Abstract

A major challenge in optics is how to deliver and concentrate light from the micron-scale into the nano-scale. Light can not be guided, by conventional mechanisms, with optical beam sizes significantly smaller than its wavelength due to the diffraction limit. On the other hand, focusing of light into very small volumes beyond the diffraction limit can be achieved by exploiting the wavelength scalability of surface plasmon polaritons. By slowing down an optical wave and shrinking its wavelength during its propagation, optical energy can be compressed and concentrated down to nanometer scale, namely, nanofocusing. Here, we experimentally demonstrate and quantitatively measure the nanofocusing of surface plasmon polaritons in tapered metallic V-grooves down to the deep sub-wavelength scale - ~λ/40 at wavelength of 1.5 micron - with almost 50% power efficiency.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2, 229-232 (2003).
    [CrossRef] [PubMed]
  2. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, "Guiding of a one-dimensional optical beam with nanometer diameter," Opt. Lett. 22, 475-477 (1997).
    [CrossRef] [PubMed]
  3. D. K. Gramotnev, "Adiabatic nanofocusing of plasmons by sharp metallic grooves: geometrical optics approach," J. Appl. Phys. 98, 104302 (2005).
    [CrossRef]
  4. D. F. P. Pile and D. K. Gramotnev, "Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides," Appl. Phys. Lett. 89, 041111 (2006).
    [CrossRef]
  5. D. K. Gramotnev, D. F. P. Pile, M. W. Vogel, and X. Zhang, "Local electric field enhancement during nano-focusing of plasmon by a tapered gap," Phys. Rev. B 75, 035431 (2007).
    [CrossRef]
  6. J. Takahara and F. Kusunoki, "Guiding and nanofocusing of two-dimensional optical beam for nanooptical integrated circuits," IEICE Trans. Electron.E 90-C, 87-94 (2007).
    [CrossRef]
  7. P. Ginzburg, D. Arbel, and M. Orenstein, "Gap plasmon polariton structure for very efficient microscale-to-nanoscale interfacing," Opt. Lett. 31, 3288-3290 (2006).
    [CrossRef] [PubMed]
  8. K. Kurihara, K. Yamamoto, J. Takahara, and A. Otomo, "Superfocusing modes of surface plasmon polaritons in a wedge-shaped geometry obtained by qausi-separation of variables" J. Physics.A: Math. Theor. 41195401 (2008).
  9. K. V. Nerkararyan, "Superfocusing on a surface polariton in a wedge-like structure," Phys. Lett. A 237, 103-105 (1997).
    [CrossRef]
  10. E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Mart?n-Moreno, and F. J. Garc?a-Vidal, "Guiding and focusing of electromagnetic fields with wedge plasmon polaritons," Phys. Rev. Lett. 100, 023901 (2008).
    [CrossRef] [PubMed]
  11. K. C. Vernon, D. K. Gramotnev, and D. F. P. Pile, "Adiabatic nanofocusing of plasmons by a sharp metal wedge on a dielectric substrate," J. Appl. Phys. 101, 104312 (2007).
    [CrossRef]
  12. A. J. Babadjanyan, N. L. Margaryan, and K. V. Nerkararyan, "Superfocusing of surface polaritons in the conical structure," J. Appl. Phys. 87, 3785-3788 (2000).
    [CrossRef]
  13. M. I. Stockman, "Nanofocusing of optical energy in tapered plasmonic waveguides," Phys. Rev. Lett. 93, 137404 (2004).
    [CrossRef] [PubMed]
  14. N. A. Issa, and R. Guckenberger, "Optical nanofocusing on tapered metallic waveguides," Plasmonics 2, 31-37 (2007).
    [CrossRef]
  15. N. A. Janunts, K. S. Baghdasaryan, K. V. Nerkararyan, and B. Hecht, "Excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip," Opt. Comm. 253, 118-124 (2005).
    [CrossRef]
  16. W. Ding, S. R. Andrews, and S. A. Maier, "Internal excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip," Phys. Rev. A 75, 063822 (2007).
    [CrossRef]
  17. E. Verhagen, A. Polman, and L. Kuipers, "Nanofocusing in laterally taperd plasmonic waveguides," Opt. Express 16, 45-57 (2008).
    [CrossRef] [PubMed]
  18. V. S. Volkov, S. I. Bozhevnolnyi, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, "Nanofocusing with channel plasmon polaritons", Nano Lett. 9, 1278-1282 (2009).
    [CrossRef] [PubMed]
  19. T. Yatsui, W. Nomura, and M. Ohtsu, "Metallized slit-shaped pyramidal Si probe with extremely high resolution for 1.5-Tbit/in2 density near-field optical storage", J. Nanophoton. 1, 011550 (2007).
    [CrossRef]
  20. Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, "Focusing surface plasmons with a plasmonic lens," Nano Lett. 5, 726-729 (2005).
    [CrossRef]
  21. Z. Liu, J. M. Steele, H. Lee, and X. Zhang, "Tuning the focus of a plasmonic lens by the incident angle," Appl. Phys. Lett. 88, 171108 (2006).
    [CrossRef]
  22. J. M. Steele, Z. Liu, Y. Wang, and X. Zhang, "Resonant and non-resonant generation and focusing of surface plasmons with circular gratings," Opt. Express 14, 5664-5670 (2006).
    [CrossRef] [PubMed]
  23. W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, "Flying plasmonic lens in the near field for high-speed nanolithography," Nat. Nanotechnol. 3, 733-737 (2008).
    [CrossRef] [PubMed]
  24. Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, "Far-field optical superlens," Nano Lett. 7, 403-408 (2007).
    [CrossRef] [PubMed]
  25. Y. Xiong, Z. Liu, C. Sun, and X. Zhang, "Two-dimensional imaging by far-field superlens at visible wavelengths," Nano Lett. 7, 3360-3365 (2007).
    [CrossRef] [PubMed]
  26. K. H. Su, Q. H. Wei, and X. Zhang, "Tunable and augmented plasmon resonances of Au/SiO2/Au nanodisks," Appl. Phys. Lett. 88, 063118 (2006).
    [CrossRef]
  27. Y. Liu, G. Bartal, D. A. Genov, and X. Zhang, "Subwavelength discrete solitons in nonlinear metamaterials," Phys. Rev. Lett. 99, 153901 (2007).
    [CrossRef] [PubMed]
  28. R. Oulton, V. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, "A hybrid plasmonic waveguide for subwavelength confinement and long range propagation," Nat. Photon. 2, 496-500 (2008).
    [CrossRef]
  29. S. Han, Y. Xiong, D. Genov, Z. Liu, G. Bartal, and X. Zhang, "Ray optics at a deep-subwavelength scale: a transformation optics approach," Nano Lett. 8, 4243-4247 (2008).
    [CrossRef]

2009 (1)

V. S. Volkov, S. I. Bozhevnolnyi, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, "Nanofocusing with channel plasmon polaritons", Nano Lett. 9, 1278-1282 (2009).
[CrossRef] [PubMed]

2008 (6)

R. Oulton, V. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, "A hybrid plasmonic waveguide for subwavelength confinement and long range propagation," Nat. Photon. 2, 496-500 (2008).
[CrossRef]

S. Han, Y. Xiong, D. Genov, Z. Liu, G. Bartal, and X. Zhang, "Ray optics at a deep-subwavelength scale: a transformation optics approach," Nano Lett. 8, 4243-4247 (2008).
[CrossRef]

E. Verhagen, A. Polman, and L. Kuipers, "Nanofocusing in laterally taperd plasmonic waveguides," Opt. Express 16, 45-57 (2008).
[CrossRef] [PubMed]

K. Kurihara, K. Yamamoto, J. Takahara, and A. Otomo, "Superfocusing modes of surface plasmon polaritons in a wedge-shaped geometry obtained by qausi-separation of variables" J. Physics.A: Math. Theor. 41195401 (2008).

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Mart?n-Moreno, and F. J. Garc?a-Vidal, "Guiding and focusing of electromagnetic fields with wedge plasmon polaritons," Phys. Rev. Lett. 100, 023901 (2008).
[CrossRef] [PubMed]

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, "Flying plasmonic lens in the near field for high-speed nanolithography," Nat. Nanotechnol. 3, 733-737 (2008).
[CrossRef] [PubMed]

2007 (9)

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, "Far-field optical superlens," Nano Lett. 7, 403-408 (2007).
[CrossRef] [PubMed]

Y. Xiong, Z. Liu, C. Sun, and X. Zhang, "Two-dimensional imaging by far-field superlens at visible wavelengths," Nano Lett. 7, 3360-3365 (2007).
[CrossRef] [PubMed]

D. K. Gramotnev, D. F. P. Pile, M. W. Vogel, and X. Zhang, "Local electric field enhancement during nano-focusing of plasmon by a tapered gap," Phys. Rev. B 75, 035431 (2007).
[CrossRef]

J. Takahara and F. Kusunoki, "Guiding and nanofocusing of two-dimensional optical beam for nanooptical integrated circuits," IEICE Trans. Electron.E 90-C, 87-94 (2007).
[CrossRef]

K. C. Vernon, D. K. Gramotnev, and D. F. P. Pile, "Adiabatic nanofocusing of plasmons by a sharp metal wedge on a dielectric substrate," J. Appl. Phys. 101, 104312 (2007).
[CrossRef]

N. A. Issa, and R. Guckenberger, "Optical nanofocusing on tapered metallic waveguides," Plasmonics 2, 31-37 (2007).
[CrossRef]

W. Ding, S. R. Andrews, and S. A. Maier, "Internal excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip," Phys. Rev. A 75, 063822 (2007).
[CrossRef]

T. Yatsui, W. Nomura, and M. Ohtsu, "Metallized slit-shaped pyramidal Si probe with extremely high resolution for 1.5-Tbit/in2 density near-field optical storage", J. Nanophoton. 1, 011550 (2007).
[CrossRef]

Y. Liu, G. Bartal, D. A. Genov, and X. Zhang, "Subwavelength discrete solitons in nonlinear metamaterials," Phys. Rev. Lett. 99, 153901 (2007).
[CrossRef] [PubMed]

2006 (5)

Z. Liu, J. M. Steele, H. Lee, and X. Zhang, "Tuning the focus of a plasmonic lens by the incident angle," Appl. Phys. Lett. 88, 171108 (2006).
[CrossRef]

J. M. Steele, Z. Liu, Y. Wang, and X. Zhang, "Resonant and non-resonant generation and focusing of surface plasmons with circular gratings," Opt. Express 14, 5664-5670 (2006).
[CrossRef] [PubMed]

P. Ginzburg, D. Arbel, and M. Orenstein, "Gap plasmon polariton structure for very efficient microscale-to-nanoscale interfacing," Opt. Lett. 31, 3288-3290 (2006).
[CrossRef] [PubMed]

D. F. P. Pile and D. K. Gramotnev, "Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides," Appl. Phys. Lett. 89, 041111 (2006).
[CrossRef]

K. H. Su, Q. H. Wei, and X. Zhang, "Tunable and augmented plasmon resonances of Au/SiO2/Au nanodisks," Appl. Phys. Lett. 88, 063118 (2006).
[CrossRef]

2005 (3)

D. K. Gramotnev, "Adiabatic nanofocusing of plasmons by sharp metallic grooves: geometrical optics approach," J. Appl. Phys. 98, 104302 (2005).
[CrossRef]

N. A. Janunts, K. S. Baghdasaryan, K. V. Nerkararyan, and B. Hecht, "Excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip," Opt. Comm. 253, 118-124 (2005).
[CrossRef]

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, "Focusing surface plasmons with a plasmonic lens," Nano Lett. 5, 726-729 (2005).
[CrossRef]

2004 (1)

M. I. Stockman, "Nanofocusing of optical energy in tapered plasmonic waveguides," Phys. Rev. Lett. 93, 137404 (2004).
[CrossRef] [PubMed]

2003 (1)

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2, 229-232 (2003).
[CrossRef] [PubMed]

2000 (1)

A. J. Babadjanyan, N. L. Margaryan, and K. V. Nerkararyan, "Superfocusing of surface polaritons in the conical structure," J. Appl. Phys. 87, 3785-3788 (2000).
[CrossRef]

1997 (2)

Andrews, S. R.

W. Ding, S. R. Andrews, and S. A. Maier, "Internal excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip," Phys. Rev. A 75, 063822 (2007).
[CrossRef]

Arbel, D.

Atwater, H. A.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2, 229-232 (2003).
[CrossRef] [PubMed]

Babadjanyan, A. J.

A. J. Babadjanyan, N. L. Margaryan, and K. V. Nerkararyan, "Superfocusing of surface polaritons in the conical structure," J. Appl. Phys. 87, 3785-3788 (2000).
[CrossRef]

Baghdasaryan, K. S.

N. A. Janunts, K. S. Baghdasaryan, K. V. Nerkararyan, and B. Hecht, "Excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip," Opt. Comm. 253, 118-124 (2005).
[CrossRef]

Bartal, G.

S. Han, Y. Xiong, D. Genov, Z. Liu, G. Bartal, and X. Zhang, "Ray optics at a deep-subwavelength scale: a transformation optics approach," Nano Lett. 8, 4243-4247 (2008).
[CrossRef]

Y. Liu, G. Bartal, D. A. Genov, and X. Zhang, "Subwavelength discrete solitons in nonlinear metamaterials," Phys. Rev. Lett. 99, 153901 (2007).
[CrossRef] [PubMed]

Bogy, D. B.

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, "Flying plasmonic lens in the near field for high-speed nanolithography," Nat. Nanotechnol. 3, 733-737 (2008).
[CrossRef] [PubMed]

Bozhevnolnyi, S. I.

V. S. Volkov, S. I. Bozhevnolnyi, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, "Nanofocusing with channel plasmon polaritons", Nano Lett. 9, 1278-1282 (2009).
[CrossRef] [PubMed]

Bozhevolnyi, S. I.

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Mart?n-Moreno, and F. J. Garc?a-Vidal, "Guiding and focusing of electromagnetic fields with wedge plasmon polaritons," Phys. Rev. Lett. 100, 023901 (2008).
[CrossRef] [PubMed]

Devaux, E.

V. S. Volkov, S. I. Bozhevnolnyi, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, "Nanofocusing with channel plasmon polaritons", Nano Lett. 9, 1278-1282 (2009).
[CrossRef] [PubMed]

Ding, W.

W. Ding, S. R. Andrews, and S. A. Maier, "Internal excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip," Phys. Rev. A 75, 063822 (2007).
[CrossRef]

Durant, S.

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, "Far-field optical superlens," Nano Lett. 7, 403-408 (2007).
[CrossRef] [PubMed]

Ebbesen, T. W.

V. S. Volkov, S. I. Bozhevnolnyi, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, "Nanofocusing with channel plasmon polaritons", Nano Lett. 9, 1278-1282 (2009).
[CrossRef] [PubMed]

Fang, N.

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, "Far-field optical superlens," Nano Lett. 7, 403-408 (2007).
[CrossRef] [PubMed]

Garcia-Vidal, F. J.

V. S. Volkov, S. I. Bozhevnolnyi, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, "Nanofocusing with channel plasmon polaritons", Nano Lett. 9, 1278-1282 (2009).
[CrossRef] [PubMed]

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Mart?n-Moreno, and F. J. Garc?a-Vidal, "Guiding and focusing of electromagnetic fields with wedge plasmon polaritons," Phys. Rev. Lett. 100, 023901 (2008).
[CrossRef] [PubMed]

Genov, D.

S. Han, Y. Xiong, D. Genov, Z. Liu, G. Bartal, and X. Zhang, "Ray optics at a deep-subwavelength scale: a transformation optics approach," Nano Lett. 8, 4243-4247 (2008).
[CrossRef]

Genov, D. A.

R. Oulton, V. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, "A hybrid plasmonic waveguide for subwavelength confinement and long range propagation," Nat. Photon. 2, 496-500 (2008).
[CrossRef]

Y. Liu, G. Bartal, D. A. Genov, and X. Zhang, "Subwavelength discrete solitons in nonlinear metamaterials," Phys. Rev. Lett. 99, 153901 (2007).
[CrossRef] [PubMed]

Ginzburg, P.

Gramotnev, D. K.

D. K. Gramotnev, D. F. P. Pile, M. W. Vogel, and X. Zhang, "Local electric field enhancement during nano-focusing of plasmon by a tapered gap," Phys. Rev. B 75, 035431 (2007).
[CrossRef]

K. C. Vernon, D. K. Gramotnev, and D. F. P. Pile, "Adiabatic nanofocusing of plasmons by a sharp metal wedge on a dielectric substrate," J. Appl. Phys. 101, 104312 (2007).
[CrossRef]

D. F. P. Pile and D. K. Gramotnev, "Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides," Appl. Phys. Lett. 89, 041111 (2006).
[CrossRef]

D. K. Gramotnev, "Adiabatic nanofocusing of plasmons by sharp metallic grooves: geometrical optics approach," J. Appl. Phys. 98, 104302 (2005).
[CrossRef]

Guckenberger, R.

N. A. Issa, and R. Guckenberger, "Optical nanofocusing on tapered metallic waveguides," Plasmonics 2, 31-37 (2007).
[CrossRef]

Han, S.

S. Han, Y. Xiong, D. Genov, Z. Liu, G. Bartal, and X. Zhang, "Ray optics at a deep-subwavelength scale: a transformation optics approach," Nano Lett. 8, 4243-4247 (2008).
[CrossRef]

Harel, E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2, 229-232 (2003).
[CrossRef] [PubMed]

Hecht, B.

N. A. Janunts, K. S. Baghdasaryan, K. V. Nerkararyan, and B. Hecht, "Excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip," Opt. Comm. 253, 118-124 (2005).
[CrossRef]

Issa, N. A.

N. A. Issa, and R. Guckenberger, "Optical nanofocusing on tapered metallic waveguides," Plasmonics 2, 31-37 (2007).
[CrossRef]

Janunts, N. A.

N. A. Janunts, K. S. Baghdasaryan, K. V. Nerkararyan, and B. Hecht, "Excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip," Opt. Comm. 253, 118-124 (2005).
[CrossRef]

Kik, P. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2, 229-232 (2003).
[CrossRef] [PubMed]

Kobayashi, T.

Koel, B. E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2, 229-232 (2003).
[CrossRef] [PubMed]

Kuipers, L.

Kurihara, K.

K. Kurihara, K. Yamamoto, J. Takahara, and A. Otomo, "Superfocusing modes of surface plasmon polaritons in a wedge-shaped geometry obtained by qausi-separation of variables" J. Physics.A: Math. Theor. 41195401 (2008).

Kusunoki, F.

J. Takahara and F. Kusunoki, "Guiding and nanofocusing of two-dimensional optical beam for nanooptical integrated circuits," IEICE Trans. Electron.E 90-C, 87-94 (2007).
[CrossRef]

Lee, H.

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, "Far-field optical superlens," Nano Lett. 7, 403-408 (2007).
[CrossRef] [PubMed]

Z. Liu, J. M. Steele, H. Lee, and X. Zhang, "Tuning the focus of a plasmonic lens by the incident angle," Appl. Phys. Lett. 88, 171108 (2006).
[CrossRef]

Liu, Y.

Y. Liu, G. Bartal, D. A. Genov, and X. Zhang, "Subwavelength discrete solitons in nonlinear metamaterials," Phys. Rev. Lett. 99, 153901 (2007).
[CrossRef] [PubMed]

Liu, Z.

S. Han, Y. Xiong, D. Genov, Z. Liu, G. Bartal, and X. Zhang, "Ray optics at a deep-subwavelength scale: a transformation optics approach," Nano Lett. 8, 4243-4247 (2008).
[CrossRef]

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, "Far-field optical superlens," Nano Lett. 7, 403-408 (2007).
[CrossRef] [PubMed]

Y. Xiong, Z. Liu, C. Sun, and X. Zhang, "Two-dimensional imaging by far-field superlens at visible wavelengths," Nano Lett. 7, 3360-3365 (2007).
[CrossRef] [PubMed]

Z. Liu, J. M. Steele, H. Lee, and X. Zhang, "Tuning the focus of a plasmonic lens by the incident angle," Appl. Phys. Lett. 88, 171108 (2006).
[CrossRef]

J. M. Steele, Z. Liu, Y. Wang, and X. Zhang, "Resonant and non-resonant generation and focusing of surface plasmons with circular gratings," Opt. Express 14, 5664-5670 (2006).
[CrossRef] [PubMed]

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, "Focusing surface plasmons with a plasmonic lens," Nano Lett. 5, 726-729 (2005).
[CrossRef]

Maier, S. A.

W. Ding, S. R. Andrews, and S. A. Maier, "Internal excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip," Phys. Rev. A 75, 063822 (2007).
[CrossRef]

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2, 229-232 (2003).
[CrossRef] [PubMed]

Margaryan, N. L.

A. J. Babadjanyan, N. L. Margaryan, and K. V. Nerkararyan, "Superfocusing of surface polaritons in the conical structure," J. Appl. Phys. 87, 3785-3788 (2000).
[CrossRef]

Martin-Moreno, L.

V. S. Volkov, S. I. Bozhevnolnyi, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, "Nanofocusing with channel plasmon polaritons", Nano Lett. 9, 1278-1282 (2009).
[CrossRef] [PubMed]

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Mart?n-Moreno, and F. J. Garc?a-Vidal, "Guiding and focusing of electromagnetic fields with wedge plasmon polaritons," Phys. Rev. Lett. 100, 023901 (2008).
[CrossRef] [PubMed]

Meltzer, S.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2, 229-232 (2003).
[CrossRef] [PubMed]

Moreno, E.

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Mart?n-Moreno, and F. J. Garc?a-Vidal, "Guiding and focusing of electromagnetic fields with wedge plasmon polaritons," Phys. Rev. Lett. 100, 023901 (2008).
[CrossRef] [PubMed]

Morimoto, A.

Nerkararyan, K. V.

N. A. Janunts, K. S. Baghdasaryan, K. V. Nerkararyan, and B. Hecht, "Excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip," Opt. Comm. 253, 118-124 (2005).
[CrossRef]

A. J. Babadjanyan, N. L. Margaryan, and K. V. Nerkararyan, "Superfocusing of surface polaritons in the conical structure," J. Appl. Phys. 87, 3785-3788 (2000).
[CrossRef]

K. V. Nerkararyan, "Superfocusing on a surface polariton in a wedge-like structure," Phys. Lett. A 237, 103-105 (1997).
[CrossRef]

Nomura, W.

T. Yatsui, W. Nomura, and M. Ohtsu, "Metallized slit-shaped pyramidal Si probe with extremely high resolution for 1.5-Tbit/in2 density near-field optical storage", J. Nanophoton. 1, 011550 (2007).
[CrossRef]

Ohtsu, M.

T. Yatsui, W. Nomura, and M. Ohtsu, "Metallized slit-shaped pyramidal Si probe with extremely high resolution for 1.5-Tbit/in2 density near-field optical storage", J. Nanophoton. 1, 011550 (2007).
[CrossRef]

Orenstein, M.

Otomo, A.

K. Kurihara, K. Yamamoto, J. Takahara, and A. Otomo, "Superfocusing modes of surface plasmon polaritons in a wedge-shaped geometry obtained by qausi-separation of variables" J. Physics.A: Math. Theor. 41195401 (2008).

Oulton, R.

R. Oulton, V. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, "A hybrid plasmonic waveguide for subwavelength confinement and long range propagation," Nat. Photon. 2, 496-500 (2008).
[CrossRef]

Pan, L.

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, "Flying plasmonic lens in the near field for high-speed nanolithography," Nat. Nanotechnol. 3, 733-737 (2008).
[CrossRef] [PubMed]

Pikus, Y.

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, "Far-field optical superlens," Nano Lett. 7, 403-408 (2007).
[CrossRef] [PubMed]

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, "Focusing surface plasmons with a plasmonic lens," Nano Lett. 5, 726-729 (2005).
[CrossRef]

Pile, D. F. P.

R. Oulton, V. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, "A hybrid plasmonic waveguide for subwavelength confinement and long range propagation," Nat. Photon. 2, 496-500 (2008).
[CrossRef]

D. K. Gramotnev, D. F. P. Pile, M. W. Vogel, and X. Zhang, "Local electric field enhancement during nano-focusing of plasmon by a tapered gap," Phys. Rev. B 75, 035431 (2007).
[CrossRef]

K. C. Vernon, D. K. Gramotnev, and D. F. P. Pile, "Adiabatic nanofocusing of plasmons by a sharp metal wedge on a dielectric substrate," J. Appl. Phys. 101, 104312 (2007).
[CrossRef]

D. F. P. Pile and D. K. Gramotnev, "Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides," Appl. Phys. Lett. 89, 041111 (2006).
[CrossRef]

Polman, A.

Requicha, A. A. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2, 229-232 (2003).
[CrossRef] [PubMed]

Rodrigo, S. G.

V. S. Volkov, S. I. Bozhevnolnyi, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, "Nanofocusing with channel plasmon polaritons", Nano Lett. 9, 1278-1282 (2009).
[CrossRef] [PubMed]

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Mart?n-Moreno, and F. J. Garc?a-Vidal, "Guiding and focusing of electromagnetic fields with wedge plasmon polaritons," Phys. Rev. Lett. 100, 023901 (2008).
[CrossRef] [PubMed]

Sorger, V.

R. Oulton, V. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, "A hybrid plasmonic waveguide for subwavelength confinement and long range propagation," Nat. Photon. 2, 496-500 (2008).
[CrossRef]

Srituravanich, W.

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, "Flying plasmonic lens in the near field for high-speed nanolithography," Nat. Nanotechnol. 3, 733-737 (2008).
[CrossRef] [PubMed]

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, "Focusing surface plasmons with a plasmonic lens," Nano Lett. 5, 726-729 (2005).
[CrossRef]

Steele, J. M.

J. M. Steele, Z. Liu, Y. Wang, and X. Zhang, "Resonant and non-resonant generation and focusing of surface plasmons with circular gratings," Opt. Express 14, 5664-5670 (2006).
[CrossRef] [PubMed]

Z. Liu, J. M. Steele, H. Lee, and X. Zhang, "Tuning the focus of a plasmonic lens by the incident angle," Appl. Phys. Lett. 88, 171108 (2006).
[CrossRef]

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, "Focusing surface plasmons with a plasmonic lens," Nano Lett. 5, 726-729 (2005).
[CrossRef]

Stockman, M. I.

M. I. Stockman, "Nanofocusing of optical energy in tapered plasmonic waveguides," Phys. Rev. Lett. 93, 137404 (2004).
[CrossRef] [PubMed]

Su, K. H.

K. H. Su, Q. H. Wei, and X. Zhang, "Tunable and augmented plasmon resonances of Au/SiO2/Au nanodisks," Appl. Phys. Lett. 88, 063118 (2006).
[CrossRef]

Sun, C.

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, "Flying plasmonic lens in the near field for high-speed nanolithography," Nat. Nanotechnol. 3, 733-737 (2008).
[CrossRef] [PubMed]

Y. Xiong, Z. Liu, C. Sun, and X. Zhang, "Two-dimensional imaging by far-field superlens at visible wavelengths," Nano Lett. 7, 3360-3365 (2007).
[CrossRef] [PubMed]

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, "Far-field optical superlens," Nano Lett. 7, 403-408 (2007).
[CrossRef] [PubMed]

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, "Focusing surface plasmons with a plasmonic lens," Nano Lett. 5, 726-729 (2005).
[CrossRef]

Takahara, J.

K. Kurihara, K. Yamamoto, J. Takahara, and A. Otomo, "Superfocusing modes of surface plasmon polaritons in a wedge-shaped geometry obtained by qausi-separation of variables" J. Physics.A: Math. Theor. 41195401 (2008).

J. Takahara and F. Kusunoki, "Guiding and nanofocusing of two-dimensional optical beam for nanooptical integrated circuits," IEICE Trans. Electron.E 90-C, 87-94 (2007).
[CrossRef]

J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, "Guiding of a one-dimensional optical beam with nanometer diameter," Opt. Lett. 22, 475-477 (1997).
[CrossRef] [PubMed]

Taki, H.

Verhagen, E.

Vernon, K. C.

K. C. Vernon, D. K. Gramotnev, and D. F. P. Pile, "Adiabatic nanofocusing of plasmons by a sharp metal wedge on a dielectric substrate," J. Appl. Phys. 101, 104312 (2007).
[CrossRef]

Vogel, M. W.

D. K. Gramotnev, D. F. P. Pile, M. W. Vogel, and X. Zhang, "Local electric field enhancement during nano-focusing of plasmon by a tapered gap," Phys. Rev. B 75, 035431 (2007).
[CrossRef]

Volkov, V. S.

V. S. Volkov, S. I. Bozhevnolnyi, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, "Nanofocusing with channel plasmon polaritons", Nano Lett. 9, 1278-1282 (2009).
[CrossRef] [PubMed]

Wang, Y.

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, "Flying plasmonic lens in the near field for high-speed nanolithography," Nat. Nanotechnol. 3, 733-737 (2008).
[CrossRef] [PubMed]

J. M. Steele, Z. Liu, Y. Wang, and X. Zhang, "Resonant and non-resonant generation and focusing of surface plasmons with circular gratings," Opt. Express 14, 5664-5670 (2006).
[CrossRef] [PubMed]

Wei, Q. H.

K. H. Su, Q. H. Wei, and X. Zhang, "Tunable and augmented plasmon resonances of Au/SiO2/Au nanodisks," Appl. Phys. Lett. 88, 063118 (2006).
[CrossRef]

Xiong, Y.

S. Han, Y. Xiong, D. Genov, Z. Liu, G. Bartal, and X. Zhang, "Ray optics at a deep-subwavelength scale: a transformation optics approach," Nano Lett. 8, 4243-4247 (2008).
[CrossRef]

Y. Xiong, Z. Liu, C. Sun, and X. Zhang, "Two-dimensional imaging by far-field superlens at visible wavelengths," Nano Lett. 7, 3360-3365 (2007).
[CrossRef] [PubMed]

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, "Far-field optical superlens," Nano Lett. 7, 403-408 (2007).
[CrossRef] [PubMed]

Yamagishi, S.

Yamamoto, K.

K. Kurihara, K. Yamamoto, J. Takahara, and A. Otomo, "Superfocusing modes of surface plasmon polaritons in a wedge-shaped geometry obtained by qausi-separation of variables" J. Physics.A: Math. Theor. 41195401 (2008).

Yatsui, T.

T. Yatsui, W. Nomura, and M. Ohtsu, "Metallized slit-shaped pyramidal Si probe with extremely high resolution for 1.5-Tbit/in2 density near-field optical storage", J. Nanophoton. 1, 011550 (2007).
[CrossRef]

Zhang, X.

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, "Flying plasmonic lens in the near field for high-speed nanolithography," Nat. Nanotechnol. 3, 733-737 (2008).
[CrossRef] [PubMed]

R. Oulton, V. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, "A hybrid plasmonic waveguide for subwavelength confinement and long range propagation," Nat. Photon. 2, 496-500 (2008).
[CrossRef]

S. Han, Y. Xiong, D. Genov, Z. Liu, G. Bartal, and X. Zhang, "Ray optics at a deep-subwavelength scale: a transformation optics approach," Nano Lett. 8, 4243-4247 (2008).
[CrossRef]

Y. Liu, G. Bartal, D. A. Genov, and X. Zhang, "Subwavelength discrete solitons in nonlinear metamaterials," Phys. Rev. Lett. 99, 153901 (2007).
[CrossRef] [PubMed]

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, "Far-field optical superlens," Nano Lett. 7, 403-408 (2007).
[CrossRef] [PubMed]

Y. Xiong, Z. Liu, C. Sun, and X. Zhang, "Two-dimensional imaging by far-field superlens at visible wavelengths," Nano Lett. 7, 3360-3365 (2007).
[CrossRef] [PubMed]

D. K. Gramotnev, D. F. P. Pile, M. W. Vogel, and X. Zhang, "Local electric field enhancement during nano-focusing of plasmon by a tapered gap," Phys. Rev. B 75, 035431 (2007).
[CrossRef]

K. H. Su, Q. H. Wei, and X. Zhang, "Tunable and augmented plasmon resonances of Au/SiO2/Au nanodisks," Appl. Phys. Lett. 88, 063118 (2006).
[CrossRef]

Z. Liu, J. M. Steele, H. Lee, and X. Zhang, "Tuning the focus of a plasmonic lens by the incident angle," Appl. Phys. Lett. 88, 171108 (2006).
[CrossRef]

J. M. Steele, Z. Liu, Y. Wang, and X. Zhang, "Resonant and non-resonant generation and focusing of surface plasmons with circular gratings," Opt. Express 14, 5664-5670 (2006).
[CrossRef] [PubMed]

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, "Focusing surface plasmons with a plasmonic lens," Nano Lett. 5, 726-729 (2005).
[CrossRef]

Appl. Phys. Lett. (3)

D. F. P. Pile and D. K. Gramotnev, "Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides," Appl. Phys. Lett. 89, 041111 (2006).
[CrossRef]

Z. Liu, J. M. Steele, H. Lee, and X. Zhang, "Tuning the focus of a plasmonic lens by the incident angle," Appl. Phys. Lett. 88, 171108 (2006).
[CrossRef]

K. H. Su, Q. H. Wei, and X. Zhang, "Tunable and augmented plasmon resonances of Au/SiO2/Au nanodisks," Appl. Phys. Lett. 88, 063118 (2006).
[CrossRef]

E (1)

J. Takahara and F. Kusunoki, "Guiding and nanofocusing of two-dimensional optical beam for nanooptical integrated circuits," IEICE Trans. Electron.E 90-C, 87-94 (2007).
[CrossRef]

J. Appl. Phys. (3)

K. C. Vernon, D. K. Gramotnev, and D. F. P. Pile, "Adiabatic nanofocusing of plasmons by a sharp metal wedge on a dielectric substrate," J. Appl. Phys. 101, 104312 (2007).
[CrossRef]

A. J. Babadjanyan, N. L. Margaryan, and K. V. Nerkararyan, "Superfocusing of surface polaritons in the conical structure," J. Appl. Phys. 87, 3785-3788 (2000).
[CrossRef]

D. K. Gramotnev, "Adiabatic nanofocusing of plasmons by sharp metallic grooves: geometrical optics approach," J. Appl. Phys. 98, 104302 (2005).
[CrossRef]

J. Nanophoton. (1)

T. Yatsui, W. Nomura, and M. Ohtsu, "Metallized slit-shaped pyramidal Si probe with extremely high resolution for 1.5-Tbit/in2 density near-field optical storage", J. Nanophoton. 1, 011550 (2007).
[CrossRef]

J. Physics. (1)

K. Kurihara, K. Yamamoto, J. Takahara, and A. Otomo, "Superfocusing modes of surface plasmon polaritons in a wedge-shaped geometry obtained by qausi-separation of variables" J. Physics.A: Math. Theor. 41195401 (2008).

Nano Lett. (5)

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, "Focusing surface plasmons with a plasmonic lens," Nano Lett. 5, 726-729 (2005).
[CrossRef]

V. S. Volkov, S. I. Bozhevnolnyi, S. G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, "Nanofocusing with channel plasmon polaritons", Nano Lett. 9, 1278-1282 (2009).
[CrossRef] [PubMed]

S. Han, Y. Xiong, D. Genov, Z. Liu, G. Bartal, and X. Zhang, "Ray optics at a deep-subwavelength scale: a transformation optics approach," Nano Lett. 8, 4243-4247 (2008).
[CrossRef]

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, "Far-field optical superlens," Nano Lett. 7, 403-408 (2007).
[CrossRef] [PubMed]

Y. Xiong, Z. Liu, C. Sun, and X. Zhang, "Two-dimensional imaging by far-field superlens at visible wavelengths," Nano Lett. 7, 3360-3365 (2007).
[CrossRef] [PubMed]

Nat. Mater. (1)

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2, 229-232 (2003).
[CrossRef] [PubMed]

Nat. Nanotechnol. (1)

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, "Flying plasmonic lens in the near field for high-speed nanolithography," Nat. Nanotechnol. 3, 733-737 (2008).
[CrossRef] [PubMed]

Nat. Photon. (1)

R. Oulton, V. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, "A hybrid plasmonic waveguide for subwavelength confinement and long range propagation," Nat. Photon. 2, 496-500 (2008).
[CrossRef]

Opt. Comm. (1)

N. A. Janunts, K. S. Baghdasaryan, K. V. Nerkararyan, and B. Hecht, "Excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip," Opt. Comm. 253, 118-124 (2005).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Phys. Lett. A (1)

K. V. Nerkararyan, "Superfocusing on a surface polariton in a wedge-like structure," Phys. Lett. A 237, 103-105 (1997).
[CrossRef]

Phys. Rev. A (1)

W. Ding, S. R. Andrews, and S. A. Maier, "Internal excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip," Phys. Rev. A 75, 063822 (2007).
[CrossRef]

Phys. Rev. B (1)

D. K. Gramotnev, D. F. P. Pile, M. W. Vogel, and X. Zhang, "Local electric field enhancement during nano-focusing of plasmon by a tapered gap," Phys. Rev. B 75, 035431 (2007).
[CrossRef]

Phys. Rev. Lett. (3)

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Mart?n-Moreno, and F. J. Garc?a-Vidal, "Guiding and focusing of electromagnetic fields with wedge plasmon polaritons," Phys. Rev. Lett. 100, 023901 (2008).
[CrossRef] [PubMed]

M. I. Stockman, "Nanofocusing of optical energy in tapered plasmonic waveguides," Phys. Rev. Lett. 93, 137404 (2004).
[CrossRef] [PubMed]

Y. Liu, G. Bartal, D. A. Genov, and X. Zhang, "Subwavelength discrete solitons in nonlinear metamaterials," Phys. Rev. Lett. 99, 153901 (2007).
[CrossRef] [PubMed]

Plasmonics (1)

N. A. Issa, and R. Guckenberger, "Optical nanofocusing on tapered metallic waveguides," Plasmonics 2, 31-37 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Illustration of nanofocusing of light. (a) An example of electric field intensity, ∣E∣2, enhancement during nanofocusing in a tapered gap plasmon waveguide illustrates this effect. The electric field is determined by numerical solution of the Maxwell equations for the V-groove output width = 50nm (all other parameters are same as detailed below). (b) Scanning electron microscope image of a typical V-groove’s cross-section showing wide upper region for access of the incoming beam and narrow lower region where nanofocusing takes place.

Fig. 2.
Fig. 2.

V-groove fabrication process and optical schematic. (a) Fabrication process for nano scale V-groove. (b) Optical measurement setup for the developed rapid and reliable far-field investigation of nanofocusing.

Fig. 3.
Fig. 3.

Illumination by different polarizations of light – plasmon excitation. (a) SEM image of two sub-wavelength width (~100nm) V-groove outputs and a large reference hole as seen from the backside (i.e. looking in the positive x direction (Fig. 1a)) together with a magnified view of the V-groove outputs. (b) TM (E-field in the y-axis) excitation by the incident laser. (c) Illumination by TE (E-field in the z-axis) polarization. Note that the reference hole on the left is sufficiently large to allow both TE and TM wave pass. Scale bars are 10μm.

Fig. 4.
Fig. 4.

(a). CCD image of optical output from 17 V-grooves of different output widths. (b) SEM image of the V-groove outputs corresponding to the encircled optical spots in Fig. 4a. (c) Close up view of the CCD image of the four optical spots encircled in Fig. 4a outputted from the structure in Fig. 4b. (d) Calculated square of the electric field amplitude, ∣E∣2 at the approximate far-field (red-line in Fig. 4f). (e) Calculated square of the electric field amplitude, ∣E∣2 at the narrowest part of the V-groove output (green line in Fig. 4f). (f) Schematic for field distributions in Fig. 4d and 4e.

Fig. 5.
Fig. 5.

Intensity and electric field dependence on gap width. (a) In the experiments the guided mode’s beam width was scaled down to ~λ/40 (~40nm for λ = 1.53μm). Power (per gap width) dependence on V-groove output width for experiment (crosses) and FDTD simulation (squares). (b) The maximum of ∣E2 dependence on V-groove output width from the experimental power (crosses) and FDTD (squares) revealing a measured enhancement of ~10.

Metrics