(17), 6579–6583 (1990).
[CrossRef] [PubMed]

1948

T. Förster, “Zwischenmolekulare Energiewanderung und Fluoreszenz,” Ann. Phys. 437(1-2), 55–75 (1948).
[CrossRef]

Agarwal, A.

C. Fang, A. Agarwal, K. D. Buddharaju, N. M. Khalid, S. M. Salim, E. Widjaja, M. V. Garland, N. Balasubramanian, and D. L. Kwong, “DNA detection using nanostructured SERS substrates with Rhodamine B as Raman label,” Biosens. Bioelectron. 24(2), 216–221 (2008).
[CrossRef] [PubMed]

Alphandery, E.

E. Alphandery, L. M. Walsh, Y. Rakovich, A. L. Bradley, J. F. Donegan, and N. Gaponik, “Highly efficient Förster resonance energy transfer between CdTe nanocrystals and Rhodamine B in mixed solid films,” Chem. Phys. Lett. 388(1-3), 100–104 (2004).
[CrossRef]

Bacia, K.

K. Bacia, S. A. Kim, and P. Schwille, “Fluorescence cross-correlation spectroscopy in living cells,” Nat. Methods 3(2), 83–89 (2006).
[CrossRef] [PubMed]

Balasubramanian, N.

C. Fang, A. Agarwal, K. D. Buddharaju, N. M. Khalid, S. M. Salim, E. Widjaja, M. V. Garland, N. Balasubramanian, and D. L. Kwong, “DNA detection using nanostructured SERS substrates with Rhodamine B as Raman label,” Biosens. Bioelectron. 24(2), 216–221 (2008).
[CrossRef] [PubMed]

Bawendi, M. G.

A. R. Clapp, I. L. Medintz, J. M. Mauro, B. R. Fisher, M. G. Bawendi, and H. Mattoussi, “Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors,” J. Am. Chem. Soc. 126(1), 301–310 (2004).
[CrossRef] [PubMed]

S. Kim and M. G. Bawendi, “Oligomeric Ligands for Luminescent and Stable Nanocrystal Quantum Dots,” J. Am. Chem. Soc. 125(48), 14652–14653 (2003).
[CrossRef] [PubMed]

Bekki, M.

H. Tokudome, Y. Yamada, S. Sonezaki, H. Ishikawa, M. Bekki, K. Kanehira, and M. Miyauchi, “Photoelectrochemical deoxyribonucleic acid sensing on a nanostructured TiO2 electrode,” Appl. Phys. Lett. 87(21), 213901 (2005).
[CrossRef]

Bradley, A. L.

V. K. Komarala, A. L. Bradley, Y. P. Rakovich, S. J. Byrne, Y. K. Gun’ko, and A. L. Rogach, “Surface plasmon enhanced Förster resonance energy transfer between the CdTe quantum dots,” Appl. Phys. Lett. 93(12), 123102 (2008).
[CrossRef]

E. Alphandery, L. M. Walsh, Y. Rakovich, A. L. Bradley, J. F. Donegan, and N. Gaponik, “Highly efficient Förster resonance energy transfer between CdTe nanocrystals and Rhodamine B in mixed solid films,” Chem. Phys. Lett. 388(1-3), 100–104 (2004).
[CrossRef]

Brunel, F. M.

I. L. Medintz, A. R. Clapp, F. M. Brunel, T. Tiefenbrunn, H. T. Uyeda, E. L. Chang, J. R. Deschamps, P. E. Dawson, and H. Mattoussi, “Proteolytic activity monitored by fluorescence resonance energy transfer through quantum-dot-peptide conjugates,” Nat. Mater. 5(7), 581–589 (2006).
[CrossRef] [PubMed]

Buddharaju, K. D.

C. Fang, A. Agarwal, K. D. Buddharaju, N. M. Khalid, S. M. Salim, E. Widjaja, M. V. Garland, N. Balasubramanian, and D. L. Kwong, “DNA detection using nanostructured SERS substrates with Rhodamine B as Raman label,” Biosens. Bioelectron. 24(2), 216–221 (2008).
[CrossRef] [PubMed]

Byrne, S. J.

V. K. Komarala, A. L. Bradley, Y. P. Rakovich, S. J. Byrne, Y. K. Gun’ko, and A. L. Rogach, “Surface plasmon enhanced Förster resonance energy transfer between the CdTe quantum dots,” Appl. Phys. Lett. 93(12), 123102 (2008).
[CrossRef]

Chang, E.

W. W. Yu, E. Chang, R. Drezek, and V. L. Colvin, “Water-soluble quantum dots for biomedical applications,” Biochem. Biophys. Res. Commun. 348(3), 781–786 (2006).
[CrossRef] [PubMed]

Chang, E. L.

I. L. Medintz, A. R. Clapp, F. M. Brunel, T. Tiefenbrunn, H. T. Uyeda, E. L. Chang, J. R. Deschamps, P. E. Dawson, and H. Mattoussi, “Proteolytic activity monitored by fluorescence resonance energy transfer through quantum-dot-peptide conjugates,” Nat. Mater. 5(7), 581–589 (2006).
[CrossRef] [PubMed]

Chanyawadee, S.

S. Chanyawadee, R. T. Harley, M. Henini, D. V. Talapin, and P. G. Lagoudakis, “Photocurrent Enhancement in Hybrid Nanocrystal Quantum-Dot p-i-n Photovoltaic Devices,” Phys. Rev. Lett. 102(7), 077402 (2009).
[CrossRef] [PubMed]

Chen, L. B.

A. Georgi, C. Mottola-Hartshorn, A. N. Warner, B. Fields, and L. B. Chen, “Detection of individual fluorescently labeled reovirions in living cells,” Proc. Natl. Acad. Sci. U.S.A. 87(17), 6579–6583 (1990).
[CrossRef] [PubMed]

Chen, Q.

Q. Chen, Q. Ma, Y. Wan, X. Su, Z. Lin, and Q. Jin, “Studies on fluorescence resonance energy transfer between dyes and water-soluble quantum dots,” J. Biolumin. Chemilumin. 20(4-5), 251–255 (2005).

Chowdhury, P. S.

P. S. Chowdhury, P. Sen, and A. Patra, “Optical properties of CdS nanoparticles and the energy transfer from CdS nanoparticles to Rhodamine 6G,” Chem. Phys. Lett. 413(4-6), 311–314 (2005).
[CrossRef]

Clapp, A. R.

I. L. Medintz, A. R. Clapp, F. M. Brunel, T. Tiefenbrunn, H. T. Uyeda, E. L. Chang, J. R. Deschamps, P. E. Dawson, and H. Mattoussi, “Proteolytic activity monitored by fluorescence resonance energy transfer through quantum-dot-peptide conjugates,” Nat. Mater. 5(7), 581–589 (2006).
[CrossRef] [PubMed]

A. R. Clapp, I. L. Medintz, and H. Mattoussi, “Förster resonance energy transfer investigations using quantum-dot fluorophores,” Chem. Phys. Chem 7(1), 47–57 (2006).
[CrossRef]

A. R. Clapp, I. L. Medintz, J. M. Mauro, B. R. Fisher, M. G. Bawendi, and H. Mattoussi, “Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors,” J. Am. Chem. Soc. 126(1), 301–310 (2004).
[CrossRef] [PubMed]

Colvin, V. L.

W. W. Yu, E. Chang, R. Drezek, and V. L. Colvin, “Water-soluble quantum dots for biomedical applications,” Biochem. Biophys. Res. Commun. 348(3), 781–786 (2006).
[CrossRef] [PubMed]

Cu, Y. T. H.

Y. Li, Y. T. H. Cu, and D. Luo, “Multiplexed detection of pathogen DNA with DNA- based fluorescence nanobarcodes,” Nat. Biotechnol. 23(7), 885–889 (2005).
[CrossRef] [PubMed]

Dawson, P. E.

I. L. Medintz, A. R. Clapp, F. M. Brunel, T. Tiefenbrunn, H. T. Uyeda, E. L. Chang, J. R. Deschamps, P. E. Dawson, and H. Mattoussi, “Proteolytic activity monitored by fluorescence resonance energy transfer through quantum-dot-peptide conjugates,” Nat. Mater. 5(7), 581–589 (2006).
[CrossRef] [PubMed]

Demir, H. V.

E. Mutlugün, S. Nizamoglu, and H. V. Demir, “Highly efficient nonradiative energy transfer using charged CdSe/ZnS nanocrystals for light-harvesting in solution,” Appl. Phys. Lett. 95(3), 033106 (2009).
[CrossRef]

Deschamps, J. R.

I. L. Medintz, A. R. Clapp, F. M. Brunel, T. Tiefenbrunn, H. T. Uyeda, E. L. Chang, J. R. Deschamps, P. E. Dawson, and H. Mattoussi, “Proteolytic activity monitored by fluorescence resonance energy transfer through quantum-dot-peptide conjugates,” Nat. Mater. 5(7), 581–589 (2006).
[CrossRef] [PubMed]

Donegan, J. F.

A. L. Rogach, T. Franzl, T. A. Klar, J. Feldmann, N. Gaponik, V. Lesnyak, A. Shavel, A. Eychmüller, Y. P. Rakovich, and J. F. Donegan, “Aqueous synthesis of thiol-capped CdTe nanocrystals: State-of-the-art,” J. Phys. Chem. C 111(40), 14628–14637 (2007).
[CrossRef]

E. Alphandery, L. M. Walsh, Y. Rakovich, A. L. Bradley, J. F. Donegan, and N. Gaponik, “Highly efficient Förster resonance energy transfer between CdTe nanocrystals and Rhodamine B in mixed solid films,” Chem. Phys. Lett. 388(1-3), 100–104 (2004).
[CrossRef]

Drezek, R.

W. W. Yu, E. Chang, R. Drezek, and V. L. Colvin, “Water-soluble quantum dots for biomedical applications,” Biochem. Biophys. Res. Commun. 348(3), 781–786 (2006).
[CrossRef] [PubMed]

Eychmüller, A.

M. Grabolle, M. Spieles, V. Lesnyak, N. Gaponik, A. Eychmüller, and U. Resch-Genger, “Determination of the Fluorescence Quantum Yield of Quantum Dots: Suitable Procedures and Achievable Uncertainties,” Anal. Chem. 81(15), 6285–6294 (2009).
[CrossRef]

A. L. Rogach, T. Franzl, T. A. Klar, J. Feldmann, N. Gaponik, V. Lesnyak, A. Shavel, A. Eychmüller, Y. P. Rakovich, and J. F. Donegan, “Aqueous synthesis of thiol-capped CdTe nanocrystals: State-of-the-art,” J. Phys. Chem. C 111(40), 14628–14637 (2007).
[CrossRef]

N. Gaponik, D. V. Talapin, A. L. Rogach, K. Hoppe, E. V. Shevchenko, A. Kornowski, A. Eychmüller, and H. Weller, “Thiol-Capping of CdTe nanocrystals: An alternative to organometallic synthetic routes,” J. Phys. Chem. B 106(29), 7177–7185 (2002).
[CrossRef]

Fang, C.

C. Fang, A. Agarwal, K. D. Buddharaju, N. M. Khalid, S. M. Salim, E. Widjaja, M. V. Garland, N. Balasubramanian, and D. L. Kwong, “DNA detection using nanostructured SERS substrates with Rhodamine B as Raman label,” Biosens. Bioelectron. 24(2), 216–221 (2008).
[CrossRef] [PubMed]

Feldmann, J.

A. L. Rogach, T. Franzl, T. A. Klar, J. Feldmann, N. Gaponik, V. Lesnyak, A. Shavel, A. Eychmüller, Y. P. Rakovich, and J. F. Donegan, “Aqueous synthesis of thiol-capped CdTe nanocrystals: State-of-the-art,” J. Phys. Chem. C 111(40), 14628–14637 (2007).
[CrossRef]

Fields, B.

A. Georgi, C. Mottola-Hartshorn, A. N. Warner, B. Fields, and L. B. Chen, “Detection of individual fluorescently labeled reovirions in living cells,” Proc. Natl. Acad. Sci. U.S.A. 87(17), 6579–6583 (1990).
[CrossRef] [PubMed]

Fisher, B. R.

A. R. Clapp, I. L. Medintz, J. M. Mauro, B. R. Fisher, M. G. Bawendi, and H. Mattoussi, “Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors,” J. Am. Chem. Soc. 126(1), 301–310 (2004).
[CrossRef] [PubMed]

Förster, T.

T. Förster, “Zwischenmolekulare Energiewanderung und Fluoreszenz,” Ann. Phys. 437(1-2), 55–75 (1948).
[CrossRef]

Franzl, T.

A. L. Rogach, T. Franzl, T. A. Klar, J. Feldmann, N. Gaponik, V. Lesnyak, A. Shavel, A. Eychmüller, Y. P. Rakovich, and J. F. Donegan, “Aqueous synthesis of thiol-capped CdTe nanocrystals: State-of-the-art,” J. Phys. Chem. C 111(40), 14628–14637 (2007).
[CrossRef]

Gaponik, N.

M. Grabolle, M. Spieles, V. Lesnyak, N. Gaponik, A. Eychmüller, and U. Resch-Genger, “Determination of the Fluorescence Quantum Yield of Quantum Dots: Suitable Procedures and Achievable Uncertainties,” Anal. Chem. 81(15), 6285–6294 (2009).
[CrossRef]

A. L. Rogach, T. Franzl, T. A. Klar, J. Feldmann, N. Gaponik, V. Lesnyak, A. Shavel, A. Eychmüller, Y. P. Rakovich, and J. F. Donegan, “Aqueous synthesis of thiol-capped CdTe nanocrystals: State-of-the-art,” J. Phys. Chem. C 111(40), 14628–14637 (2007).
[CrossRef]

E. Alphandery, L. M. Walsh, Y. Rakovich, A. L. Bradley, J. F. Donegan, and N. Gaponik, “Highly efficient Förster resonance energy transfer between CdTe nanocrystals and Rhodamine B in mixed solid films,” Chem. Phys. Lett. 388(1-3), 100–104 (2004).
[CrossRef]

N. Gaponik, D. V. Talapin, A. L. Rogach, K. Hoppe, E. V. Shevchenko, A. Kornowski, A. Eychmüller, and H. Weller, “Thiol-Capping of CdTe nanocrystals: An alternative to organometallic synthetic routes,” J. Phys. Chem. B 106(29), 7177–7185 (2002).
[CrossRef]

Garland, M. V.

C. Fang, A. Agarwal, K. D. Buddharaju, N. M. Khalid, S. M. Salim, E. Widjaja, M. V. Garland, N. Balasubramanian, and D. L. Kwong, “DNA detection using nanostructured SERS substrates with Rhodamine B as Raman label,” Biosens. Bioelectron. 24(2), 216–221 (2008).
[CrossRef] [PubMed]

Georgi, A.

A. Georgi, C. Mottola-Hartshorn, A. N. Warner, B. Fields, and L. B. Chen, “Detection of individual fluorescently labeled reovirions in living cells,” Proc. Natl. Acad. Sci. U.S.A. 87(17), 6579–6583 (1990).
[CrossRef] [PubMed]

Grabolle, M.

M. Grabolle, M. Spieles, V. Lesnyak, N. Gaponik, A. Eychmüller, and U. Resch-Genger, “Determination of the Fluorescence Quantum Yield of Quantum Dots: Suitable Procedures and Achievable Uncertainties,” Anal. Chem. 81(15), 6285–6294 (2009).
[CrossRef]

Grätzel, M.

B. O’Reagen and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature 353(6346), 737–740 (1991).
[CrossRef]

Gun’ko, Y. K.

V. K. Komarala, A. L. Bradley, Y. P. Rakovich, S. J. Byrne, Y. K. Gun’ko, and A. L. Rogach, “Surface plasmon enhanced Förster resonance energy transfer between the CdTe quantum dots,” Appl. Phys. Lett. 93(12), 123102 (2008).
[CrossRef]

Harley, R. T.

S. Chanyawadee, R. T. Harley, M. Henini, D. V. Talapin, and P. G. Lagoudakis, “Photocurrent Enhancement in Hybrid Nanocrystal Quantum-Dot p-i-n Photovoltaic Devices,” Phys. Rev. Lett. 102(7), 077402 (2009).
[CrossRef] [PubMed]

He, X. W.

J. Li, F. Mei, W. Y. Li, X. W. He, and Y. K. Zhang, “Study on the fluorescence resonance energy transfer between CdTe QDs and butyl-rhodamine B in the presence of CTMAB and its application on the detection of Hg(II),” Spectrochimica Acta Part A 70(4), 811–817 (2008).
[CrossRef]

Henini, M.

S. Chanyawadee, R. T. Harley, M. Henini, D. V. Talapin, and P. G. Lagoudakis, “Photocurrent Enhancement in Hybrid Nanocrystal Quantum-Dot p-i-n Photovoltaic Devices,” Phys. Rev. Lett. 102(7), 077402 (2009).
[CrossRef] [PubMed]

Hoppe, K.

N. Gaponik, D. V. Talapin, A. L. Rogach, K. Hoppe, E. V. Shevchenko, A. Kornowski, A. Eychmüller, and H. Weller, “Thiol-Capping of CdTe nanocrystals: An alternative to organometallic synthetic routes,” J. Phys. Chem. B 106(29), 7177–7185 (2002).
[CrossRef]

Ishikawa, H.

H. Tokudome, Y. Yamada, S. Sonezaki, H. Ishikawa, M. Bekki, K. Kanehira, and M. Miyauchi, “Photoelectrochemical deoxyribonucleic acid sensing on a nanostructured TiO2 electrode,” Appl. Phys. Lett. 87(21), 213901 (2005).
[CrossRef]

Jiang, K. J.

S. L. Li, K. J. Jiang, K. F. Shao, and L. M. Yang, “Novel organic dyes for efficient dye-sensitized solar cells,” Chem. Commun. (Camb.) 26(26), 2792–2794 (2006).
[CrossRef]

Jin, Q.

Q. Chen, Q. Ma, Y. Wan, X. Su, Z. Lin, and Q. Jin, “Studies on fluorescence resonance energy transfer between dyes and water-soluble quantum dots,” J. Biolumin. Chemilumin. 20(4-5), 251–255 (2005).

Jin, Q. H.

X. Y. Wang, Q. Maa, Y. B. Lia, B. Li, X. G. Su, and Q. H. Jin, “Studies on fluorescence resonance energy transfer between dyes and water-soluble quantum dots,” Can. J. Anal. Sci. Spectrosc. 50, 141–146 (2005).

Kanehira, K.

H. Tokudome, Y. Yamada, S. Sonezaki, H. Ishikawa, M. Bekki, K. Kanehira, and M. Miyauchi, “Photoelectrochemical deoxyribonucleic acid sensing on a nanostructured TiO2 electrode,” Appl. Phys. Lett. 87(21), 213901 (2005).
[CrossRef]

Khalid, N. M.

C. Fang, A. Agarwal, K. D. Buddharaju, N. M. Khalid, S. M. Salim, E. Widjaja, M. V. Garland, N. Balasubramanian, and D. L. Kwong, “DNA detection using nanostructured SERS substrates with Rhodamine B as Raman label,” Biosens. Bioelectron. 24(2), 216–221 (2008).
[CrossRef] [PubMed]

Kim, S.

S. Kim and M. G. Bawendi, “Oligomeric Ligands for Luminescent and Stable Nanocrystal Quantum Dots,” J. Am. Chem. Soc. 125(48), 14652–14653 (2003).
[CrossRef] [PubMed]

Kim, S. A.

K. Bacia, S. A. Kim, and P. Schwille, “Fluorescence cross-correlation spectroscopy in living cells,” Nat. Methods 3(2), 83–89 (2006).
[CrossRef] [PubMed]

Klar, T. A.

A. L. Rogach, T. Franzl, T. A. Klar, J. Feldmann, N. Gaponik, V. Lesnyak, A. Shavel, A. Eychmüller, Y. P. Rakovich, and J. F. Donegan, “Aqueous synthesis of thiol-capped CdTe nanocrystals: State-of-the-art,” J. Phys. Chem. C 111(40), 14628–14637 (2007).
[CrossRef]

Komarala, V. K.

V. K. Komarala, A. L. Bradley, Y. P. Rakovich, S. J. Byrne, Y. K. Gun’ko, and A. L. Rogach, “Surface plasmon enhanced Förster resonance energy transfer between the CdTe quantum dots,” Appl. Phys. Lett. 93(12), 123102 (2008).
[CrossRef]

Kornowski, A.

N. Gaponik, D. V. Talapin, A. L. Rogach, K. Hoppe, E. V. Shevchenko, A. Kornowski, A. Eychmüller, and H. Weller, “Thiol-Capping of CdTe nanocrystals: An alternative to organometallic synthetic routes,” J. Phys. Chem. B 106(29), 7177–7185 (2002).
[CrossRef]

Kwong, D. L.

C. Fang, A. Agarwal, K. D. Buddharaju, N. M. Khalid, S. M. Salim, E. Widjaja, M. V. Garland, N. Balasubramanian, and D. L. Kwong, “DNA detection using nanostructured SERS substrates with Rhodamine B as Raman label,” Biosens. Bioelectron. 24(2), 216–221 (2008).
[CrossRef] [PubMed]

Lagoudakis, P. G.

S. Chanyawadee, R. T. Harley, M. Henini, D. V. Talapin, and P. G. Lagoudakis, “Photocurrent Enhancement in Hybrid Nanocrystal Quantum-Dot p-i-n Photovoltaic Devices,” Phys. Rev. Lett. 102(7), 077402 (2009).
[CrossRef] [PubMed]

Lesnyak, V.

M. Grabolle, M. Spieles, V. Lesnyak, N. Gaponik, A. Eychmüller, and U. Resch-Genger, “Determination of the Fluorescence Quantum Yield of Quantum Dots: Suitable Procedures and Achievable Uncertainties,” Anal. Chem. 81(15), 6285–6294 (2009).
[CrossRef]

A. L. Rogach, T. Franzl, T. A. Klar, J. Feldmann, N. Gaponik, V. Lesnyak, A. Shavel, A. Eychmüller, Y. P. Rakovich, and J. F. Donegan, “Aqueous synthesis of thiol-capped CdTe nanocrystals: State-of-the-art,” J. Phys. Chem. C 111(40), 14628–14637 (2007).
[CrossRef]

Li, B.

X. Y. Wang, Q. Maa, Y. B. Lia, B. Li, X. G. Su, and Q. H. Jin, “Studies on fluorescence resonance energy transfer between dyes and water-soluble quantum dots,” Can. J. Anal. Sci. Spectrosc. 50, 141–146 (2005).

Li, J.

J. Li, F. Mei, W. Y. Li, X. W. He, and Y. K. Zhang, “Study on the fluorescence resonance energy transfer between CdTe QDs and butyl-rhodamine B in the presence of CTMAB and its application on the detection of Hg(II),” Spectrochimica Acta Part A 70(4), 811–817 (2008).
[CrossRef]

Li, S. L.

S. L. Li, K. J. Jiang, K. F. Shao, and L. M. Yang, “Novel organic dyes for efficient dye-sensitized solar cells,” Chem. Commun. (Camb.) 26(26), 2792–2794 (2006).
[CrossRef]

Li, W. Y.

J. Li, F. Mei, W. Y. Li, X. W. He, and Y. K. Zhang, “Study on the fluorescence resonance energy transfer between CdTe QDs and butyl-rhodamine B in the presence of CTMAB and its application on the detection of Hg(II),” Spectrochimica Acta Part A 70(4), 811–817 (2008).
[CrossRef]

Li, Y.

Y. Li, Y. T. H. Cu, and D. Luo, “Multiplexed detection of pathogen DNA with DNA- based fluorescence nanobarcodes,” Nat. Biotechnol. 23(7), 885–889 (2005).
[CrossRef] [PubMed]

Lia, Y. B.

X. Y. Wang, Q. Maa, Y. B. Lia, B. Li, X. G. Su, and Q. H. Jin, “Studies on fluorescence resonance energy transfer between dyes and water-soluble quantum dots,” Can. J. Anal. Sci. Spectrosc. 50, 141–146 (2005).

Lin, Z.

Q. Chen, Q. Ma, Y. Wan, X. Su, Z. Lin, and Q. Jin, “Studies on fluorescence resonance energy transfer between dyes and water-soluble quantum dots,” J. Biolumin. Chemilumin. 20(4-5), 251–255 (2005).

Luo, D.

Y. Li, Y. T. H. Cu, and D. Luo, “Multiplexed detection of pathogen DNA with DNA- based fluorescence nanobarcodes,” Nat. Biotechnol. 23(7), 885–889 (2005).
[CrossRef] [PubMed]

Ma, Q.

Q. Chen, Q. Ma, Y. Wan, X. Su, Z. Lin, and Q. Jin, “Studies on fluorescence resonance energy transfer between dyes and water-soluble quantum dots,” J. Biolumin. Chemilumin. 20(4-5), 251–255 (2005).

Maa, Q.

X. Y. Wang, Q. Maa, Y. B. Lia, B. Li, X. G. Su, and Q. H. Jin, “Studies on fluorescence resonance energy transfer between dyes and water-soluble quantum dots,” Can. J. Anal. Sci. Spectrosc. 50, 141–146 (2005).

Mattoussi, H.

T. Pons, I. L. Medintz, M. Sykora, and H. Mattoussi, “Spectrally resolved energy transfer using quantum dot donors: Ensemble and single-molecule photoluminescence studies,” Phys. Rev. B 73(24), 245302 (2006).
[CrossRef]

I. L. Medintz, A. R. Clapp, F. M. Brunel, T. Tiefenbrunn, H. T. Uyeda, E. L. Chang, J. R. Deschamps, P. E. Dawson, and H. Mattoussi, “Proteolytic activity monitored by fluorescence resonance energy transfer through quantum-dot-peptide conjugates,” Nat. Mater. 5(7), 581–589 (2006).
[CrossRef] [PubMed]

A. R. Clapp, I. L. Medintz, and H. Mattoussi, “Förster resonance energy transfer investigations using quantum-dot fluorophores,” Chem. Phys. Chem 7(1), 47–57 (2006).
[CrossRef]

A. R. Clapp, I. L. Medintz, J. M. Mauro, B. R. Fisher, M. G. Bawendi, and H. Mattoussi, “Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors,” J. Am. Chem. Soc. 126(1), 301–310 (2004).
[CrossRef] [PubMed]

Mauro, J. M.

A. R. Clapp, I. L. Medintz, J. M. Mauro, B. R. Fisher, M. G. Bawendi, and H. Mattoussi, “Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors,” J. Am. Chem. Soc. 126(1), 301–310 (2004).
[CrossRef] [PubMed]

Medintz, I. L.

I. L. Medintz, A. R. Clapp, F. M. Brunel, T. Tiefenbrunn, H. T. Uyeda, E. L. Chang, J. R. Deschamps, P. E. Dawson, and H. Mattoussi, “Proteolytic activity monitored by fluorescence resonance energy transfer through quantum-dot-peptide conjugates,” Nat. Mater. 5(7), 581–589 (2006).
[CrossRef] [PubMed]

T. Pons, I. L. Medintz, M. Sykora, and H. Mattoussi, “Spectrally resolved energy transfer using quantum dot donors: Ensemble and single-molecule photoluminescence studies,” Phys. Rev. B 73(24), 245302 (2006).
[CrossRef]

A. R. Clapp, I. L. Medintz, and H. Mattoussi, “Förster resonance energy transfer investigations using quantum-dot fluorophores,” Chem. Phys. Chem 7(1), 47–57 (2006).
[CrossRef]

A. R. Clapp, I. L. Medintz, J. M. Mauro, B. R. Fisher, M. G. Bawendi, and H. Mattoussi, “Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors,” J. Am. Chem. Soc. 126(1), 301–310 (2004).
[CrossRef] [PubMed]

Mei, F.

J. Li, F. Mei, W. Y. Li, X. W. He, and Y. K. Zhang, “Study on the fluorescence resonance energy transfer between CdTe QDs and butyl-rhodamine B in the presence of CTMAB and its application on the detection of Hg(II),” Spectrochimica Acta Part A 70(4), 811–817 (2008).
[CrossRef]

Miyauchi, M.

H. Tokudome, Y. Yamada, S. Sonezaki, H. Ishikawa, M. Bekki, K. Kanehira, and M. Miyauchi, “Photoelectrochemical deoxyribonucleic acid sensing on a nanostructured TiO2 electrode,” Appl. Phys. Lett. 87(21), 213901 (2005).
[CrossRef]

Mottola-Hartshorn, C.

A. Georgi, C. Mottola-Hartshorn, A. N. Warner, B. Fields, and L. B. Chen, “Detection of individual fluorescently labeled reovirions in living cells,” Proc. Natl. Acad. Sci. U.S.A. 87(17), 6579–6583 (1990).
[CrossRef] [PubMed]

Mutlugün, E.

E. Mutlugün, S. Nizamoglu, and H. V. Demir, “Highly efficient nonradiative energy transfer using charged CdSe/ZnS nanocrystals for light-harvesting in solution,” Appl. Phys. Lett. 95(3), 033106 (2009).
[CrossRef]

Nizamoglu, S.

E. Mutlugün, S. Nizamoglu, and H. V. Demir, “Highly efficient nonradiative energy transfer using charged CdSe/ZnS nanocrystals for light-harvesting in solution,” Appl. Phys. Lett. 95(3), 033106 (2009).
[CrossRef]

O’Reagen, B.

B. O’Reagen and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature 353(6346), 737–740 (1991).
[CrossRef]

Patra, A.

S. Sadhu and A. Patra, “Composition effects on quantum dot-based resonance energy transfer,” Appl. Phys. Lett. 93(18), 183104 (2008).
[CrossRef]

P. S. Chowdhury, P. Sen, and A. Patra, “Optical properties of CdS nanoparticles and the energy transfer from CdS nanoparticles to Rhodamine 6G,” Chem. Phys. Lett. 413(4-6), 311–314 (2005).
[CrossRef]

Pons, T.

T. Pons, I. L. Medintz, M. Sykora, and H. Mattoussi, “Spectrally resolved energy transfer using quantum dot donors: Ensemble and single-molecule photoluminescence studies,” Phys. Rev. B 73(24), 245302 (2006).
[CrossRef]

Rakovich, Y.

E. Alphandery, L. M. Walsh, Y. Rakovich, A. L. Bradley, J. F. Donegan, and N. Gaponik, “Highly efficient Förster resonance energy transfer between CdTe nanocrystals and Rhodamine B in mixed solid films,” Chem. Phys. Lett. 388(1-3), 100–104 (2004).
[CrossRef]

Rakovich, Y. P.

V. K. Komarala, A. L. Bradley, Y. P. Rakovich, S. J. Byrne, Y. K. Gun’ko, and A. L. Rogach, “Surface plasmon enhanced Förster resonance energy transfer between the CdTe quantum dots,” Appl. Phys. Lett. 93(12), 123102 (2008).
[CrossRef]

A. L. Rogach, T. Franzl, T. A. Klar, J. Feldmann, N. Gaponik, V. Lesnyak, A. Shavel, A. Eychmüller, Y. P. Rakovich, and J. F. Donegan, “Aqueous synthesis of thiol-capped CdTe nanocrystals: State-of-the-art,” J. Phys. Chem. C 111(40), 14628–14637 (2007).
[CrossRef]

Resch-Genger, U.

M. Grabolle, M. Spieles, V. Lesnyak, N. Gaponik, A. Eychmüller, and U. Resch-Genger, “Determination of the Fluorescence Quantum Yield of Quantum Dots: Suitable Procedures and Achievable Uncertainties,” Anal. Chem. 81(15), 6285–6294 (2009).
[CrossRef]

Rogach, A. L.

V. K. Komarala, A. L. Bradley, Y. P. Rakovich, S. J. Byrne, Y. K. Gun’ko, and A. L. Rogach, “Surface plasmon enhanced Förster resonance energy transfer between the CdTe quantum dots,” Appl. Phys. Lett. 93(12), 123102 (2008).
[CrossRef]

A. L. Rogach, T. Franzl, T. A. Klar, J. Feldmann, N. Gaponik, V. Lesnyak, A. Shavel, A. Eychmüller, Y. P. Rakovich, and J. F. Donegan, “Aqueous synthesis of thiol-capped CdTe nanocrystals: State-of-the-art,” J. Phys. Chem. C 111(40), 14628–14637 (2007).
[CrossRef]

N. Gaponik, D. V. Talapin, A. L. Rogach, K. Hoppe, E. V. Shevchenko, A. Kornowski, A. Eychmüller, and H. Weller, “Thiol-Capping of CdTe nanocrystals: An alternative to organometallic synthetic routes,” J. Phys. Chem. B 106(29), 7177–7185 (2002).
[CrossRef]

Sadhu, S.

S. Sadhu and A. Patra, “Composition effects on quantum dot-based resonance energy transfer,” Appl. Phys. Lett. 93(18), 183104 (2008).
[CrossRef]

Salim, S. M.

C. Fang, A. Agarwal, K. D. Buddharaju, N. M. Khalid, S. M. Salim, E. Widjaja, M. V. Garland, N. Balasubramanian, and D. L. Kwong, “DNA detection using nanostructured SERS substrates with Rhodamine B as Raman label,” Biosens. Bioelectron. 24(2), 216–221 (2008).
[CrossRef] [PubMed]

Schwille, P.

K. Bacia, S. A. Kim, and P. Schwille, “Fluorescence cross-correlation spectroscopy in living cells,” Nat. Methods 3(2), 83–89 (2006).
[CrossRef] [PubMed]

Sen, P.

P. S. Chowdhury, P. Sen, and A. Patra, “Optical properties of CdS nanoparticles and the energy transfer from CdS nanoparticles to Rhodamine 6G,” Chem. Phys. Lett. 413(4-6), 311–314 (2005).
[CrossRef]

Shao, K. F.

S. L. Li, K. J. Jiang, K. F. Shao, and L. M. Yang, “Novel organic dyes for efficient dye-sensitized solar cells,” Chem. Commun. (Camb.) 26(26), 2792–2794 (2006).
[CrossRef]

Shavel, A.

A. L. Rogach, T. Franzl, T. A. Klar, J. Feldmann, N. Gaponik, V. Lesnyak, A. Shavel, A. Eychmüller, Y. P. Rakovich, and J. F. Donegan, “Aqueous synthesis of thiol-capped CdTe nanocrystals: State-of-the-art,” J. Phys. Chem. C 111(40), 14628–14637 (2007).
[CrossRef]

Shevchenko, E. V.

N. Gaponik, D. V. Talapin, A. L. Rogach, K. Hoppe, E. V. Shevchenko, A. Kornowski, A. Eychmüller, and H. Weller, “Thiol-Capping of CdTe nanocrystals: An alternative to organometallic synthetic routes,” J. Phys. Chem. B 106(29), 7177–7185 (2002).
[CrossRef]

Sonezaki, S.

H. Tokudome, Y. Yamada, S. Sonezaki, H. Ishikawa, M. Bekki, K. Kanehira, and M. Miyauchi, “Photoelectrochemical deoxyribonucleic acid sensing on a nanostructured TiO2 electrode,” Appl. Phys. Lett. 87(21), 213901 (2005).
[CrossRef]

Spieles, M.

M. Grabolle, M. Spieles, V. Lesnyak, N. Gaponik, A. Eychmüller, and U. Resch-Genger, “Determination of the Fluorescence Quantum Yield of Quantum Dots: Suitable Procedures and Achievable Uncertainties,” Anal. Chem. 81(15), 6285–6294 (2009).
[CrossRef]

Su, X.

Q. Chen, Q. Ma, Y. Wan, X. Su, Z. Lin, and Q. Jin, “Studies on fluorescence resonance energy transfer between dyes and water-soluble quantum dots,” J. Biolumin. Chemilumin. 20(4-5), 251–255 (2005).

Su, X. G.

X. Y. Wang, Q. Maa, Y. B. Lia, B. Li, X. G. Su, and Q. H. Jin, “Studies on fluorescence resonance energy transfer between dyes and water-soluble quantum dots,” Can. J. Anal. Sci. Spectrosc. 50, 141–146 (2005).

Sykora, M.

T. Pons, I. L. Medintz, M. Sykora, and H. Mattoussi, “Spectrally resolved energy transfer using quantum dot donors: Ensemble and single-molecule photoluminescence studies,” Phys. Rev. B 73(24), 245302 (2006).
[CrossRef]

Talapin, D. V.

S. Chanyawadee, R. T. Harley, M. Henini, D. V. Talapin, and P. G. Lagoudakis, “Photocurrent Enhancement in Hybrid Nanocrystal Quantum-Dot p-i-n Photovoltaic Devices,” Phys. Rev. Lett. 102(7), 077402 (2009).
[CrossRef] [PubMed]

N. Gaponik, D. V. Talapin, A. L. Rogach, K. Hoppe, E. V. Shevchenko, A. Kornowski, A. Eychmüller, and H. Weller, “Thiol-Capping of CdTe nanocrystals: An alternative to organometallic synthetic routes,” J. Phys. Chem. B 106(29), 7177–7185 (2002).
[CrossRef]

Tiefenbrunn, T.

I. L. Medintz, A. R. Clapp, F. M. Brunel, T. Tiefenbrunn, H. T. Uyeda, E. L. Chang, J. R. Deschamps, P. E. Dawson, and H. Mattoussi, “Proteolytic activity monitored by fluorescence resonance energy transfer through quantum-dot-peptide conjugates,” Nat. Mater. 5(7), 581–589 (2006).
[CrossRef] [PubMed]

Tokudome, H.

H. Tokudome, Y. Yamada, S. Sonezaki, H. Ishikawa, M. Bekki, K. Kanehira, and M. Miyauchi, “Photoelectrochemical deoxyribonucleic acid sensing on a nanostructured TiO2 electrode,” Appl. Phys. Lett. 87(21), 213901 (2005).
[CrossRef]

Uyeda, H. T.

I. L. Medintz, A. R. Clapp, F. M. Brunel, T. Tiefenbrunn, H. T. Uyeda, E. L. Chang, J. R. Deschamps, P. E. Dawson, and H. Mattoussi, “Proteolytic activity monitored by fluorescence resonance energy transfer through quantum-dot-peptide conjugates,” Nat. Mater. 5(7), 581–589 (2006).
[CrossRef] [PubMed]

Van Orden, A.

D. M. Willard and A. Van Orden, “Quantum dots: Resonant energy-transfer sensor,” Nat. Mater. 2(9), 575–576 (2003).
[CrossRef] [PubMed]

Walsh, L. M.

E. Alphandery, L. M. Walsh, Y. Rakovich, A. L. Bradley, J. F. Donegan, and N. Gaponik, “Highly efficient Förster resonance energy transfer between CdTe nanocrystals and Rhodamine B in mixed solid films,” Chem. Phys. Lett. 388(1-3), 100–104 (2004).
[CrossRef]

Wan, Y.

Q. Chen, Q. Ma, Y. Wan, X. Su, Z. Lin, and Q. Jin, “Studies on fluorescence resonance energy transfer between dyes and water-soluble quantum dots,” J. Biolumin. Chemilumin. 20(4-5), 251–255 (2005).

Wang, X. Y.

X. Y. Wang, Q. Maa, Y. B. Lia, B. Li, X. G. Su, and Q. H. Jin, “Studies on fluorescence resonance energy transfer between dyes and water-soluble quantum dots,” Can. J. Anal. Sci. Spectrosc. 50, 141–146 (2005).

Warner, A. N.

A. Georgi, C. Mottola-Hartshorn, A. N. Warner, B. Fields, and L. B. Chen, “Detection of individual fluorescently labeled reovirions in living cells,” Proc. Natl. Acad. Sci. U.S.A. 87(17), 6579–6583 (1990).
[CrossRef] [PubMed]

Weller, H.

N. Gaponik, D. V. Talapin, A. L. Rogach, K. Hoppe, E. V. Shevchenko, A. Kornowski, A. Eychmüller, and H. Weller, “Thiol-Capping of CdTe nanocrystals: An alternative to organometallic synthetic routes,” J. Phys. Chem. B 106(29), 7177–7185 (2002).
[CrossRef]

Widjaja, E.

C. Fang, A. Agarwal, K. D. Buddharaju, N. M. Khalid, S. M. Salim, E. Widjaja, M. V. Garland, N. Balasubramanian, and D. L. Kwong, “DNA detection using nanostructured SERS substrates with Rhodamine B as Raman label,” Biosens. Bioelectron. 24(2), 216–221 (2008).
[CrossRef] [PubMed]

Willard, D. M.

D. M. Willard and A. Van Orden, “Quantum dots: Resonant energy-transfer sensor,” Nat. Mater. 2(9), 575–576 (2003).
[CrossRef] [PubMed]

Yamada, Y.

H. Tokudome, Y. Yamada, S. Sonezaki, H. Ishikawa, M. Bekki, K. Kanehira, and M. Miyauchi, “Photoelectrochemical deoxyribonucleic acid sensing on a nanostructured TiO2 electrode,” Appl. Phys. Lett. 87(21), 213901 (2005).
[CrossRef]

Yang, L. M.

S. L. Li, K. J. Jiang, K. F. Shao, and L. M. Yang, “Novel organic dyes for efficient dye-sensitized solar cells,” Chem. Commun. (Camb.) 26(26), 2792–2794 (2006).
[CrossRef]

Yu, W. W.

W. W. Yu, E. Chang, R. Drezek, and V. L. Colvin, “Water-soluble quantum dots for biomedical applications,” Biochem. Biophys. Res. Commun. 348(3), 781–786 (2006).
[CrossRef] [PubMed]

Zhang, Y. K.

J. Li, F. Mei, W. Y. Li, X. W. He, and Y. K. Zhang, “Study on the fluorescence resonance energy transfer between CdTe QDs and butyl-rhodamine B in the presence of CTMAB and its application on the detection of Hg(II),” Spectrochimica Acta Part A 70(4), 811–817 (2008).
[CrossRef]

Anal. Chem.

M. Grabolle, M. Spieles, V. Lesnyak, N. Gaponik, A. Eychmüller, and U. Resch-Genger, “Determination of the Fluorescence Quantum Yield of Quantum Dots: Suitable Procedures and Achievable Uncertainties,” Anal. Chem. 81(15), 6285–6294 (2009).
[CrossRef]

Ann. Phys.

T. Förster, “Zwischenmolekulare Energiewanderung und Fluoreszenz,” Ann. Phys. 437(1-2), 55–75 (1948).
[CrossRef]

Appl. Phys. Lett.

S. Sadhu and A. Patra, “Composition effects on quantum dot-based resonance energy transfer,” Appl. Phys. Lett. 93(18), 183104 (2008).
[CrossRef]

H. Tokudome, Y. Yamada, S. Sonezaki, H. Ishikawa, M. Bekki, K. Kanehira, and M. Miyauchi, “Photoelectrochemical deoxyribonucleic acid sensing on a nanostructured TiO2 electrode,” Appl. Phys. Lett. 87(21), 213901 (2005).
[CrossRef]

E. Mutlugün, S. Nizamoglu, and H. V. Demir, “Highly efficient nonradiative energy transfer using charged CdSe/ZnS nanocrystals for light-harvesting in solution,” Appl. Phys. Lett. 95(3), 033106 (2009).
[CrossRef]

V. K. Komarala, A. L. Bradley, Y. P. Rakovich, S. J. Byrne, Y. K. Gun’ko, and A. L. Rogach, “Surface plasmon enhanced Förster resonance energy transfer between the CdTe quantum dots,” Appl. Phys. Lett. 93(12), 123102 (2008).
[CrossRef]

Biochem. Biophys. Res. Commun.

W. W. Yu, E. Chang, R. Drezek, and V. L. Colvin, “Water-soluble quantum dots for biomedical applications,” Biochem. Biophys. Res. Commun. 348(3), 781–786 (2006).
[CrossRef] [PubMed]

Biosens. Bioelectron.

C. Fang, A. Agarwal, K. D. Buddharaju, N. M. Khalid, S. M. Salim, E. Widjaja, M. V. Garland, N. Balasubramanian, and D. L. Kwong, “DNA detection using nanostructured SERS substrates with Rhodamine B as Raman label,” Biosens. Bioelectron. 24(2), 216–221 (2008).
[CrossRef] [PubMed]

Can. J. Anal. Sci. Spectrosc.

X. Y. Wang, Q. Maa, Y. B. Lia, B. Li, X. G. Su, and Q. H. Jin, “Studies on fluorescence resonance energy transfer between dyes and water-soluble quantum dots,” Can. J. Anal. Sci. Spectrosc. 50, 141–146 (2005).

Chem. Commun. (Camb.)

S. L. Li, K. J. Jiang, K. F. Shao, and L. M. Yang, “Novel organic dyes for efficient dye-sensitized solar cells,” Chem. Commun. (Camb.) 26(26), 2792–2794 (2006).
[CrossRef]

Chem. Phys. Chem

A. R. Clapp, I. L. Medintz, and H. Mattoussi, “Förster resonance energy transfer investigations using quantum-dot fluorophores,” Chem. Phys. Chem 7(1), 47–57 (2006).
[CrossRef]

Chem. Phys. Lett.

E. Alphandery, L. M. Walsh, Y. Rakovich, A. L. Bradley, J. F. Donegan, and N. Gaponik, “Highly efficient Förster resonance energy transfer between CdTe nanocrystals and Rhodamine B in mixed solid films,” Chem. Phys. Lett. 388(1-3), 100–104 (2004).
[CrossRef]

P. S. Chowdhury, P. Sen, and A. Patra, “Optical properties of CdS nanoparticles and the energy transfer from CdS nanoparticles to Rhodamine 6G,” Chem. Phys. Lett. 413(4-6), 311–314 (2005).
[CrossRef]

J. Am. Chem. Soc.

A. R. Clapp, I. L. Medintz, J. M. Mauro, B. R. Fisher, M. G. Bawendi, and H. Mattoussi, “Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors,” J. Am. Chem. Soc. 126(1), 301–310 (2004).
[CrossRef] [PubMed]

S. Kim and M. G. Bawendi, “Oligomeric Ligands for Luminescent and Stable Nanocrystal Quantum Dots,” J. Am. Chem. Soc. 125(48), 14652–14653 (2003).
[CrossRef] [PubMed]

J. Biolumin. Chemilumin.

Q. Chen, Q. Ma, Y. Wan, X. Su, Z. Lin, and Q. Jin, “Studies on fluorescence resonance energy transfer between dyes and water-soluble quantum dots,” J. Biolumin. Chemilumin. 20(4-5), 251–255 (2005).

J. Phys. Chem. B

N. Gaponik, D. V. Talapin, A. L. Rogach, K. Hoppe, E. V. Shevchenko, A. Kornowski, A. Eychmüller, and H. Weller, “Thiol-Capping of CdTe nanocrystals: An alternative to organometallic synthetic routes,” J. Phys. Chem. B 106(29), 7177–7185 (2002).
[CrossRef]

J. Phys. Chem. C

A. L. Rogach, T. Franzl, T. A. Klar, J. Feldmann, N. Gaponik, V. Lesnyak, A. Shavel, A. Eychmüller, Y. P. Rakovich, and J. F. Donegan, “Aqueous synthesis of thiol-capped CdTe nanocrystals: State-of-the-art,” J. Phys. Chem. C 111(40), 14628–14637 (2007).
[CrossRef]

Nat. Biotechnol.

Y. Li, Y. T. H. Cu, and D. Luo, “Multiplexed detection of pathogen DNA with DNA- based fluorescence nanobarcodes,” Nat. Biotechnol. 23(7), 885–889 (2005).
[CrossRef] [PubMed]

Nat. Mater.

D. M. Willard and A. Van Orden, “Quantum dots: Resonant energy-transfer sensor,” Nat. Mater. 2(9), 575–576 (2003).
[CrossRef] [PubMed]

I. L. Medintz, A. R. Clapp, F. M. Brunel, T. Tiefenbrunn, H. T. Uyeda, E. L. Chang, J. R. Deschamps, P. E. Dawson, and H. Mattoussi, “Proteolytic activity monitored by fluorescence resonance energy transfer through quantum-dot-peptide conjugates,” Nat. Mater. 5(7), 581–589 (2006).
[CrossRef] [PubMed]

Nat. Methods

K. Bacia, S. A. Kim, and P. Schwille, “Fluorescence cross-correlation spectroscopy in living cells,” Nat. Methods 3(2), 83–89 (2006).
[CrossRef] [PubMed]

Nature

B. O’Reagen and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature 353(6346), 737–740 (1991).
[CrossRef]

Phys. Rev. B

T. Pons, I. L. Medintz, M. Sykora, and H. Mattoussi, “Spectrally resolved energy transfer using quantum dot donors: Ensemble and single-molecule photoluminescence studies,” Phys. Rev. B 73(24), 245302 (2006).
[CrossRef]

Phys. Rev. Lett.

S. Chanyawadee, R. T. Harley, M. Henini, D. V. Talapin, and P. G. Lagoudakis, “Photocurrent Enhancement in Hybrid Nanocrystal Quantum-Dot p-i-n Photovoltaic Devices,” Phys. Rev. Lett. 102(7), 077402 (2009).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A.

A. Georgi, C. Mottola-Hartshorn, A. N. Warner, B. Fields, and L. B. Chen, “Detection of individual fluorescently labeled reovirions in living cells,” Proc. Natl. Acad. Sci. U.S.A. 87(17), 6579–6583 (1990).
[CrossRef] [PubMed]

Spectrochimica Acta Part A

J. Li, F. Mei, W. Y. Li, X. W. He, and Y. K. Zhang, “Study on the fluorescence resonance energy transfer between CdTe QDs and butyl-rhodamine B in the presence of CTMAB and its application on the detection of Hg(II),” Spectrochimica Acta Part A 70(4), 811–817 (2008).
[CrossRef]

Other

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (New York: Springer,2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Absorbance spectra of the two differently sized aqueous CdTe nanocrystal quantum dots (emitting at 552 and 525 nm) together with that of the Rhodamine B dye molecules. (b) Normalized photoluminescence spectra of our aqueous CdTe quantum dots (donors) selectively chosen to emit at the peak wavelengths of 525 nm and 552 nm, along with the emission and absorption spectra of the Rhodamine B molecules (acceptors). The donors emitting at 552 nm provide a better spectral match to the electronic structure of these acceptors.

Fig. 2
Fig. 2

SSPL spectra taken by adding controlled amounts of dye acceptors into the aqueous donor solution using CdTe quantum dots emitting at the peak wavelength of (a) 552 nm and (b) 525 nm. The legends show the corresponding A/D concentration ratios (A/D = 1.8–152.8). (Note that these PL intensity levels are measured using the same arbitrary units and that they are presented using the scales as indicated on their plots, for clear visibility.)

Fig. 3
Fig. 3

TRPL measurements of donor molecules taken by adding controlled amounts of dye acceptors into the aqueous donor solution, using CdTe quantum dots emitting at the peak wavelength of (a) 552 nm and (b) 525 nm, all shown together with their corresponding numerical fits, and along with a comparative analysis of the donor photoluminescence decay lifetimes both for 552 and 525 nm emitting dots as a function of A/D concentration ratio (c). In the last plot, the red (black) dotted baseline represents the lifetime of only donors of 552 nm (525 nm) emitting dots, without any acceptors in the mixture.

Fig. 4
Fig. 4

TRPL measurements of acceptor molecules while varying the A/D concentration ratio, shown along with their numerical fits using (a) 552 nm and (b) 525 nm emitting quantum dots and comparative analysis of the acceptor photoluminescence decay lifetimes for emission (c) at 581 nm (acceptor peak with a weak donor tail) and (d) at 605 nm (strong acceptor tail with no donor tail as a function of A/D concentration ratios. In both plots, the dashed baseline represents the lifetime of only acceptors without any donors.

Fig. 5
Fig. 5

Comparison of (a) FRET efficiencies and (b) enhancement of the acceptor emission, using 552 nm and 525 nm emitting CdTe quantum dot donors, as a function of the A/D concentration ratio.

Tables (7)

Tables Icon

Table 1 TRPL measurement analysis (at 525 nm) of the 525 nm emitting donors varying the A/D concentration ratio.

Tables Icon

Table 2 TRPL measurement analysis (at 581 nm) of the 525 nm emitting donors varying the A/D concentration ratio.

Tables Icon

Table 3 TRPL measurement analysis (at 605 nm) of the 525 nm emitting donors varying the A/D concentration ratio.

Tables Icon

Table 4 TRPL measurement analysis (at 552 nm) of the 552 nm emitting donors varying the A/D concentration ratio.

Tables Icon

Table 5 TRPL measurement analysis (at 581 nm) of the 552 nm emitting donors varying the A/D concentration ratio.

Tables Icon

Table 6 TRPL measurement analysis (at 605 nm) of the 552 nm emitting donors varying the A/D concentration ratio

Tables Icon

Table 7 TRPL measurement analysis (at 581 and 605 nm) of the 581 nm emitting acceptors varying the A/D concentration ratio.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

R0=0.211(κ2n4QDJ(λ))1/6
τint=iAiτi2/iAiτi
τamp=iAiτi/iAi
ηFRET=1τDAτD.

Metrics