Abstract

The visible light photon counter (VLPC) is a very high quantum efficiency (QE, 88% at 694 nm) single photon detector in the visible wavelengths. The QE in the ultraviolet (UV) wavelenghths is poor in these devices due to absorption in the degenerate front contact. We introduce the ultraviolet photon counter (UVPC), where the QE in the near UV wavelength range (300-400 nm) is dramatically enhanced. The degenerate Si front contact of the VLPC is replaced with a Ti Schottky contact, which reduces the absorption of incident photons within the contact layer. We demonstrate a system QE of 5.3% at 300 nm and 11% at 370 nm for a UVPC with a Ti Schottky contact and a single layer MgF2 antireflection coating.

© 2009 Optical Society of America

Full Article  |  PDF Article
Related Articles
Nanosecond single-photon timing with InGaAs/InP photodiodes

F. Zappa, P. Webb, A. Lacaita, and S. Cova
Opt. Lett. 19(11) 846-848 (1994)

Single-photon detection beyond 1 μm: performance of commercially available germanium photodiodes

A. Lacaita, P. A. Francese, F. Zappa, and S. Cova
Appl. Opt. 33(30) 6902-6918 (1994)

Single-photon detection beyond 1 μm: performance of commercially available InGaAs/InP detectors

A. Lacaita, F. Zappa, S. Cova, and P. Lovati
Appl. Opt. 35(16) 2986-2996 (1996)

References

  • View by:
  • |
  • |
  • |

  1. S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa, “Avalanche photodiodes and quenching circuits for single-photon detection,” Appl. Opt.  35, 1956-1976 (1996).
    [Crossref] [PubMed]
  2. V. Zworykin, G. Morton, and L. Malter, “The secondary emission multiplier-a new electronic device,” Proc. IRE 24, 351-375 (1936).
    [Crossref]
  3. G. B. Turner, M. G. Stapelbroek, M. D. Petroff, E. W. Atkins, and H. H. Hogue, “Visible light photon counters for scintillating fiber applications: I. characteristics and performances,” in Workshop on Scintillating Fiber Detectors, (1993), pp. 613-620.
  4. M. G. Stapelbroek and M. D. Petroff, “Visible light photon counters for scintillating fiber applications: II. principles of operation,” in Workshop on Scintillating Fiber Detectors, (1993), pp. 621-629.
  5. S. Takeuchi, J. Kim, Y. Yamamoto, and H. H. Hogue, “Development of a high-quantum-efficiency single-photon counting system,” Appl. Phys. Lett.  74, 1063-1065 (1999).
    [Crossref]
  6. J. Kim, Y. Yamamoto, and H. H. Hogue, “Noise-free avalanche multiplication in Si solid state photomultipliers,” Appl. Phys. Lett.  70, 2852-2854 (1997).
    [Crossref]
  7. E. Waks, K. Inoue, W. D. Oliver, E. Diamanti, and Y. Yamamoto, “High-efficiency photon-number detection for quantum information processing,” IEEE J. Sel. Top. Quantum Electron.  9, 1502-1511 (2003).
    [Crossref]
  8. J. Kim and C. Kim, “Integrated optical approach to trapped ion quantum computation,” Quant. Inf. Comput.  9, 181-202 (2009).
  9. P. Maunz, D. L. Moehring, S. Olmschenk, K. C. Younge, D. N. Matsukevich, and C. Monroe, “Quantum interference of photon pairs from two remote trapped atomic ions,” Nature Phys.  3, 538-541 (2007).
    [Crossref]
  10. D. J. Wineland, C. Monroe, W. M. Itano, D. Leibfried, B. E. King, and D. M. Meekhof, “Experimental issues in coherent quantum-state manipulation of trapped atomic ions,” J. Res. Natl. Inst. Stand. Technol.  103, 259-328 (1998).
  11. G. E. Jellison and F. A. Modine, “Optical constants for silicon at 300 and 10 K determined from 1.64 to 4.73 eV by ellipsometry,” J. Appl. Phys.  53, 3745-3753 (1982).
    [Crossref]
  12. S.-D. Kim, C.-M. Park, and J. C. Woo, “Advanced source/drain engineering for box-shaped ultrashallow junction formation using laser annealing and pre-amorphization implantation in sub-100 nm SOI CMOS,” IEEE Trans. Electron. Devices 49, 1748-1754 (2002).
    [Crossref]
  13. J. Venturini, M. Hernandez, G. Kerrien, C. Laviron, D. Camel, J. L. Santailler, T. Sarnet, and J. Boulmer, “Ex-cimer laser thermal processing of ultra-shallow junction: laser pulse duration,” Thin Solid Films 453-454, 145-149 (2004).
    [Crossref]
  14. J. Blacksberg, M. E. Hoenk, S. T. Elliott, S. E. Holland, and S. Nikzad, “Enhanced quantum efficiency of high-purity silicon imaging detectors by ultralow temperature surface modification using Sb doping,” Appl. Phys. Lett.  87, 254101 (2005).
    [Crossref]
  15. J. Liu, C. R. Ortiz, Y. Zhang, H. Bakhru, and J. W. Corbett, “Effects of hydrogen on the barrier height of a titanium Schottky diode on p type silicon,” Phys. Rev. B 44, 8918-8922 (1991).
    [Crossref]
  16. M. A. Taubenblatt, D. Thomson, and C. R. Helms, “Interface effects in titanium and hafnium Schottky barriers on silicon,” Appl. Phys. Lett.  44, 895-897 (1984).
    [Crossref]
  17. S. M. Sze, Physics of Semiconductor Devices (John Wiley & Sons, Inc., New York, 1981).

2009 (1)

J. Kim and C. Kim, “Integrated optical approach to trapped ion quantum computation,” Quant. Inf. Comput.  9, 181-202 (2009).

2007 (1)

P. Maunz, D. L. Moehring, S. Olmschenk, K. C. Younge, D. N. Matsukevich, and C. Monroe, “Quantum interference of photon pairs from two remote trapped atomic ions,” Nature Phys.  3, 538-541 (2007).
[Crossref]

2005 (1)

J. Blacksberg, M. E. Hoenk, S. T. Elliott, S. E. Holland, and S. Nikzad, “Enhanced quantum efficiency of high-purity silicon imaging detectors by ultralow temperature surface modification using Sb doping,” Appl. Phys. Lett.  87, 254101 (2005).
[Crossref]

2004 (1)

J. Venturini, M. Hernandez, G. Kerrien, C. Laviron, D. Camel, J. L. Santailler, T. Sarnet, and J. Boulmer, “Ex-cimer laser thermal processing of ultra-shallow junction: laser pulse duration,” Thin Solid Films 453-454, 145-149 (2004).
[Crossref]

2003 (1)

E. Waks, K. Inoue, W. D. Oliver, E. Diamanti, and Y. Yamamoto, “High-efficiency photon-number detection for quantum information processing,” IEEE J. Sel. Top. Quantum Electron.  9, 1502-1511 (2003).
[Crossref]

2002 (1)

S.-D. Kim, C.-M. Park, and J. C. Woo, “Advanced source/drain engineering for box-shaped ultrashallow junction formation using laser annealing and pre-amorphization implantation in sub-100 nm SOI CMOS,” IEEE Trans. Electron. Devices 49, 1748-1754 (2002).
[Crossref]

1999 (1)

S. Takeuchi, J. Kim, Y. Yamamoto, and H. H. Hogue, “Development of a high-quantum-efficiency single-photon counting system,” Appl. Phys. Lett.  74, 1063-1065 (1999).
[Crossref]

1998 (1)

D. J. Wineland, C. Monroe, W. M. Itano, D. Leibfried, B. E. King, and D. M. Meekhof, “Experimental issues in coherent quantum-state manipulation of trapped atomic ions,” J. Res. Natl. Inst. Stand. Technol.  103, 259-328 (1998).

1997 (1)

J. Kim, Y. Yamamoto, and H. H. Hogue, “Noise-free avalanche multiplication in Si solid state photomultipliers,” Appl. Phys. Lett.  70, 2852-2854 (1997).
[Crossref]

1996 (1)

S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa, “Avalanche photodiodes and quenching circuits for single-photon detection,” Appl. Opt.  35, 1956-1976 (1996).
[Crossref] [PubMed]

1991 (1)

J. Liu, C. R. Ortiz, Y. Zhang, H. Bakhru, and J. W. Corbett, “Effects of hydrogen on the barrier height of a titanium Schottky diode on p type silicon,” Phys. Rev. B 44, 8918-8922 (1991).
[Crossref]

1984 (1)

M. A. Taubenblatt, D. Thomson, and C. R. Helms, “Interface effects in titanium and hafnium Schottky barriers on silicon,” Appl. Phys. Lett.  44, 895-897 (1984).
[Crossref]

1982 (1)

G. E. Jellison and F. A. Modine, “Optical constants for silicon at 300 and 10 K determined from 1.64 to 4.73 eV by ellipsometry,” J. Appl. Phys.  53, 3745-3753 (1982).
[Crossref]

1981 (1)

S. M. Sze, Physics of Semiconductor Devices (John Wiley & Sons, Inc., New York, 1981).

1936 (1)

V. Zworykin, G. Morton, and L. Malter, “The secondary emission multiplier-a new electronic device,” Proc. IRE 24, 351-375 (1936).
[Crossref]

Atkins, E. W.

G. B. Turner, M. G. Stapelbroek, M. D. Petroff, E. W. Atkins, and H. H. Hogue, “Visible light photon counters for scintillating fiber applications: I. characteristics and performances,” in Workshop on Scintillating Fiber Detectors, (1993), pp. 613-620.

Bakhru, H.

J. Liu, C. R. Ortiz, Y. Zhang, H. Bakhru, and J. W. Corbett, “Effects of hydrogen on the barrier height of a titanium Schottky diode on p type silicon,” Phys. Rev. B 44, 8918-8922 (1991).
[Crossref]

Blacksberg, J.

J. Blacksberg, M. E. Hoenk, S. T. Elliott, S. E. Holland, and S. Nikzad, “Enhanced quantum efficiency of high-purity silicon imaging detectors by ultralow temperature surface modification using Sb doping,” Appl. Phys. Lett.  87, 254101 (2005).
[Crossref]

Boulmer, J.

J. Venturini, M. Hernandez, G. Kerrien, C. Laviron, D. Camel, J. L. Santailler, T. Sarnet, and J. Boulmer, “Ex-cimer laser thermal processing of ultra-shallow junction: laser pulse duration,” Thin Solid Films 453-454, 145-149 (2004).
[Crossref]

Camel, D.

J. Venturini, M. Hernandez, G. Kerrien, C. Laviron, D. Camel, J. L. Santailler, T. Sarnet, and J. Boulmer, “Ex-cimer laser thermal processing of ultra-shallow junction: laser pulse duration,” Thin Solid Films 453-454, 145-149 (2004).
[Crossref]

Corbett, J. W.

J. Liu, C. R. Ortiz, Y. Zhang, H. Bakhru, and J. W. Corbett, “Effects of hydrogen on the barrier height of a titanium Schottky diode on p type silicon,” Phys. Rev. B 44, 8918-8922 (1991).
[Crossref]

Cova, S.

S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa, “Avalanche photodiodes and quenching circuits for single-photon detection,” Appl. Opt.  35, 1956-1976 (1996).
[Crossref] [PubMed]

Diamanti, E.

E. Waks, K. Inoue, W. D. Oliver, E. Diamanti, and Y. Yamamoto, “High-efficiency photon-number detection for quantum information processing,” IEEE J. Sel. Top. Quantum Electron.  9, 1502-1511 (2003).
[Crossref]

Elliott, S. T.

J. Blacksberg, M. E. Hoenk, S. T. Elliott, S. E. Holland, and S. Nikzad, “Enhanced quantum efficiency of high-purity silicon imaging detectors by ultralow temperature surface modification using Sb doping,” Appl. Phys. Lett.  87, 254101 (2005).
[Crossref]

Ghioni, M.

S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa, “Avalanche photodiodes and quenching circuits for single-photon detection,” Appl. Opt.  35, 1956-1976 (1996).
[Crossref] [PubMed]

Helms, C. R.

M. A. Taubenblatt, D. Thomson, and C. R. Helms, “Interface effects in titanium and hafnium Schottky barriers on silicon,” Appl. Phys. Lett.  44, 895-897 (1984).
[Crossref]

Hernandez, M.

J. Venturini, M. Hernandez, G. Kerrien, C. Laviron, D. Camel, J. L. Santailler, T. Sarnet, and J. Boulmer, “Ex-cimer laser thermal processing of ultra-shallow junction: laser pulse duration,” Thin Solid Films 453-454, 145-149 (2004).
[Crossref]

Hoenk, M. E.

J. Blacksberg, M. E. Hoenk, S. T. Elliott, S. E. Holland, and S. Nikzad, “Enhanced quantum efficiency of high-purity silicon imaging detectors by ultralow temperature surface modification using Sb doping,” Appl. Phys. Lett.  87, 254101 (2005).
[Crossref]

Hogue, H. H.

S. Takeuchi, J. Kim, Y. Yamamoto, and H. H. Hogue, “Development of a high-quantum-efficiency single-photon counting system,” Appl. Phys. Lett.  74, 1063-1065 (1999).
[Crossref]

J. Kim, Y. Yamamoto, and H. H. Hogue, “Noise-free avalanche multiplication in Si solid state photomultipliers,” Appl. Phys. Lett.  70, 2852-2854 (1997).
[Crossref]

G. B. Turner, M. G. Stapelbroek, M. D. Petroff, E. W. Atkins, and H. H. Hogue, “Visible light photon counters for scintillating fiber applications: I. characteristics and performances,” in Workshop on Scintillating Fiber Detectors, (1993), pp. 613-620.

Holland, S. E.

J. Blacksberg, M. E. Hoenk, S. T. Elliott, S. E. Holland, and S. Nikzad, “Enhanced quantum efficiency of high-purity silicon imaging detectors by ultralow temperature surface modification using Sb doping,” Appl. Phys. Lett.  87, 254101 (2005).
[Crossref]

Inoue, K.

E. Waks, K. Inoue, W. D. Oliver, E. Diamanti, and Y. Yamamoto, “High-efficiency photon-number detection for quantum information processing,” IEEE J. Sel. Top. Quantum Electron.  9, 1502-1511 (2003).
[Crossref]

Itano, W. M.

D. J. Wineland, C. Monroe, W. M. Itano, D. Leibfried, B. E. King, and D. M. Meekhof, “Experimental issues in coherent quantum-state manipulation of trapped atomic ions,” J. Res. Natl. Inst. Stand. Technol.  103, 259-328 (1998).

Jellison, G. E.

G. E. Jellison and F. A. Modine, “Optical constants for silicon at 300 and 10 K determined from 1.64 to 4.73 eV by ellipsometry,” J. Appl. Phys.  53, 3745-3753 (1982).
[Crossref]

Kerrien, G.

J. Venturini, M. Hernandez, G. Kerrien, C. Laviron, D. Camel, J. L. Santailler, T. Sarnet, and J. Boulmer, “Ex-cimer laser thermal processing of ultra-shallow junction: laser pulse duration,” Thin Solid Films 453-454, 145-149 (2004).
[Crossref]

Kim, C.

J. Kim and C. Kim, “Integrated optical approach to trapped ion quantum computation,” Quant. Inf. Comput.  9, 181-202 (2009).

Kim, J.

J. Kim and C. Kim, “Integrated optical approach to trapped ion quantum computation,” Quant. Inf. Comput.  9, 181-202 (2009).

S. Takeuchi, J. Kim, Y. Yamamoto, and H. H. Hogue, “Development of a high-quantum-efficiency single-photon counting system,” Appl. Phys. Lett.  74, 1063-1065 (1999).
[Crossref]

J. Kim, Y. Yamamoto, and H. H. Hogue, “Noise-free avalanche multiplication in Si solid state photomultipliers,” Appl. Phys. Lett.  70, 2852-2854 (1997).
[Crossref]

Kim, S.-D.

S.-D. Kim, C.-M. Park, and J. C. Woo, “Advanced source/drain engineering for box-shaped ultrashallow junction formation using laser annealing and pre-amorphization implantation in sub-100 nm SOI CMOS,” IEEE Trans. Electron. Devices 49, 1748-1754 (2002).
[Crossref]

King, B. E.

D. J. Wineland, C. Monroe, W. M. Itano, D. Leibfried, B. E. King, and D. M. Meekhof, “Experimental issues in coherent quantum-state manipulation of trapped atomic ions,” J. Res. Natl. Inst. Stand. Technol.  103, 259-328 (1998).

Lacaita, A.

S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa, “Avalanche photodiodes and quenching circuits for single-photon detection,” Appl. Opt.  35, 1956-1976 (1996).
[Crossref] [PubMed]

Laviron, C.

J. Venturini, M. Hernandez, G. Kerrien, C. Laviron, D. Camel, J. L. Santailler, T. Sarnet, and J. Boulmer, “Ex-cimer laser thermal processing of ultra-shallow junction: laser pulse duration,” Thin Solid Films 453-454, 145-149 (2004).
[Crossref]

Leibfried, D.

D. J. Wineland, C. Monroe, W. M. Itano, D. Leibfried, B. E. King, and D. M. Meekhof, “Experimental issues in coherent quantum-state manipulation of trapped atomic ions,” J. Res. Natl. Inst. Stand. Technol.  103, 259-328 (1998).

Liu, J.

J. Liu, C. R. Ortiz, Y. Zhang, H. Bakhru, and J. W. Corbett, “Effects of hydrogen on the barrier height of a titanium Schottky diode on p type silicon,” Phys. Rev. B 44, 8918-8922 (1991).
[Crossref]

Malter, L.

V. Zworykin, G. Morton, and L. Malter, “The secondary emission multiplier-a new electronic device,” Proc. IRE 24, 351-375 (1936).
[Crossref]

Matsukevich, D. N.

P. Maunz, D. L. Moehring, S. Olmschenk, K. C. Younge, D. N. Matsukevich, and C. Monroe, “Quantum interference of photon pairs from two remote trapped atomic ions,” Nature Phys.  3, 538-541 (2007).
[Crossref]

Maunz, P.

P. Maunz, D. L. Moehring, S. Olmschenk, K. C. Younge, D. N. Matsukevich, and C. Monroe, “Quantum interference of photon pairs from two remote trapped atomic ions,” Nature Phys.  3, 538-541 (2007).
[Crossref]

Meekhof, D. M.

D. J. Wineland, C. Monroe, W. M. Itano, D. Leibfried, B. E. King, and D. M. Meekhof, “Experimental issues in coherent quantum-state manipulation of trapped atomic ions,” J. Res. Natl. Inst. Stand. Technol.  103, 259-328 (1998).

Modine, F. A.

G. E. Jellison and F. A. Modine, “Optical constants for silicon at 300 and 10 K determined from 1.64 to 4.73 eV by ellipsometry,” J. Appl. Phys.  53, 3745-3753 (1982).
[Crossref]

Moehring, D. L.

P. Maunz, D. L. Moehring, S. Olmschenk, K. C. Younge, D. N. Matsukevich, and C. Monroe, “Quantum interference of photon pairs from two remote trapped atomic ions,” Nature Phys.  3, 538-541 (2007).
[Crossref]

Monroe, C.

P. Maunz, D. L. Moehring, S. Olmschenk, K. C. Younge, D. N. Matsukevich, and C. Monroe, “Quantum interference of photon pairs from two remote trapped atomic ions,” Nature Phys.  3, 538-541 (2007).
[Crossref]

D. J. Wineland, C. Monroe, W. M. Itano, D. Leibfried, B. E. King, and D. M. Meekhof, “Experimental issues in coherent quantum-state manipulation of trapped atomic ions,” J. Res. Natl. Inst. Stand. Technol.  103, 259-328 (1998).

Morton, G.

V. Zworykin, G. Morton, and L. Malter, “The secondary emission multiplier-a new electronic device,” Proc. IRE 24, 351-375 (1936).
[Crossref]

Nikzad, S.

J. Blacksberg, M. E. Hoenk, S. T. Elliott, S. E. Holland, and S. Nikzad, “Enhanced quantum efficiency of high-purity silicon imaging detectors by ultralow temperature surface modification using Sb doping,” Appl. Phys. Lett.  87, 254101 (2005).
[Crossref]

Oliver, W. D.

E. Waks, K. Inoue, W. D. Oliver, E. Diamanti, and Y. Yamamoto, “High-efficiency photon-number detection for quantum information processing,” IEEE J. Sel. Top. Quantum Electron.  9, 1502-1511 (2003).
[Crossref]

Olmschenk, S.

P. Maunz, D. L. Moehring, S. Olmschenk, K. C. Younge, D. N. Matsukevich, and C. Monroe, “Quantum interference of photon pairs from two remote trapped atomic ions,” Nature Phys.  3, 538-541 (2007).
[Crossref]

Ortiz, C. R.

J. Liu, C. R. Ortiz, Y. Zhang, H. Bakhru, and J. W. Corbett, “Effects of hydrogen on the barrier height of a titanium Schottky diode on p type silicon,” Phys. Rev. B 44, 8918-8922 (1991).
[Crossref]

Park, C.-M.

S.-D. Kim, C.-M. Park, and J. C. Woo, “Advanced source/drain engineering for box-shaped ultrashallow junction formation using laser annealing and pre-amorphization implantation in sub-100 nm SOI CMOS,” IEEE Trans. Electron. Devices 49, 1748-1754 (2002).
[Crossref]

Petroff, M. D.

G. B. Turner, M. G. Stapelbroek, M. D. Petroff, E. W. Atkins, and H. H. Hogue, “Visible light photon counters for scintillating fiber applications: I. characteristics and performances,” in Workshop on Scintillating Fiber Detectors, (1993), pp. 613-620.

M. G. Stapelbroek and M. D. Petroff, “Visible light photon counters for scintillating fiber applications: II. principles of operation,” in Workshop on Scintillating Fiber Detectors, (1993), pp. 621-629.

Samori, C.

S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa, “Avalanche photodiodes and quenching circuits for single-photon detection,” Appl. Opt.  35, 1956-1976 (1996).
[Crossref] [PubMed]

Santailler, J. L.

J. Venturini, M. Hernandez, G. Kerrien, C. Laviron, D. Camel, J. L. Santailler, T. Sarnet, and J. Boulmer, “Ex-cimer laser thermal processing of ultra-shallow junction: laser pulse duration,” Thin Solid Films 453-454, 145-149 (2004).
[Crossref]

Sarnet, T.

J. Venturini, M. Hernandez, G. Kerrien, C. Laviron, D. Camel, J. L. Santailler, T. Sarnet, and J. Boulmer, “Ex-cimer laser thermal processing of ultra-shallow junction: laser pulse duration,” Thin Solid Films 453-454, 145-149 (2004).
[Crossref]

Stapelbroek, M. G.

G. B. Turner, M. G. Stapelbroek, M. D. Petroff, E. W. Atkins, and H. H. Hogue, “Visible light photon counters for scintillating fiber applications: I. characteristics and performances,” in Workshop on Scintillating Fiber Detectors, (1993), pp. 613-620.

M. G. Stapelbroek and M. D. Petroff, “Visible light photon counters for scintillating fiber applications: II. principles of operation,” in Workshop on Scintillating Fiber Detectors, (1993), pp. 621-629.

Sze, S. M.

S. M. Sze, Physics of Semiconductor Devices (John Wiley & Sons, Inc., New York, 1981).

Takeuchi, S.

S. Takeuchi, J. Kim, Y. Yamamoto, and H. H. Hogue, “Development of a high-quantum-efficiency single-photon counting system,” Appl. Phys. Lett.  74, 1063-1065 (1999).
[Crossref]

Taubenblatt, M. A.

M. A. Taubenblatt, D. Thomson, and C. R. Helms, “Interface effects in titanium and hafnium Schottky barriers on silicon,” Appl. Phys. Lett.  44, 895-897 (1984).
[Crossref]

Thomson, D.

M. A. Taubenblatt, D. Thomson, and C. R. Helms, “Interface effects in titanium and hafnium Schottky barriers on silicon,” Appl. Phys. Lett.  44, 895-897 (1984).
[Crossref]

Turner, G. B.

G. B. Turner, M. G. Stapelbroek, M. D. Petroff, E. W. Atkins, and H. H. Hogue, “Visible light photon counters for scintillating fiber applications: I. characteristics and performances,” in Workshop on Scintillating Fiber Detectors, (1993), pp. 613-620.

Venturini, J.

J. Venturini, M. Hernandez, G. Kerrien, C. Laviron, D. Camel, J. L. Santailler, T. Sarnet, and J. Boulmer, “Ex-cimer laser thermal processing of ultra-shallow junction: laser pulse duration,” Thin Solid Films 453-454, 145-149 (2004).
[Crossref]

Waks, E.

E. Waks, K. Inoue, W. D. Oliver, E. Diamanti, and Y. Yamamoto, “High-efficiency photon-number detection for quantum information processing,” IEEE J. Sel. Top. Quantum Electron.  9, 1502-1511 (2003).
[Crossref]

Wineland, D. J.

D. J. Wineland, C. Monroe, W. M. Itano, D. Leibfried, B. E. King, and D. M. Meekhof, “Experimental issues in coherent quantum-state manipulation of trapped atomic ions,” J. Res. Natl. Inst. Stand. Technol.  103, 259-328 (1998).

Woo, J. C.

S.-D. Kim, C.-M. Park, and J. C. Woo, “Advanced source/drain engineering for box-shaped ultrashallow junction formation using laser annealing and pre-amorphization implantation in sub-100 nm SOI CMOS,” IEEE Trans. Electron. Devices 49, 1748-1754 (2002).
[Crossref]

Yamamoto, Y.

E. Waks, K. Inoue, W. D. Oliver, E. Diamanti, and Y. Yamamoto, “High-efficiency photon-number detection for quantum information processing,” IEEE J. Sel. Top. Quantum Electron.  9, 1502-1511 (2003).
[Crossref]

S. Takeuchi, J. Kim, Y. Yamamoto, and H. H. Hogue, “Development of a high-quantum-efficiency single-photon counting system,” Appl. Phys. Lett.  74, 1063-1065 (1999).
[Crossref]

J. Kim, Y. Yamamoto, and H. H. Hogue, “Noise-free avalanche multiplication in Si solid state photomultipliers,” Appl. Phys. Lett.  70, 2852-2854 (1997).
[Crossref]

Younge, K. C.

P. Maunz, D. L. Moehring, S. Olmschenk, K. C. Younge, D. N. Matsukevich, and C. Monroe, “Quantum interference of photon pairs from two remote trapped atomic ions,” Nature Phys.  3, 538-541 (2007).
[Crossref]

Zappa, F.

S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa, “Avalanche photodiodes and quenching circuits for single-photon detection,” Appl. Opt.  35, 1956-1976 (1996).
[Crossref] [PubMed]

Zhang, Y.

J. Liu, C. R. Ortiz, Y. Zhang, H. Bakhru, and J. W. Corbett, “Effects of hydrogen on the barrier height of a titanium Schottky diode on p type silicon,” Phys. Rev. B 44, 8918-8922 (1991).
[Crossref]

Zworykin, V.

V. Zworykin, G. Morton, and L. Malter, “The secondary emission multiplier-a new electronic device,” Proc. IRE 24, 351-375 (1936).
[Crossref]

Appl. Opt (1)

S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa, “Avalanche photodiodes and quenching circuits for single-photon detection,” Appl. Opt.  35, 1956-1976 (1996).
[Crossref] [PubMed]

Appl. Phys. Lett (4)

S. Takeuchi, J. Kim, Y. Yamamoto, and H. H. Hogue, “Development of a high-quantum-efficiency single-photon counting system,” Appl. Phys. Lett.  74, 1063-1065 (1999).
[Crossref]

J. Kim, Y. Yamamoto, and H. H. Hogue, “Noise-free avalanche multiplication in Si solid state photomultipliers,” Appl. Phys. Lett.  70, 2852-2854 (1997).
[Crossref]

J. Blacksberg, M. E. Hoenk, S. T. Elliott, S. E. Holland, and S. Nikzad, “Enhanced quantum efficiency of high-purity silicon imaging detectors by ultralow temperature surface modification using Sb doping,” Appl. Phys. Lett.  87, 254101 (2005).
[Crossref]

M. A. Taubenblatt, D. Thomson, and C. R. Helms, “Interface effects in titanium and hafnium Schottky barriers on silicon,” Appl. Phys. Lett.  44, 895-897 (1984).
[Crossref]

IEEE J. Sel. Top. Quantum Electron (1)

E. Waks, K. Inoue, W. D. Oliver, E. Diamanti, and Y. Yamamoto, “High-efficiency photon-number detection for quantum information processing,” IEEE J. Sel. Top. Quantum Electron.  9, 1502-1511 (2003).
[Crossref]

IEEE Trans. Electron. Devices (1)

S.-D. Kim, C.-M. Park, and J. C. Woo, “Advanced source/drain engineering for box-shaped ultrashallow junction formation using laser annealing and pre-amorphization implantation in sub-100 nm SOI CMOS,” IEEE Trans. Electron. Devices 49, 1748-1754 (2002).
[Crossref]

J. Appl. Phys (1)

G. E. Jellison and F. A. Modine, “Optical constants for silicon at 300 and 10 K determined from 1.64 to 4.73 eV by ellipsometry,” J. Appl. Phys.  53, 3745-3753 (1982).
[Crossref]

J. Res. Natl. Inst. Stand. Technol (1)

D. J. Wineland, C. Monroe, W. M. Itano, D. Leibfried, B. E. King, and D. M. Meekhof, “Experimental issues in coherent quantum-state manipulation of trapped atomic ions,” J. Res. Natl. Inst. Stand. Technol.  103, 259-328 (1998).

Nature Phys (1)

P. Maunz, D. L. Moehring, S. Olmschenk, K. C. Younge, D. N. Matsukevich, and C. Monroe, “Quantum interference of photon pairs from two remote trapped atomic ions,” Nature Phys.  3, 538-541 (2007).
[Crossref]

Phys. Rev. B (1)

J. Liu, C. R. Ortiz, Y. Zhang, H. Bakhru, and J. W. Corbett, “Effects of hydrogen on the barrier height of a titanium Schottky diode on p type silicon,” Phys. Rev. B 44, 8918-8922 (1991).
[Crossref]

Proc. IRE (1)

V. Zworykin, G. Morton, and L. Malter, “The secondary emission multiplier-a new electronic device,” Proc. IRE 24, 351-375 (1936).
[Crossref]

Quant. Inf. Comput (1)

J. Kim and C. Kim, “Integrated optical approach to trapped ion quantum computation,” Quant. Inf. Comput.  9, 181-202 (2009).

Thin Solid Films (1)

J. Venturini, M. Hernandez, G. Kerrien, C. Laviron, D. Camel, J. L. Santailler, T. Sarnet, and J. Boulmer, “Ex-cimer laser thermal processing of ultra-shallow junction: laser pulse duration,” Thin Solid Films 453-454, 145-149 (2004).
[Crossref]

Other (3)

S. M. Sze, Physics of Semiconductor Devices (John Wiley & Sons, Inc., New York, 1981).

G. B. Turner, M. G. Stapelbroek, M. D. Petroff, E. W. Atkins, and H. H. Hogue, “Visible light photon counters for scintillating fiber applications: I. characteristics and performances,” in Workshop on Scintillating Fiber Detectors, (1993), pp. 613-620.

M. G. Stapelbroek and M. D. Petroff, “Visible light photon counters for scintillating fiber applications: II. principles of operation,” in Workshop on Scintillating Fiber Detectors, (1993), pp. 621-629.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Schematic device structure of the VLPC. The VLPC consists of a number of Si epitaxial layers grown on a degenerate Si substrate. (b) Schematic device structure of the UVPC. The degenerately doped front contact of the VLPC is thinned and replaced with a Ti Schottky metal contact and a MgF2 AR coating. (Note: thicknesses not drawn to scale.)

Fig. 2.
Fig. 2.

The measured system QE of the VLPC and Si absorption coefficient at 10 K in the wavelength range of 300 – 650 nm is shown [11]. The QE drops sharply below 400 nm, which corresponds to a rapid increase in the absorption coefficient of Si. For wavelengths ≤ 370 nm, the input light level was increased to improve the SNR.

Fig. 3.
Fig. 3.

Current density-voltage (J-V) relationship of a 1000 μm diameter Ti Schottky diode with a MgF2 coating. Thermionic emission-diffusion theory was used to determine the p type barrier height. For clarity, data for all temperatures measured and used in the analysis are not shown.

Fig. 4.
Fig. 4.

The system QE and estimated lower bound for the internal QE of the UVPC and VLPC from 300 - 400 nm. The internal QE is estimated by accounting for losses in the fiber, output coupling efficiency, and detector coatings.

Metrics