Abstract

We report an experimental, numerical and theoretical study of the incoherent regime of supercontinuum generation in a two zero-dispersion wavelengths fiber. By using a simple experimental setup, we show that the phenomenon of spectral broadening inherent to supercontinuum generation can be described as a thermalization process, which is characterized by an irreversible evolution of the optical field towards a thermal equilibrium state. In particular, the thermodynamic equilibrium spectrum predicted by the kinetic wave theory is characterized by a double peak structure, which has been found in quantitative agreement with the numerical simulations without adjustable parameters. We also confirm that stimulated Raman scattering leads to the generation of an incoherent structure in the normal dispersion regime which is reminiscent of a spectral incoherent soliton.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. K. Ranka, R. S. Windeler and A. J. Stentz, "Visible continuum generation in air-silica microstruture optical fibers with anomalous dispersion at 800 nm," Opt. Lett. 25, 25-27 (2000).
    [CrossRef]
  2. J. M. Dudley, G. Genty and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006).
    [CrossRef]
  3. G. Genty, S. Coen and J. M. Dudley, "Fiber supercontinuum sources," J. Opt. Soc. Am. B 24, 1771-1785 (2007).
    [CrossRef]
  4. D. V. Skryabin, F. Luan, J. C. Knight and P. St. J. Russell, "Soliton self-frequency shift cancellation in photonic crystal fibers," Science 301, 1705-1708 (2003).
    [CrossRef] [PubMed]
  5. A. Efimov, A. J. Taylor, F. G. Omenetto, J. C. Knight, W. J. Wadsworth and P. St. J. Russell, "Phase-matched third harmonic generation in microstructured fibers," Opt. Express 11, 2567-2576 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-20-2567.
    [CrossRef] [PubMed]
  6. W. J. Wadsworth, N. Joly, J. C. Knight, T. A. Birks, F. Biancalana and P. St. J. Russell, "Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres," Opt. Express 12, 299-309 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-2-299.
    [CrossRef] [PubMed]
  7. A. V. Gorbach and D. V. Skryabin, "Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres," Nat. Photonics 1, 653-657 (2007).
    [CrossRef]
  8. B. Kibler, P.-A. Lacourt, F. Courvoisier and J. M. Dudley, "Soliton spectral tunnelling in photonic crystal fibre with sub-wavelength core defect," Electron. Lett. 43, 967-968 (2007).
    [CrossRef]
  9. A. Kudlinski, G. Bouwmans, Y. Quiquempois and A. Mussot, "Experimental demonstration of multiwatt continuous-wave supercontinuum tailoring in photonic crystal fibers," Appl. Phys. Lett. 92, 141103 (2008).
    [CrossRef]
  10. B. A. Cumberland, J. C. Travers, S. V. Popov and J. R. Taylor, "29 W High power CW supercontinuum source," Opt. Express 16, 5964-5972 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-8-5954.
    [CrossRef]
  11. J. C. Travers, A. B. Rulkov, B. A. Cumberland, S. V. Popov and J. R. Taylor, "Visible supercontinuum generation in photonic crystal fibers with a 400 W continuous wave fiber laser," Opt. Express 16, 14435-14447 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-19-14435.
    [CrossRef] [PubMed]
  12. A. Mussot, M. Beaugeois, M. Bouazaoui and T. Sylvestre, "Tailoring CW supercontinuum generation in microstructured fibers with two-zero dispersion wavelengths," Opt. Express 15, 11553-11563 (2007), >http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-18-11553.
    [CrossRef] [PubMed]
  13. N. Akhmediev and M. Karlsson, "Cherenkov radiation emitted by solitons in optical fibers," Phys. Rev. A 51, 2602-2607 (1995).
    [CrossRef] [PubMed]
  14. B. Barviau, B. Kibler, S. Coen and A. Picozzi, "Towards a thermodynamic description of supercontinuum generation," Opt. Lett. 33, 2833-2835 (2008).
    [CrossRef] [PubMed]
  15. S. Dyachenko, A. C. Newell, A. Pushkarev, and V. E. Zakharov, "Optical turbulence: weak turbulence, condensates and collapsing filaments in the nonlinear Schrödinger equation," Physica D 57, 96-160 (1992).
    [CrossRef]
  16. V. Zakharov, V. L'vov and G. Falkovich, Kolmogorov Spectra of Turbulence I (Springer, Berlin, 1992).
  17. A. C. Newell, S. Nazarenko and L. Biven, "Wave turbulence and intermittency," Physica D 152, 520-550 (2001).
    [CrossRef]
  18. V. Zakharov, F. Dias and A. Pushkarev, "One dimensional wave turbulence," Phys. Rep. 398, 1 (2004).
    [CrossRef]
  19. S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, E. V. Podivilov, "Four-wave-mixing-induced turbulent spectral broadening in a long Raman fiber laser," J. Opt. Soc. Am. B 24, 1729-1738 (2007).
    [CrossRef]
  20. A. Picozzi, "Towards a nonequilibrium thermodynamic description of incoherent nonlinear optics," Opt. Express 15, 9063-9083 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-14-9063.
    [CrossRef] [PubMed]
  21. C. Connaughton, C. Josserand, A. Picozzi, Y. Pomeau, and S. Rica, "Condensation of Classical Nonlinear Waves," Phys. Rev. Lett. 95, 263901 (2005).
    [CrossRef]
  22. S. Pitois, S. Lagrange, H. R. Jauslin, and A. Picozzi, "Velocity Locking of Incoherent Nonlinear Wave Packets," Phys. Rev. Lett. 97, 033902 (2006).
    [CrossRef] [PubMed]
  23. A. Picozzi and S. Rica, "Coherence absorption and condensation induced by thermalization of incoherent nonlinear fields," Europhys. Lett. 84, 34004 (2008).
    [CrossRef]
  24. S. Lagrange, H. R. Jauslin and A. Picozzi, "Thermalization of the dispersive three-wave interaction," Europhys. Lett. 79, 64001 (2007).
    [CrossRef]
  25. A. Picozzi, "Spontaneous polarization induced by natural thermalization of incoherent light," Opt. Express 16, 17171-17185 (2008), >http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-22-17171.
    [CrossRef] [PubMed]
  26. L. Levi, T. Schwartz, O. Manela, M. Segev, and H. Buljan, "Spontaneous pattern formation upon incoherent waves: From modulation-instability to steady-state," Opt. Express 16, 7818-7831 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-11-7818.
    [CrossRef] [PubMed]
  27. A. Picozzi, S. Pitois and G. Millot, "Spectral incoherent solitons: a localized soliton behavior in the frequency domain," Phys. Rev. Lett. 101, 093901 (2008).
    [CrossRef] [PubMed]
  28. B. Kibler, C. Finot, G. Gadret, G. Millot, J. Wojcik, M. Szpulak and W. Urbanczyk, "Second zero dispersion wavelength measurement through soliton self-frequency shift compensation in suspended core fibre," Electron. Lett. 44, 1370-1371 (2008).
    [CrossRef]
  29. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 4th Ed., 2006).
  30. P. M. Moselund, M. H. Frosz, C. L. Thomsen and O. Bang, "Back-seeding of higher order gain processes in picosecond supercontinuum generation," Opt. Express 16, 11954-11968 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-16-11954.
    [CrossRef] [PubMed]
  31. S. Pitois and G. Millot, "Experimental observation of a new modulational instability spectral window induced by fourth-order dispersion in a normally dispersive single-mode optical fiber," Opt. Commun. 226, 415-422 (2003).
    [CrossRef]
  32. B. Kibler, J. M. Dudley and S. Coen, "Supercontinuum generation and nonlinear pulse propagation in photonic crystal fiber: influence of the frequency-dependent effective mode area," Appl. Phys. B 81, 337-342 (2005).
    [CrossRef]
  33. B. Barviau, B. Kibler and A. Picozzi, "Influence of self-steepening and higher-order dispersion on wave thermalization" (in preparation).
  34. M. Le Bellac, F. Mortessagne and G. Batrouni, Equilibrium and Nonequilibrium Statistical Thermodynamics (Cambridge Univ. Press, 2004).
    [CrossRef]
  35. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, New York, 1995).
  36. V. E. Zakharov, S. L. Musher and A. M. Rubenchik, "Weak Langmuir turbulence of an isothermal plasma," Sov. Phys. JETP 42, 80 (1976).
  37. C. Montes, "Photon soliton and fine structure due to nonlinear Compton scattering," Phys. Rev. A 20, 1081 (1979).
    [CrossRef]
  38. C. Montes, J. Peyraud and M. Hénon, "One-dimensional boson soliton collisions," Phys. Fluids 22, 176 (1979).
    [CrossRef]
  39. S .L. Musher, A. M. Rubenchik and V. E. Zakharov, "Weak Langmuir turbulence," Phys. Reports 252, 177 (1995).
    [CrossRef]
  40. A. V. Gorbach and D. V. Skryabin, "Spectral discrete solitons and localization in frequency space," Opt. Lett. 31, 3309-3311 (2006).
    [CrossRef] [PubMed]

2008 (10)

A. Kudlinski, G. Bouwmans, Y. Quiquempois and A. Mussot, "Experimental demonstration of multiwatt continuous-wave supercontinuum tailoring in photonic crystal fibers," Appl. Phys. Lett. 92, 141103 (2008).
[CrossRef]

B. A. Cumberland, J. C. Travers, S. V. Popov and J. R. Taylor, "29 W High power CW supercontinuum source," Opt. Express 16, 5964-5972 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-8-5954.
[CrossRef]

J. C. Travers, A. B. Rulkov, B. A. Cumberland, S. V. Popov and J. R. Taylor, "Visible supercontinuum generation in photonic crystal fibers with a 400 W continuous wave fiber laser," Opt. Express 16, 14435-14447 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-19-14435.
[CrossRef] [PubMed]

B. Barviau, B. Kibler, S. Coen and A. Picozzi, "Towards a thermodynamic description of supercontinuum generation," Opt. Lett. 33, 2833-2835 (2008).
[CrossRef] [PubMed]

A. Picozzi and S. Rica, "Coherence absorption and condensation induced by thermalization of incoherent nonlinear fields," Europhys. Lett. 84, 34004 (2008).
[CrossRef]

A. Picozzi, "Spontaneous polarization induced by natural thermalization of incoherent light," Opt. Express 16, 17171-17185 (2008), >http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-22-17171.
[CrossRef] [PubMed]

L. Levi, T. Schwartz, O. Manela, M. Segev, and H. Buljan, "Spontaneous pattern formation upon incoherent waves: From modulation-instability to steady-state," Opt. Express 16, 7818-7831 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-11-7818.
[CrossRef] [PubMed]

A. Picozzi, S. Pitois and G. Millot, "Spectral incoherent solitons: a localized soliton behavior in the frequency domain," Phys. Rev. Lett. 101, 093901 (2008).
[CrossRef] [PubMed]

B. Kibler, C. Finot, G. Gadret, G. Millot, J. Wojcik, M. Szpulak and W. Urbanczyk, "Second zero dispersion wavelength measurement through soliton self-frequency shift compensation in suspended core fibre," Electron. Lett. 44, 1370-1371 (2008).
[CrossRef]

P. M. Moselund, M. H. Frosz, C. L. Thomsen and O. Bang, "Back-seeding of higher order gain processes in picosecond supercontinuum generation," Opt. Express 16, 11954-11968 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-16-11954.
[CrossRef] [PubMed]

2007 (7)

2006 (3)

J. M. Dudley, G. Genty and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006).
[CrossRef]

S. Pitois, S. Lagrange, H. R. Jauslin, and A. Picozzi, "Velocity Locking of Incoherent Nonlinear Wave Packets," Phys. Rev. Lett. 97, 033902 (2006).
[CrossRef] [PubMed]

A. V. Gorbach and D. V. Skryabin, "Spectral discrete solitons and localization in frequency space," Opt. Lett. 31, 3309-3311 (2006).
[CrossRef] [PubMed]

2005 (2)

B. Kibler, J. M. Dudley and S. Coen, "Supercontinuum generation and nonlinear pulse propagation in photonic crystal fiber: influence of the frequency-dependent effective mode area," Appl. Phys. B 81, 337-342 (2005).
[CrossRef]

C. Connaughton, C. Josserand, A. Picozzi, Y. Pomeau, and S. Rica, "Condensation of Classical Nonlinear Waves," Phys. Rev. Lett. 95, 263901 (2005).
[CrossRef]

2004 (2)

2003 (3)

S. Pitois and G. Millot, "Experimental observation of a new modulational instability spectral window induced by fourth-order dispersion in a normally dispersive single-mode optical fiber," Opt. Commun. 226, 415-422 (2003).
[CrossRef]

D. V. Skryabin, F. Luan, J. C. Knight and P. St. J. Russell, "Soliton self-frequency shift cancellation in photonic crystal fibers," Science 301, 1705-1708 (2003).
[CrossRef] [PubMed]

A. Efimov, A. J. Taylor, F. G. Omenetto, J. C. Knight, W. J. Wadsworth and P. St. J. Russell, "Phase-matched third harmonic generation in microstructured fibers," Opt. Express 11, 2567-2576 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-20-2567.
[CrossRef] [PubMed]

2001 (1)

A. C. Newell, S. Nazarenko and L. Biven, "Wave turbulence and intermittency," Physica D 152, 520-550 (2001).
[CrossRef]

2000 (1)

1995 (2)

N. Akhmediev and M. Karlsson, "Cherenkov radiation emitted by solitons in optical fibers," Phys. Rev. A 51, 2602-2607 (1995).
[CrossRef] [PubMed]

S .L. Musher, A. M. Rubenchik and V. E. Zakharov, "Weak Langmuir turbulence," Phys. Reports 252, 177 (1995).
[CrossRef]

1992 (1)

S. Dyachenko, A. C. Newell, A. Pushkarev, and V. E. Zakharov, "Optical turbulence: weak turbulence, condensates and collapsing filaments in the nonlinear Schrödinger equation," Physica D 57, 96-160 (1992).
[CrossRef]

1979 (2)

C. Montes, "Photon soliton and fine structure due to nonlinear Compton scattering," Phys. Rev. A 20, 1081 (1979).
[CrossRef]

C. Montes, J. Peyraud and M. Hénon, "One-dimensional boson soliton collisions," Phys. Fluids 22, 176 (1979).
[CrossRef]

1976 (1)

V. E. Zakharov, S. L. Musher and A. M. Rubenchik, "Weak Langmuir turbulence of an isothermal plasma," Sov. Phys. JETP 42, 80 (1976).

Akhmediev, N.

N. Akhmediev and M. Karlsson, "Cherenkov radiation emitted by solitons in optical fibers," Phys. Rev. A 51, 2602-2607 (1995).
[CrossRef] [PubMed]

Babin, S. A.

Bang, O.

Barviau, B.

Beaugeois, M.

Biancalana, F.

Birks, T. A.

Biven, L.

A. C. Newell, S. Nazarenko and L. Biven, "Wave turbulence and intermittency," Physica D 152, 520-550 (2001).
[CrossRef]

Bouazaoui, M.

Bouwmans, G.

A. Kudlinski, G. Bouwmans, Y. Quiquempois and A. Mussot, "Experimental demonstration of multiwatt continuous-wave supercontinuum tailoring in photonic crystal fibers," Appl. Phys. Lett. 92, 141103 (2008).
[CrossRef]

Buljan, H.

Churkin, D. V.

Coen, S.

B. Barviau, B. Kibler, S. Coen and A. Picozzi, "Towards a thermodynamic description of supercontinuum generation," Opt. Lett. 33, 2833-2835 (2008).
[CrossRef] [PubMed]

G. Genty, S. Coen and J. M. Dudley, "Fiber supercontinuum sources," J. Opt. Soc. Am. B 24, 1771-1785 (2007).
[CrossRef]

J. M. Dudley, G. Genty and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006).
[CrossRef]

B. Kibler, J. M. Dudley and S. Coen, "Supercontinuum generation and nonlinear pulse propagation in photonic crystal fiber: influence of the frequency-dependent effective mode area," Appl. Phys. B 81, 337-342 (2005).
[CrossRef]

Connaughton, C.

C. Connaughton, C. Josserand, A. Picozzi, Y. Pomeau, and S. Rica, "Condensation of Classical Nonlinear Waves," Phys. Rev. Lett. 95, 263901 (2005).
[CrossRef]

Courvoisier, F.

B. Kibler, P.-A. Lacourt, F. Courvoisier and J. M. Dudley, "Soliton spectral tunnelling in photonic crystal fibre with sub-wavelength core defect," Electron. Lett. 43, 967-968 (2007).
[CrossRef]

Cumberland, B. A.

Dias, F.

V. Zakharov, F. Dias and A. Pushkarev, "One dimensional wave turbulence," Phys. Rep. 398, 1 (2004).
[CrossRef]

Dudley, J. M.

B. Kibler, P.-A. Lacourt, F. Courvoisier and J. M. Dudley, "Soliton spectral tunnelling in photonic crystal fibre with sub-wavelength core defect," Electron. Lett. 43, 967-968 (2007).
[CrossRef]

G. Genty, S. Coen and J. M. Dudley, "Fiber supercontinuum sources," J. Opt. Soc. Am. B 24, 1771-1785 (2007).
[CrossRef]

J. M. Dudley, G. Genty and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006).
[CrossRef]

B. Kibler, J. M. Dudley and S. Coen, "Supercontinuum generation and nonlinear pulse propagation in photonic crystal fiber: influence of the frequency-dependent effective mode area," Appl. Phys. B 81, 337-342 (2005).
[CrossRef]

Dyachenko, S.

S. Dyachenko, A. C. Newell, A. Pushkarev, and V. E. Zakharov, "Optical turbulence: weak turbulence, condensates and collapsing filaments in the nonlinear Schrödinger equation," Physica D 57, 96-160 (1992).
[CrossRef]

Efimov, A.

Finot, C.

B. Kibler, C. Finot, G. Gadret, G. Millot, J. Wojcik, M. Szpulak and W. Urbanczyk, "Second zero dispersion wavelength measurement through soliton self-frequency shift compensation in suspended core fibre," Electron. Lett. 44, 1370-1371 (2008).
[CrossRef]

Frosz, M.H.

Gadret, G.

B. Kibler, C. Finot, G. Gadret, G. Millot, J. Wojcik, M. Szpulak and W. Urbanczyk, "Second zero dispersion wavelength measurement through soliton self-frequency shift compensation in suspended core fibre," Electron. Lett. 44, 1370-1371 (2008).
[CrossRef]

Genty, G.

G. Genty, S. Coen and J. M. Dudley, "Fiber supercontinuum sources," J. Opt. Soc. Am. B 24, 1771-1785 (2007).
[CrossRef]

J. M. Dudley, G. Genty and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006).
[CrossRef]

Gorbach, A. V.

A. V. Gorbach and D. V. Skryabin, "Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres," Nat. Photonics 1, 653-657 (2007).
[CrossRef]

A. V. Gorbach and D. V. Skryabin, "Spectral discrete solitons and localization in frequency space," Opt. Lett. 31, 3309-3311 (2006).
[CrossRef] [PubMed]

Hénon, M.

C. Montes, J. Peyraud and M. Hénon, "One-dimensional boson soliton collisions," Phys. Fluids 22, 176 (1979).
[CrossRef]

Ismagulov, A. E.

Jauslin, H. R.

S. Lagrange, H. R. Jauslin and A. Picozzi, "Thermalization of the dispersive three-wave interaction," Europhys. Lett. 79, 64001 (2007).
[CrossRef]

S. Pitois, S. Lagrange, H. R. Jauslin, and A. Picozzi, "Velocity Locking of Incoherent Nonlinear Wave Packets," Phys. Rev. Lett. 97, 033902 (2006).
[CrossRef] [PubMed]

Joly, N.

Josserand, C.

C. Connaughton, C. Josserand, A. Picozzi, Y. Pomeau, and S. Rica, "Condensation of Classical Nonlinear Waves," Phys. Rev. Lett. 95, 263901 (2005).
[CrossRef]

Kablukov, S. I.

Karlsson, M.

N. Akhmediev and M. Karlsson, "Cherenkov radiation emitted by solitons in optical fibers," Phys. Rev. A 51, 2602-2607 (1995).
[CrossRef] [PubMed]

Kibler, B.

B. Kibler, C. Finot, G. Gadret, G. Millot, J. Wojcik, M. Szpulak and W. Urbanczyk, "Second zero dispersion wavelength measurement through soliton self-frequency shift compensation in suspended core fibre," Electron. Lett. 44, 1370-1371 (2008).
[CrossRef]

B. Barviau, B. Kibler, S. Coen and A. Picozzi, "Towards a thermodynamic description of supercontinuum generation," Opt. Lett. 33, 2833-2835 (2008).
[CrossRef] [PubMed]

B. Kibler, P.-A. Lacourt, F. Courvoisier and J. M. Dudley, "Soliton spectral tunnelling in photonic crystal fibre with sub-wavelength core defect," Electron. Lett. 43, 967-968 (2007).
[CrossRef]

B. Kibler, J. M. Dudley and S. Coen, "Supercontinuum generation and nonlinear pulse propagation in photonic crystal fiber: influence of the frequency-dependent effective mode area," Appl. Phys. B 81, 337-342 (2005).
[CrossRef]

Knight, J. C.

Kudlinski, A.

A. Kudlinski, G. Bouwmans, Y. Quiquempois and A. Mussot, "Experimental demonstration of multiwatt continuous-wave supercontinuum tailoring in photonic crystal fibers," Appl. Phys. Lett. 92, 141103 (2008).
[CrossRef]

Lacourt, P.-A.

B. Kibler, P.-A. Lacourt, F. Courvoisier and J. M. Dudley, "Soliton spectral tunnelling in photonic crystal fibre with sub-wavelength core defect," Electron. Lett. 43, 967-968 (2007).
[CrossRef]

Lagrange, S.

S. Lagrange, H. R. Jauslin and A. Picozzi, "Thermalization of the dispersive three-wave interaction," Europhys. Lett. 79, 64001 (2007).
[CrossRef]

S. Pitois, S. Lagrange, H. R. Jauslin, and A. Picozzi, "Velocity Locking of Incoherent Nonlinear Wave Packets," Phys. Rev. Lett. 97, 033902 (2006).
[CrossRef] [PubMed]

Levi, L.

Luan, F.

D. V. Skryabin, F. Luan, J. C. Knight and P. St. J. Russell, "Soliton self-frequency shift cancellation in photonic crystal fibers," Science 301, 1705-1708 (2003).
[CrossRef] [PubMed]

Manela, O.

Millot, G.

A. Picozzi, S. Pitois and G. Millot, "Spectral incoherent solitons: a localized soliton behavior in the frequency domain," Phys. Rev. Lett. 101, 093901 (2008).
[CrossRef] [PubMed]

B. Kibler, C. Finot, G. Gadret, G. Millot, J. Wojcik, M. Szpulak and W. Urbanczyk, "Second zero dispersion wavelength measurement through soliton self-frequency shift compensation in suspended core fibre," Electron. Lett. 44, 1370-1371 (2008).
[CrossRef]

S. Pitois and G. Millot, "Experimental observation of a new modulational instability spectral window induced by fourth-order dispersion in a normally dispersive single-mode optical fiber," Opt. Commun. 226, 415-422 (2003).
[CrossRef]

Montes, C.

C. Montes, "Photon soliton and fine structure due to nonlinear Compton scattering," Phys. Rev. A 20, 1081 (1979).
[CrossRef]

C. Montes, J. Peyraud and M. Hénon, "One-dimensional boson soliton collisions," Phys. Fluids 22, 176 (1979).
[CrossRef]

Moselund, P.M.

Musher, S. L.

S .L. Musher, A. M. Rubenchik and V. E. Zakharov, "Weak Langmuir turbulence," Phys. Reports 252, 177 (1995).
[CrossRef]

V. E. Zakharov, S. L. Musher and A. M. Rubenchik, "Weak Langmuir turbulence of an isothermal plasma," Sov. Phys. JETP 42, 80 (1976).

Mussot, A.

A. Kudlinski, G. Bouwmans, Y. Quiquempois and A. Mussot, "Experimental demonstration of multiwatt continuous-wave supercontinuum tailoring in photonic crystal fibers," Appl. Phys. Lett. 92, 141103 (2008).
[CrossRef]

A. Mussot, M. Beaugeois, M. Bouazaoui and T. Sylvestre, "Tailoring CW supercontinuum generation in microstructured fibers with two-zero dispersion wavelengths," Opt. Express 15, 11553-11563 (2007), >http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-18-11553.
[CrossRef] [PubMed]

Nazarenko, S.

A. C. Newell, S. Nazarenko and L. Biven, "Wave turbulence and intermittency," Physica D 152, 520-550 (2001).
[CrossRef]

Newell, A. C.

A. C. Newell, S. Nazarenko and L. Biven, "Wave turbulence and intermittency," Physica D 152, 520-550 (2001).
[CrossRef]

S. Dyachenko, A. C. Newell, A. Pushkarev, and V. E. Zakharov, "Optical turbulence: weak turbulence, condensates and collapsing filaments in the nonlinear Schrödinger equation," Physica D 57, 96-160 (1992).
[CrossRef]

Omenetto, F. G.

Peyraud, J.

C. Montes, J. Peyraud and M. Hénon, "One-dimensional boson soliton collisions," Phys. Fluids 22, 176 (1979).
[CrossRef]

Picozzi, A.

A. Picozzi and S. Rica, "Coherence absorption and condensation induced by thermalization of incoherent nonlinear fields," Europhys. Lett. 84, 34004 (2008).
[CrossRef]

A. Picozzi, S. Pitois and G. Millot, "Spectral incoherent solitons: a localized soliton behavior in the frequency domain," Phys. Rev. Lett. 101, 093901 (2008).
[CrossRef] [PubMed]

B. Barviau, B. Kibler, S. Coen and A. Picozzi, "Towards a thermodynamic description of supercontinuum generation," Opt. Lett. 33, 2833-2835 (2008).
[CrossRef] [PubMed]

A. Picozzi, "Spontaneous polarization induced by natural thermalization of incoherent light," Opt. Express 16, 17171-17185 (2008), >http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-22-17171.
[CrossRef] [PubMed]

A. Picozzi, "Towards a nonequilibrium thermodynamic description of incoherent nonlinear optics," Opt. Express 15, 9063-9083 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-14-9063.
[CrossRef] [PubMed]

S. Lagrange, H. R. Jauslin and A. Picozzi, "Thermalization of the dispersive three-wave interaction," Europhys. Lett. 79, 64001 (2007).
[CrossRef]

S. Pitois, S. Lagrange, H. R. Jauslin, and A. Picozzi, "Velocity Locking of Incoherent Nonlinear Wave Packets," Phys. Rev. Lett. 97, 033902 (2006).
[CrossRef] [PubMed]

C. Connaughton, C. Josserand, A. Picozzi, Y. Pomeau, and S. Rica, "Condensation of Classical Nonlinear Waves," Phys. Rev. Lett. 95, 263901 (2005).
[CrossRef]

Pitois, S.

A. Picozzi, S. Pitois and G. Millot, "Spectral incoherent solitons: a localized soliton behavior in the frequency domain," Phys. Rev. Lett. 101, 093901 (2008).
[CrossRef] [PubMed]

S. Pitois, S. Lagrange, H. R. Jauslin, and A. Picozzi, "Velocity Locking of Incoherent Nonlinear Wave Packets," Phys. Rev. Lett. 97, 033902 (2006).
[CrossRef] [PubMed]

S. Pitois and G. Millot, "Experimental observation of a new modulational instability spectral window induced by fourth-order dispersion in a normally dispersive single-mode optical fiber," Opt. Commun. 226, 415-422 (2003).
[CrossRef]

Podivilov, E. V.

Pomeau, Y.

C. Connaughton, C. Josserand, A. Picozzi, Y. Pomeau, and S. Rica, "Condensation of Classical Nonlinear Waves," Phys. Rev. Lett. 95, 263901 (2005).
[CrossRef]

Popov, S. V.

Pushkarev, A.

V. Zakharov, F. Dias and A. Pushkarev, "One dimensional wave turbulence," Phys. Rep. 398, 1 (2004).
[CrossRef]

S. Dyachenko, A. C. Newell, A. Pushkarev, and V. E. Zakharov, "Optical turbulence: weak turbulence, condensates and collapsing filaments in the nonlinear Schrödinger equation," Physica D 57, 96-160 (1992).
[CrossRef]

Quiquempois, Y.

A. Kudlinski, G. Bouwmans, Y. Quiquempois and A. Mussot, "Experimental demonstration of multiwatt continuous-wave supercontinuum tailoring in photonic crystal fibers," Appl. Phys. Lett. 92, 141103 (2008).
[CrossRef]

Ranka, J. K.

Rica, S.

A. Picozzi and S. Rica, "Coherence absorption and condensation induced by thermalization of incoherent nonlinear fields," Europhys. Lett. 84, 34004 (2008).
[CrossRef]

C. Connaughton, C. Josserand, A. Picozzi, Y. Pomeau, and S. Rica, "Condensation of Classical Nonlinear Waves," Phys. Rev. Lett. 95, 263901 (2005).
[CrossRef]

Rubenchik, A. M.

S .L. Musher, A. M. Rubenchik and V. E. Zakharov, "Weak Langmuir turbulence," Phys. Reports 252, 177 (1995).
[CrossRef]

V. E. Zakharov, S. L. Musher and A. M. Rubenchik, "Weak Langmuir turbulence of an isothermal plasma," Sov. Phys. JETP 42, 80 (1976).

Rulkov, A. B.

Russell, P. St. J.

Schwartz, T.

Segev, M.

Skryabin, D. V.

A. V. Gorbach and D. V. Skryabin, "Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres," Nat. Photonics 1, 653-657 (2007).
[CrossRef]

A. V. Gorbach and D. V. Skryabin, "Spectral discrete solitons and localization in frequency space," Opt. Lett. 31, 3309-3311 (2006).
[CrossRef] [PubMed]

D. V. Skryabin, F. Luan, J. C. Knight and P. St. J. Russell, "Soliton self-frequency shift cancellation in photonic crystal fibers," Science 301, 1705-1708 (2003).
[CrossRef] [PubMed]

Stentz, A. J.

Sylvestre, T.

Szpulak, M.

B. Kibler, C. Finot, G. Gadret, G. Millot, J. Wojcik, M. Szpulak and W. Urbanczyk, "Second zero dispersion wavelength measurement through soliton self-frequency shift compensation in suspended core fibre," Electron. Lett. 44, 1370-1371 (2008).
[CrossRef]

Taylor, A. J.

Taylor, J. R.

Thomsen, C.L.

Travers, J. C.

Urbanczyk, W.

B. Kibler, C. Finot, G. Gadret, G. Millot, J. Wojcik, M. Szpulak and W. Urbanczyk, "Second zero dispersion wavelength measurement through soliton self-frequency shift compensation in suspended core fibre," Electron. Lett. 44, 1370-1371 (2008).
[CrossRef]

Wadsworth, W. J.

Windeler, R. S.

Wojcik, J.

B. Kibler, C. Finot, G. Gadret, G. Millot, J. Wojcik, M. Szpulak and W. Urbanczyk, "Second zero dispersion wavelength measurement through soliton self-frequency shift compensation in suspended core fibre," Electron. Lett. 44, 1370-1371 (2008).
[CrossRef]

Zakharov, V.

V. Zakharov, F. Dias and A. Pushkarev, "One dimensional wave turbulence," Phys. Rep. 398, 1 (2004).
[CrossRef]

Zakharov, V. E.

S .L. Musher, A. M. Rubenchik and V. E. Zakharov, "Weak Langmuir turbulence," Phys. Reports 252, 177 (1995).
[CrossRef]

S. Dyachenko, A. C. Newell, A. Pushkarev, and V. E. Zakharov, "Optical turbulence: weak turbulence, condensates and collapsing filaments in the nonlinear Schrödinger equation," Physica D 57, 96-160 (1992).
[CrossRef]

V. E. Zakharov, S. L. Musher and A. M. Rubenchik, "Weak Langmuir turbulence of an isothermal plasma," Sov. Phys. JETP 42, 80 (1976).

Appl. Phys. B (1)

B. Kibler, J. M. Dudley and S. Coen, "Supercontinuum generation and nonlinear pulse propagation in photonic crystal fiber: influence of the frequency-dependent effective mode area," Appl. Phys. B 81, 337-342 (2005).
[CrossRef]

Appl. Phys. Lett. (1)

A. Kudlinski, G. Bouwmans, Y. Quiquempois and A. Mussot, "Experimental demonstration of multiwatt continuous-wave supercontinuum tailoring in photonic crystal fibers," Appl. Phys. Lett. 92, 141103 (2008).
[CrossRef]

Electron. Lett. (2)

B. Kibler, P.-A. Lacourt, F. Courvoisier and J. M. Dudley, "Soliton spectral tunnelling in photonic crystal fibre with sub-wavelength core defect," Electron. Lett. 43, 967-968 (2007).
[CrossRef]

B. Kibler, C. Finot, G. Gadret, G. Millot, J. Wojcik, M. Szpulak and W. Urbanczyk, "Second zero dispersion wavelength measurement through soliton self-frequency shift compensation in suspended core fibre," Electron. Lett. 44, 1370-1371 (2008).
[CrossRef]

Europhys. Lett. (2)

A. Picozzi and S. Rica, "Coherence absorption and condensation induced by thermalization of incoherent nonlinear fields," Europhys. Lett. 84, 34004 (2008).
[CrossRef]

S. Lagrange, H. R. Jauslin and A. Picozzi, "Thermalization of the dispersive three-wave interaction," Europhys. Lett. 79, 64001 (2007).
[CrossRef]

J. Opt. Soc. Am. B (2)

Nat. Photonics (1)

A. V. Gorbach and D. V. Skryabin, "Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres," Nat. Photonics 1, 653-657 (2007).
[CrossRef]

Opt. Commun. (1)

S. Pitois and G. Millot, "Experimental observation of a new modulational instability spectral window induced by fourth-order dispersion in a normally dispersive single-mode optical fiber," Opt. Commun. 226, 415-422 (2003).
[CrossRef]

Opt. Express (9)

P. M. Moselund, M. H. Frosz, C. L. Thomsen and O. Bang, "Back-seeding of higher order gain processes in picosecond supercontinuum generation," Opt. Express 16, 11954-11968 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-16-11954.
[CrossRef] [PubMed]

A. Picozzi, "Towards a nonequilibrium thermodynamic description of incoherent nonlinear optics," Opt. Express 15, 9063-9083 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-14-9063.
[CrossRef] [PubMed]

A. Picozzi, "Spontaneous polarization induced by natural thermalization of incoherent light," Opt. Express 16, 17171-17185 (2008), >http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-22-17171.
[CrossRef] [PubMed]

L. Levi, T. Schwartz, O. Manela, M. Segev, and H. Buljan, "Spontaneous pattern formation upon incoherent waves: From modulation-instability to steady-state," Opt. Express 16, 7818-7831 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-11-7818.
[CrossRef] [PubMed]

A. Efimov, A. J. Taylor, F. G. Omenetto, J. C. Knight, W. J. Wadsworth and P. St. J. Russell, "Phase-matched third harmonic generation in microstructured fibers," Opt. Express 11, 2567-2576 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-20-2567.
[CrossRef] [PubMed]

W. J. Wadsworth, N. Joly, J. C. Knight, T. A. Birks, F. Biancalana and P. St. J. Russell, "Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres," Opt. Express 12, 299-309 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-2-299.
[CrossRef] [PubMed]

B. A. Cumberland, J. C. Travers, S. V. Popov and J. R. Taylor, "29 W High power CW supercontinuum source," Opt. Express 16, 5964-5972 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-8-5954.
[CrossRef]

J. C. Travers, A. B. Rulkov, B. A. Cumberland, S. V. Popov and J. R. Taylor, "Visible supercontinuum generation in photonic crystal fibers with a 400 W continuous wave fiber laser," Opt. Express 16, 14435-14447 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-19-14435.
[CrossRef] [PubMed]

A. Mussot, M. Beaugeois, M. Bouazaoui and T. Sylvestre, "Tailoring CW supercontinuum generation in microstructured fibers with two-zero dispersion wavelengths," Opt. Express 15, 11553-11563 (2007), >http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-18-11553.
[CrossRef] [PubMed]

Opt. Lett. (3)

Phys. Fluids (1)

C. Montes, J. Peyraud and M. Hénon, "One-dimensional boson soliton collisions," Phys. Fluids 22, 176 (1979).
[CrossRef]

Phys. Rep. (1)

V. Zakharov, F. Dias and A. Pushkarev, "One dimensional wave turbulence," Phys. Rep. 398, 1 (2004).
[CrossRef]

Phys. Reports (1)

S .L. Musher, A. M. Rubenchik and V. E. Zakharov, "Weak Langmuir turbulence," Phys. Reports 252, 177 (1995).
[CrossRef]

Phys. Rev. A (2)

C. Montes, "Photon soliton and fine structure due to nonlinear Compton scattering," Phys. Rev. A 20, 1081 (1979).
[CrossRef]

N. Akhmediev and M. Karlsson, "Cherenkov radiation emitted by solitons in optical fibers," Phys. Rev. A 51, 2602-2607 (1995).
[CrossRef] [PubMed]

Phys. Rev. Lett. (3)

A. Picozzi, S. Pitois and G. Millot, "Spectral incoherent solitons: a localized soliton behavior in the frequency domain," Phys. Rev. Lett. 101, 093901 (2008).
[CrossRef] [PubMed]

C. Connaughton, C. Josserand, A. Picozzi, Y. Pomeau, and S. Rica, "Condensation of Classical Nonlinear Waves," Phys. Rev. Lett. 95, 263901 (2005).
[CrossRef]

S. Pitois, S. Lagrange, H. R. Jauslin, and A. Picozzi, "Velocity Locking of Incoherent Nonlinear Wave Packets," Phys. Rev. Lett. 97, 033902 (2006).
[CrossRef] [PubMed]

Physica D (2)

A. C. Newell, S. Nazarenko and L. Biven, "Wave turbulence and intermittency," Physica D 152, 520-550 (2001).
[CrossRef]

S. Dyachenko, A. C. Newell, A. Pushkarev, and V. E. Zakharov, "Optical turbulence: weak turbulence, condensates and collapsing filaments in the nonlinear Schrödinger equation," Physica D 57, 96-160 (1992).
[CrossRef]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006).
[CrossRef]

Science (1)

D. V. Skryabin, F. Luan, J. C. Knight and P. St. J. Russell, "Soliton self-frequency shift cancellation in photonic crystal fibers," Science 301, 1705-1708 (2003).
[CrossRef] [PubMed]

Sov. Phys. JETP (1)

V. E. Zakharov, S. L. Musher and A. M. Rubenchik, "Weak Langmuir turbulence of an isothermal plasma," Sov. Phys. JETP 42, 80 (1976).

Other (5)

V. Zakharov, V. L'vov and G. Falkovich, Kolmogorov Spectra of Turbulence I (Springer, Berlin, 1992).

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 4th Ed., 2006).

B. Barviau, B. Kibler and A. Picozzi, "Influence of self-steepening and higher-order dispersion on wave thermalization" (in preparation).

M. Le Bellac, F. Mortessagne and G. Batrouni, Equilibrium and Nonequilibrium Statistical Thermodynamics (Cambridge Univ. Press, 2004).
[CrossRef]

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, New York, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Calculated dispersion curve with the two zero dispersion wavelengths located at 1033 and 1209 nm. The scanning electron microscope image of the fiber cross-section is shown in the inset. (b) Calculated modulational instability gain (m-1) bands as a function of pump wavelength for the dispersion curve (a) and for an input peak power of 3.5 kW.

Fig. 2.
Fig. 2.

(a) Experimental results using a logarithmic intensity scale (dB) to illustrate the spectral evolution as a function of propagation distance in our 40-m-long PCF, for an input peak power about 3.5 kW. (b) Experimental output spectra obtained after 5 and 40 m of propagation. (c) Experimental spectra recorded after 40 m propagation in the PCF, as a function of the input pulse peak power. (d) Experimental output spectra at P0 = 0.5 kW and P0 = 3.5 kW. The white dashed lines show the two zero dispersion wavelengths of the optical fiber. ‘S’ indicates the position of the spectral incoherent soliton. Note in Fig. 2(a) the saturation of the spectral broadening in the high-frequency edge of the SC spectrum. (The video bandwidth of the spectrum analyzer was set to 100 Hz.)

Fig. 3.
Fig. 3.

(a) Numerical simulations of the GNLSE Eq.(1) with the dispersion curve of Fig. 1(a) and for an input power of 3.5 kW. The simulations have been realized with an initial Gaussian pulse of 60 ps, i.e. ~10 times shorter than the experimental pulses. (b) Numerical spectrum for both propagation lengths 5 and 40 m. (c-d) Same as in (a-b), except that the initial condition refers to a continuous wave and that the numerical simulation neglects the Raman, shock and loss terms, i.e., Eq.(1) for τs = α ^ = fR = 0. The white dashed lines show both fiber ZDWs. ‘S’ indicates the position of the spectral incoherent soliton. Note the development of the double peak structure in the evolution of the spectrum, a feature which constitutes a key signature of wave thermalization (see Sec. 5).

Fig. 4.
Fig. 4.

Comparison of the theoretical, numerical and experimental spectra in logarithmic scale. (a) Plot of the equilibrium spectrum neq(ω) given in Eq.(3) without adjustable parameters. (b) Spectrum obtained by solving numerically the NLSE, i.e., equation (1) without Raman, loss and shock terms (τs = α ^ = fR = 0) [see Fig. 3(e) at z = 40 m]. (c) Spectrum obtained by solving numerically the GNLSE equation (1) [see Fig. 3(a) at z = 8 m]. (d) Spectrum recorded in our experiment [see Fig. 2(a) at z = 8 m]. ‘S’ indicates the position of the spectral incoherent soliton. Note the good agreement of the frequencies of the spectral peaks. (e) Evolution of the nonequilibrium entropy during the propagation of the optical field corresponding to the simulation of the NLSE in (b): the process of entropy production saturates once the equilibrium state is reached, as described by the H-theorem of entropy growth.

Fig. 5.
Fig. 5.

(a) Numerical simulations of the NLSE showing the evolution of the spectra of the field (in logarithmic intensity) as a function of the input peak power in our 40-m-long PCF. (b) Numerical output spectra recorded for input peak powers of 0.5 and 3.5 kW. The white dashed lines show both fiber ZDWs. (c) Comparison of the thermodynamic equilibrium spectra predicted by the kinetic theory [Eq.(3)] with the numerical spectra of the NLSE. We note an appreciable discrepancy between theory and numerics at small power, which is due to the short (effective) nonlinear propagation length. Conversely, at higher powers, 40 m of propagation becomes sufficient for the field to reach thermal equilibrium.

Fig. 6.
Fig. 6.

(a) Experimental output spectrum obtained after 17 m of propagation in our PCF for an input peak power of 3.5 kW (the video bandwidth of the spectrum analyzer was set to 1 kHz). The left inset shows in particular the output spectrum of the spectral incoherent soliton, which reveals high intensity fluctuations. (b-c): Numerical spectrogram showing the temporal distribution of the spectral power after 17 m, obtained by solving the GNLSE, for a 60 ps input pulse (b), and a CW input (c). The white dashed lines show both fiber ZDWs. ‘S’ indicates the position of the spectral incoherent soliton. The reference pulse used to compute the spectrogram is a 20-fs sech pulse.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

A z = i m 2 i m β m m ! m A t m + [ 1 + i τ s t ] ( A ( z , t ) + R ( t ) A ( z , t t ) 2 dt ) α ̂ A .
k ( ω ) = m 2 β m m ! ω m .
n eq ( ω ) = T k ( ω ) + λω μ ,

Metrics