Abstract

Nonlinear optical properties of phosphorus (P) -doped silicon (Si) nanocrystals are studied by z-scan technique in femtosecond regime at around 1.6 eV. The nonlinear refractive index (n 2) and nonlinear absorption coefficient (β) of Si-ncs are significantly enhanced by P-doping. The enhancement of n 2 is accompanied by the increase of the linear absorption in the same energy region, suggesting that impurity-related energy states are responsible for the enhancement of the nonlinear optical response.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. T. Canham, "Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers," Appl. Phys. Lett. 57, 1046-1048 (1990).
    [CrossRef]
  2. S. Takeoka, M. Fujii, and S. Hayashi, "Size-dependent photoluminescence from surface-oxidized Si nanocrystals in a weak confinement regime," Phys. Rev. B 62, 16820-16825 (2000).
    [CrossRef]
  3. C. Delerue, M. Lannoo, G. Allan, and E. Martin, "Theoretical descriptions of porous silicon," Thin Solid Films 255, 27-34 (1995).
    [CrossRef]
  4. P. Bettotti, M. Cazzanelli, L. Dal Negro, B. Danese, Z. Gaburro, C. J. Oton, G. Vijaya Prakash, and L. Pavesi, "Silicon nanostructures for photonics," J. Phys:Condens. Matter 14, 8253-8281 (2002).
    [CrossRef]
  5. L. Pavesi, Z. Gaburro, L. Dal Negro, P. bettotti, G. Vijaya Prakash, M. Cazzaneli, and C. J. Oton, "Nanostructured silicon as a photonic material," Opt. Lasers Eng. J. Opt. Soc. Am. B 39, 345-367 (2003).
    [CrossRef]
  6. S. Moon, A. Lin, B.H. Kim, P. R. Watekar, and W.-T. Han, "Linear and nonlinear optical properties of the optical fiber doped with silicon nano-particles," J. Non-Cryst. Solids 354, 602-606 (2008).
    [CrossRef]
  7. S. Lettieri and P. Maddalena, "Nonresonant Kerr effect in microporous silicon: Nonbulk dispersive behavior of below band gap of ?(3)," J. Appl. Phys. 91, 5564-5570 (2002).
    [CrossRef]
  8. Y. Kanemitsu, S. Okamoto, and A. Mito, "Third-order nonlinear optical susceptibility and photoluminescence in porous silicon," Phys. Rev. B 52, 10752-10755 (1995).
    [CrossRef]
  9. S. Hemandez, P. Pellegrino, A. Martinez, Y. lebour, B. Garrido, R. Spano, M. Cazzanelli, N. Daldosso, L. Pavesi, E. Jordana, and J. M. Fedeli, "Linear and nonlinear optical properties of Si nanocrystals in SiO2 deposited by plasma-enhanced chemical-vapor deposition," J. Appl. Phys. 103, 064309 (2008).
    [CrossRef]
  10. G. Vijaya Prakash, M. Cazzaneli, Z. Gaburro, L. Pavesi, and F. Lacona, G. Franzo, and F. Priolo., "Nonlinear optical properties of silicon nanocrystals grown by plasma-enhanced chemical vapor deposition," J. Appl. Phys. 91, 4607-4610 (2002).
    [CrossRef]
  11. K. Imakita, M. Ito, M. Fujii, and S. Hayashi, J. Appl. Phys. (to be published).
  12. S. Vijayalakshmi, A. Lan, Z. lqbal, and H. Grebel, "Nonlinear optical properties of laser ablated silicon nanostructures," J. Appl. Phys. 92, 2490-2494 (2002).
    [CrossRef]
  13. S. Vijayalakshmi, M. A. George, and H. Grebel, "Nonlinear optical properties of silicon nanoclusters," Appl. Phys. Lett. 70, 708-710 (1997).
    [CrossRef]
  14. M. Yin, H.P. Li, S.H. Tang, and W. Ji, "Determination of nonlinear absorption and refraction by single Z-scan method," Appl. Phys. B 70, 587-591 (2000).
    [CrossRef]
  15. M. Fujii, Y. Yamaguchi, Y. Takase, K. Ninomiya, and S. Hayashi, "Control of photoluminescence properties of Si nanocrystals by simultaneously doping n- and p-type impurities," Appl. Phys. Lett. 85, 1158-1160 (2004).
    [CrossRef]
  16. M. Fujii, Y. Yamaguchi, Y. Takase, K. Ninomiya, and S. Hayashi, "Photoluminescence from impurity codoped and compensated Si nanocrystals," Appl. Phys. Lett. 87, 211919 (2005).
    [CrossRef]
  17. A. Mimura, M. Fujii, S. Hayashi, D. Kovalev, and F. Koch, "Photoluminescence and free-electron absorption in heavily phosphorus-doped Si nanocrystals," Phys. Rev. B 62, 12625-12627 (2000).
    [CrossRef]
  18. B. J. Pawlak, T. Gregorkiewicz, C. A. J. Ammerlaan, W. Takkenberg, F. D. Tichelaar, and P. F. A. Alkemade, "Experimental investigation of band structure modification in silicon nanocrystals," Phys. Rev. B 64, 115308 (2001).
    [CrossRef]
  19. M. Fujii, A. Mimura, and S. Hayashi, "Hyperfine Structure of the Electron Spin Resonance of Phosphorus-Doped Si Nanocrystals," Phys. Rev. Lett. 89, 206805 (2002).
    [CrossRef] [PubMed]
  20. G. Cantele, E. Degoli, E. Luppi, R. Magori, D. Ninno, G. Iadonisi, and S. Ossicini, "First-principles study of n -and p -doped silicon nanoclusters," Phys. Rev. B 72, 113303 (2005).
    [CrossRef]
  21. G. Allan, C. Delerue, M. Lannoo, and E. Martin, "Hydrogenic impurity levels, dielectric constant, and Coulomb charging effects in silicon crystallites," Phys. Rev. B 52, 11982-11988 (1995).
    [CrossRef]
  22. D. V. Melnikov and J. R. Chelikowsky, "Quantum Confinement in Phosphorus-Doped Silicon Nanocrystals," Phys. Rev. Lett. 92, 046802 (2004).
    [CrossRef] [PubMed]
  23. S. Ossicini, F. Iori, E. Degoli, E. Luppi, R. Magri, R. Poli, G. Cantele, F. Trani, and D. Ninno, "Understanding Doping In Silicon Nanostructures," IEEE J. Sel. Top. Quantum Electron. 12, 1585-1591 (2006).
    [CrossRef]
  24. M. Fujii, S. Hayashi, and K. Yamamoto, "Photoluminescence from B-doped Si nanocrystals," J. Appl. Phys. 83, 7953-7956 (1998).
    [CrossRef]
  25. D. A. G. Bruggeman,"Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen," Ann. Phys. 24, 636-679 (1935).
    [CrossRef]
  26. G. Lubberts, B. C. Burkey, F. Moser, and E. A. Trabka, "Optical properties of phosphorus-doped polycrystalline silicon layers," J. Appl. Phys. 52, 6870 (1981).
    [CrossRef]
  27. M. Fuji, D. Kovalev, J. Diener, F. Koch, S. Takkeoka, and S. Hayashi, "Breakdown of the k-conservation rule in Si1?xGex alloy nanocrystals: Resonant photoluminescence study," J. Appl. Phys. 88, 5772-5776 (2000).
    [CrossRef]
  28. M. Fujii, A. Mimura, and S. Hayashi, "Improvement in photoluminescence efficiency of SiO2 films containing Si nanocrystals by P doping: An electron spin resonance study," J. Appl. Phys. 87, 1855-1857 (2000).
    [CrossRef]
  29. P. E. Schmid, "Optical absorption in heavily doped silicon," Phys. Rev. B 23, 5531-5536 (1981).
    [CrossRef]
  30. V. Sa-yakanit and H. R. Glyde, "Impurity-band density of states in heavily doped semiconductors: A variational calculation," Phys. Rev. B 22, 6222-6232 (1980).
    [CrossRef]
  31. E. L. de Oliveira, E. L. Albuquerque, J. S. de Sousa, and G. A. Farias, "Radiative transitions in P- and B-doped silicon nanocrystals," Appl. Phys. Lett. 94, 103114 (2009).
    [CrossRef]
  32. V. I. Klimov, Ch. J. Schwarz, and D. W. McBranch, and C. W. White, "Initial carrier relaxation dynamics in ionimplanted Si nanocrystals: Femtosecond transient absorption study," Appl. Phys. Lett. 73, 2603-2605 (1998).
    [CrossRef]
  33. S. Vijayalakshumi, H. Grebel, G. Yaglioglu, R. Pino, R. Dorsinville, and C. W. White, "Nonlinear optical response of Si nanostructures in a silica matrix," J. Appl. Phys. 88, 6418-6422 (2000).
    [CrossRef]
  34. S. Vijayalakshmi, H. Grebel, Z. lqbal, and C. W. White, "Artificial dielectrics: Nonlinear properties of Si nanoclusters formed by ion implantation in SiO2 glassy matrix," J. Appl. Phys. 84, 6502-6506 (1998).
    [CrossRef]
  35. R. C. Miller, "Optical second harmonic generation in piezoelectric crystals," Appl. Phys. Lett. 5, 17 (1964).
    [CrossRef]
  36. C. C. Wang, "Empirical Relation between the Linear and the Third-Order Nonlinear Optical Susceptibilities," Phys. Rev. B 2, 2045-2048 (1970).
    [CrossRef]
  37. S. Kim, T. Yoko and S. Sakka, "Linear and nonlinear optical properties of TeO2 glass," J. Am. Ceram. Soc. 76, 2486-2490 (2005).
    [CrossRef]
  38. N. Sugimoto, H. Kanbara, S. Fujiwara, K. Tanaka, Y. Shimizugawa, and K. Hirao, "Third-order optical nonlinearities and their ultrafast response in Bi2O3-B2O3-SiO2 glasses," J. Opt. Soc. Am. B 16, 1904-1908 (1999).
    [CrossRef]
  39. G. Lenz, J. Zimmermann, T. Katsufuji, M. E. Lines, H. Y. Hwang, S. Spalter, R. E. Slusher, S.-W. Cheong, J. S. Sanghera, and I. D. Aggarwal, "Large Kerr effect in bulk Se-based chalcogenide glasses," Opt. Lett. 25, 254-256 (2000).
    [CrossRef]
  40. D. W. Hall, M. A. Newhouse, N. F. Borrelli, W. H. Dumbaugh, and D. L. Weidman, "Nonlinear optical susceptibilities of high-index glasses," Appl. Phys. Lett. 54, 1293 (1989).
    [CrossRef]

2009 (1)

E. L. de Oliveira, E. L. Albuquerque, J. S. de Sousa, and G. A. Farias, "Radiative transitions in P- and B-doped silicon nanocrystals," Appl. Phys. Lett. 94, 103114 (2009).
[CrossRef]

2008 (2)

S. Hemandez, P. Pellegrino, A. Martinez, Y. lebour, B. Garrido, R. Spano, M. Cazzanelli, N. Daldosso, L. Pavesi, E. Jordana, and J. M. Fedeli, "Linear and nonlinear optical properties of Si nanocrystals in SiO2 deposited by plasma-enhanced chemical-vapor deposition," J. Appl. Phys. 103, 064309 (2008).
[CrossRef]

S. Moon, A. Lin, B.H. Kim, P. R. Watekar, and W.-T. Han, "Linear and nonlinear optical properties of the optical fiber doped with silicon nano-particles," J. Non-Cryst. Solids 354, 602-606 (2008).
[CrossRef]

2006 (1)

S. Ossicini, F. Iori, E. Degoli, E. Luppi, R. Magri, R. Poli, G. Cantele, F. Trani, and D. Ninno, "Understanding Doping In Silicon Nanostructures," IEEE J. Sel. Top. Quantum Electron. 12, 1585-1591 (2006).
[CrossRef]

2005 (3)

G. Cantele, E. Degoli, E. Luppi, R. Magori, D. Ninno, G. Iadonisi, and S. Ossicini, "First-principles study of n -and p -doped silicon nanoclusters," Phys. Rev. B 72, 113303 (2005).
[CrossRef]

M. Fujii, Y. Yamaguchi, Y. Takase, K. Ninomiya, and S. Hayashi, "Photoluminescence from impurity codoped and compensated Si nanocrystals," Appl. Phys. Lett. 87, 211919 (2005).
[CrossRef]

S. Kim, T. Yoko and S. Sakka, "Linear and nonlinear optical properties of TeO2 glass," J. Am. Ceram. Soc. 76, 2486-2490 (2005).
[CrossRef]

2004 (2)

M. Fujii, Y. Yamaguchi, Y. Takase, K. Ninomiya, and S. Hayashi, "Control of photoluminescence properties of Si nanocrystals by simultaneously doping n- and p-type impurities," Appl. Phys. Lett. 85, 1158-1160 (2004).
[CrossRef]

D. V. Melnikov and J. R. Chelikowsky, "Quantum Confinement in Phosphorus-Doped Silicon Nanocrystals," Phys. Rev. Lett. 92, 046802 (2004).
[CrossRef] [PubMed]

2003 (1)

L. Pavesi, Z. Gaburro, L. Dal Negro, P. bettotti, G. Vijaya Prakash, M. Cazzaneli, and C. J. Oton, "Nanostructured silicon as a photonic material," Opt. Lasers Eng. J. Opt. Soc. Am. B 39, 345-367 (2003).
[CrossRef]

2002 (5)

S. Lettieri and P. Maddalena, "Nonresonant Kerr effect in microporous silicon: Nonbulk dispersive behavior of below band gap of ?(3)," J. Appl. Phys. 91, 5564-5570 (2002).
[CrossRef]

G. Vijaya Prakash, M. Cazzaneli, Z. Gaburro, L. Pavesi, and F. Lacona, G. Franzo, and F. Priolo., "Nonlinear optical properties of silicon nanocrystals grown by plasma-enhanced chemical vapor deposition," J. Appl. Phys. 91, 4607-4610 (2002).
[CrossRef]

S. Vijayalakshmi, A. Lan, Z. lqbal, and H. Grebel, "Nonlinear optical properties of laser ablated silicon nanostructures," J. Appl. Phys. 92, 2490-2494 (2002).
[CrossRef]

P. Bettotti, M. Cazzanelli, L. Dal Negro, B. Danese, Z. Gaburro, C. J. Oton, G. Vijaya Prakash, and L. Pavesi, "Silicon nanostructures for photonics," J. Phys:Condens. Matter 14, 8253-8281 (2002).
[CrossRef]

M. Fujii, A. Mimura, and S. Hayashi, "Hyperfine Structure of the Electron Spin Resonance of Phosphorus-Doped Si Nanocrystals," Phys. Rev. Lett. 89, 206805 (2002).
[CrossRef] [PubMed]

2001 (1)

B. J. Pawlak, T. Gregorkiewicz, C. A. J. Ammerlaan, W. Takkenberg, F. D. Tichelaar, and P. F. A. Alkemade, "Experimental investigation of band structure modification in silicon nanocrystals," Phys. Rev. B 64, 115308 (2001).
[CrossRef]

2000 (7)

A. Mimura, M. Fujii, S. Hayashi, D. Kovalev, and F. Koch, "Photoluminescence and free-electron absorption in heavily phosphorus-doped Si nanocrystals," Phys. Rev. B 62, 12625-12627 (2000).
[CrossRef]

M. Yin, H.P. Li, S.H. Tang, and W. Ji, "Determination of nonlinear absorption and refraction by single Z-scan method," Appl. Phys. B 70, 587-591 (2000).
[CrossRef]

S. Takeoka, M. Fujii, and S. Hayashi, "Size-dependent photoluminescence from surface-oxidized Si nanocrystals in a weak confinement regime," Phys. Rev. B 62, 16820-16825 (2000).
[CrossRef]

M. Fuji, D. Kovalev, J. Diener, F. Koch, S. Takkeoka, and S. Hayashi, "Breakdown of the k-conservation rule in Si1?xGex alloy nanocrystals: Resonant photoluminescence study," J. Appl. Phys. 88, 5772-5776 (2000).
[CrossRef]

M. Fujii, A. Mimura, and S. Hayashi, "Improvement in photoluminescence efficiency of SiO2 films containing Si nanocrystals by P doping: An electron spin resonance study," J. Appl. Phys. 87, 1855-1857 (2000).
[CrossRef]

S. Vijayalakshumi, H. Grebel, G. Yaglioglu, R. Pino, R. Dorsinville, and C. W. White, "Nonlinear optical response of Si nanostructures in a silica matrix," J. Appl. Phys. 88, 6418-6422 (2000).
[CrossRef]

G. Lenz, J. Zimmermann, T. Katsufuji, M. E. Lines, H. Y. Hwang, S. Spalter, R. E. Slusher, S.-W. Cheong, J. S. Sanghera, and I. D. Aggarwal, "Large Kerr effect in bulk Se-based chalcogenide glasses," Opt. Lett. 25, 254-256 (2000).
[CrossRef]

1999 (1)

1998 (3)

S. Vijayalakshmi, H. Grebel, Z. lqbal, and C. W. White, "Artificial dielectrics: Nonlinear properties of Si nanoclusters formed by ion implantation in SiO2 glassy matrix," J. Appl. Phys. 84, 6502-6506 (1998).
[CrossRef]

M. Fujii, S. Hayashi, and K. Yamamoto, "Photoluminescence from B-doped Si nanocrystals," J. Appl. Phys. 83, 7953-7956 (1998).
[CrossRef]

V. I. Klimov, Ch. J. Schwarz, and D. W. McBranch, and C. W. White, "Initial carrier relaxation dynamics in ionimplanted Si nanocrystals: Femtosecond transient absorption study," Appl. Phys. Lett. 73, 2603-2605 (1998).
[CrossRef]

1997 (1)

S. Vijayalakshmi, M. A. George, and H. Grebel, "Nonlinear optical properties of silicon nanoclusters," Appl. Phys. Lett. 70, 708-710 (1997).
[CrossRef]

1995 (3)

C. Delerue, M. Lannoo, G. Allan, and E. Martin, "Theoretical descriptions of porous silicon," Thin Solid Films 255, 27-34 (1995).
[CrossRef]

Y. Kanemitsu, S. Okamoto, and A. Mito, "Third-order nonlinear optical susceptibility and photoluminescence in porous silicon," Phys. Rev. B 52, 10752-10755 (1995).
[CrossRef]

G. Allan, C. Delerue, M. Lannoo, and E. Martin, "Hydrogenic impurity levels, dielectric constant, and Coulomb charging effects in silicon crystallites," Phys. Rev. B 52, 11982-11988 (1995).
[CrossRef]

1990 (1)

L. T. Canham, "Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers," Appl. Phys. Lett. 57, 1046-1048 (1990).
[CrossRef]

1989 (1)

D. W. Hall, M. A. Newhouse, N. F. Borrelli, W. H. Dumbaugh, and D. L. Weidman, "Nonlinear optical susceptibilities of high-index glasses," Appl. Phys. Lett. 54, 1293 (1989).
[CrossRef]

1981 (2)

P. E. Schmid, "Optical absorption in heavily doped silicon," Phys. Rev. B 23, 5531-5536 (1981).
[CrossRef]

G. Lubberts, B. C. Burkey, F. Moser, and E. A. Trabka, "Optical properties of phosphorus-doped polycrystalline silicon layers," J. Appl. Phys. 52, 6870 (1981).
[CrossRef]

1980 (1)

V. Sa-yakanit and H. R. Glyde, "Impurity-band density of states in heavily doped semiconductors: A variational calculation," Phys. Rev. B 22, 6222-6232 (1980).
[CrossRef]

1970 (1)

C. C. Wang, "Empirical Relation between the Linear and the Third-Order Nonlinear Optical Susceptibilities," Phys. Rev. B 2, 2045-2048 (1970).
[CrossRef]

1964 (1)

R. C. Miller, "Optical second harmonic generation in piezoelectric crystals," Appl. Phys. Lett. 5, 17 (1964).
[CrossRef]

1935 (1)

D. A. G. Bruggeman,"Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen," Ann. Phys. 24, 636-679 (1935).
[CrossRef]

Aggarwal, I. D.

Albuquerque, E. L.

E. L. de Oliveira, E. L. Albuquerque, J. S. de Sousa, and G. A. Farias, "Radiative transitions in P- and B-doped silicon nanocrystals," Appl. Phys. Lett. 94, 103114 (2009).
[CrossRef]

Alkemade, P. F. A.

B. J. Pawlak, T. Gregorkiewicz, C. A. J. Ammerlaan, W. Takkenberg, F. D. Tichelaar, and P. F. A. Alkemade, "Experimental investigation of band structure modification in silicon nanocrystals," Phys. Rev. B 64, 115308 (2001).
[CrossRef]

Allan, G.

C. Delerue, M. Lannoo, G. Allan, and E. Martin, "Theoretical descriptions of porous silicon," Thin Solid Films 255, 27-34 (1995).
[CrossRef]

G. Allan, C. Delerue, M. Lannoo, and E. Martin, "Hydrogenic impurity levels, dielectric constant, and Coulomb charging effects in silicon crystallites," Phys. Rev. B 52, 11982-11988 (1995).
[CrossRef]

Ammerlaan, C. A. J.

B. J. Pawlak, T. Gregorkiewicz, C. A. J. Ammerlaan, W. Takkenberg, F. D. Tichelaar, and P. F. A. Alkemade, "Experimental investigation of band structure modification in silicon nanocrystals," Phys. Rev. B 64, 115308 (2001).
[CrossRef]

bettotti, P.

L. Pavesi, Z. Gaburro, L. Dal Negro, P. bettotti, G. Vijaya Prakash, M. Cazzaneli, and C. J. Oton, "Nanostructured silicon as a photonic material," Opt. Lasers Eng. J. Opt. Soc. Am. B 39, 345-367 (2003).
[CrossRef]

P. Bettotti, M. Cazzanelli, L. Dal Negro, B. Danese, Z. Gaburro, C. J. Oton, G. Vijaya Prakash, and L. Pavesi, "Silicon nanostructures for photonics," J. Phys:Condens. Matter 14, 8253-8281 (2002).
[CrossRef]

Borrelli, N. F.

D. W. Hall, M. A. Newhouse, N. F. Borrelli, W. H. Dumbaugh, and D. L. Weidman, "Nonlinear optical susceptibilities of high-index glasses," Appl. Phys. Lett. 54, 1293 (1989).
[CrossRef]

Bruggeman, D. A. G.

D. A. G. Bruggeman,"Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen," Ann. Phys. 24, 636-679 (1935).
[CrossRef]

Burkey, B. C.

G. Lubberts, B. C. Burkey, F. Moser, and E. A. Trabka, "Optical properties of phosphorus-doped polycrystalline silicon layers," J. Appl. Phys. 52, 6870 (1981).
[CrossRef]

Canham, L. T.

L. T. Canham, "Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers," Appl. Phys. Lett. 57, 1046-1048 (1990).
[CrossRef]

Cantele, G.

S. Ossicini, F. Iori, E. Degoli, E. Luppi, R. Magri, R. Poli, G. Cantele, F. Trani, and D. Ninno, "Understanding Doping In Silicon Nanostructures," IEEE J. Sel. Top. Quantum Electron. 12, 1585-1591 (2006).
[CrossRef]

G. Cantele, E. Degoli, E. Luppi, R. Magori, D. Ninno, G. Iadonisi, and S. Ossicini, "First-principles study of n -and p -doped silicon nanoclusters," Phys. Rev. B 72, 113303 (2005).
[CrossRef]

Cazzaneli, M.

L. Pavesi, Z. Gaburro, L. Dal Negro, P. bettotti, G. Vijaya Prakash, M. Cazzaneli, and C. J. Oton, "Nanostructured silicon as a photonic material," Opt. Lasers Eng. J. Opt. Soc. Am. B 39, 345-367 (2003).
[CrossRef]

G. Vijaya Prakash, M. Cazzaneli, Z. Gaburro, L. Pavesi, and F. Lacona, G. Franzo, and F. Priolo., "Nonlinear optical properties of silicon nanocrystals grown by plasma-enhanced chemical vapor deposition," J. Appl. Phys. 91, 4607-4610 (2002).
[CrossRef]

Cazzanelli, M.

S. Hemandez, P. Pellegrino, A. Martinez, Y. lebour, B. Garrido, R. Spano, M. Cazzanelli, N. Daldosso, L. Pavesi, E. Jordana, and J. M. Fedeli, "Linear and nonlinear optical properties of Si nanocrystals in SiO2 deposited by plasma-enhanced chemical-vapor deposition," J. Appl. Phys. 103, 064309 (2008).
[CrossRef]

P. Bettotti, M. Cazzanelli, L. Dal Negro, B. Danese, Z. Gaburro, C. J. Oton, G. Vijaya Prakash, and L. Pavesi, "Silicon nanostructures for photonics," J. Phys:Condens. Matter 14, 8253-8281 (2002).
[CrossRef]

Chelikowsky, J. R.

D. V. Melnikov and J. R. Chelikowsky, "Quantum Confinement in Phosphorus-Doped Silicon Nanocrystals," Phys. Rev. Lett. 92, 046802 (2004).
[CrossRef] [PubMed]

Cheong, S.-W.

Dal Negro, L.

L. Pavesi, Z. Gaburro, L. Dal Negro, P. bettotti, G. Vijaya Prakash, M. Cazzaneli, and C. J. Oton, "Nanostructured silicon as a photonic material," Opt. Lasers Eng. J. Opt. Soc. Am. B 39, 345-367 (2003).
[CrossRef]

P. Bettotti, M. Cazzanelli, L. Dal Negro, B. Danese, Z. Gaburro, C. J. Oton, G. Vijaya Prakash, and L. Pavesi, "Silicon nanostructures for photonics," J. Phys:Condens. Matter 14, 8253-8281 (2002).
[CrossRef]

Daldosso, N.

S. Hemandez, P. Pellegrino, A. Martinez, Y. lebour, B. Garrido, R. Spano, M. Cazzanelli, N. Daldosso, L. Pavesi, E. Jordana, and J. M. Fedeli, "Linear and nonlinear optical properties of Si nanocrystals in SiO2 deposited by plasma-enhanced chemical-vapor deposition," J. Appl. Phys. 103, 064309 (2008).
[CrossRef]

Danese, B.

P. Bettotti, M. Cazzanelli, L. Dal Negro, B. Danese, Z. Gaburro, C. J. Oton, G. Vijaya Prakash, and L. Pavesi, "Silicon nanostructures for photonics," J. Phys:Condens. Matter 14, 8253-8281 (2002).
[CrossRef]

de Oliveira, E. L.

E. L. de Oliveira, E. L. Albuquerque, J. S. de Sousa, and G. A. Farias, "Radiative transitions in P- and B-doped silicon nanocrystals," Appl. Phys. Lett. 94, 103114 (2009).
[CrossRef]

de Sousa, J. S.

E. L. de Oliveira, E. L. Albuquerque, J. S. de Sousa, and G. A. Farias, "Radiative transitions in P- and B-doped silicon nanocrystals," Appl. Phys. Lett. 94, 103114 (2009).
[CrossRef]

Degoli, E.

S. Ossicini, F. Iori, E. Degoli, E. Luppi, R. Magri, R. Poli, G. Cantele, F. Trani, and D. Ninno, "Understanding Doping In Silicon Nanostructures," IEEE J. Sel. Top. Quantum Electron. 12, 1585-1591 (2006).
[CrossRef]

G. Cantele, E. Degoli, E. Luppi, R. Magori, D. Ninno, G. Iadonisi, and S. Ossicini, "First-principles study of n -and p -doped silicon nanoclusters," Phys. Rev. B 72, 113303 (2005).
[CrossRef]

Delerue, C.

C. Delerue, M. Lannoo, G. Allan, and E. Martin, "Theoretical descriptions of porous silicon," Thin Solid Films 255, 27-34 (1995).
[CrossRef]

G. Allan, C. Delerue, M. Lannoo, and E. Martin, "Hydrogenic impurity levels, dielectric constant, and Coulomb charging effects in silicon crystallites," Phys. Rev. B 52, 11982-11988 (1995).
[CrossRef]

Diener, J.

M. Fuji, D. Kovalev, J. Diener, F. Koch, S. Takkeoka, and S. Hayashi, "Breakdown of the k-conservation rule in Si1?xGex alloy nanocrystals: Resonant photoluminescence study," J. Appl. Phys. 88, 5772-5776 (2000).
[CrossRef]

Dorsinville, R.

S. Vijayalakshumi, H. Grebel, G. Yaglioglu, R. Pino, R. Dorsinville, and C. W. White, "Nonlinear optical response of Si nanostructures in a silica matrix," J. Appl. Phys. 88, 6418-6422 (2000).
[CrossRef]

Dumbaugh, W. H.

D. W. Hall, M. A. Newhouse, N. F. Borrelli, W. H. Dumbaugh, and D. L. Weidman, "Nonlinear optical susceptibilities of high-index glasses," Appl. Phys. Lett. 54, 1293 (1989).
[CrossRef]

Farias, G. A.

E. L. de Oliveira, E. L. Albuquerque, J. S. de Sousa, and G. A. Farias, "Radiative transitions in P- and B-doped silicon nanocrystals," Appl. Phys. Lett. 94, 103114 (2009).
[CrossRef]

Fedeli, J. M.

S. Hemandez, P. Pellegrino, A. Martinez, Y. lebour, B. Garrido, R. Spano, M. Cazzanelli, N. Daldosso, L. Pavesi, E. Jordana, and J. M. Fedeli, "Linear and nonlinear optical properties of Si nanocrystals in SiO2 deposited by plasma-enhanced chemical-vapor deposition," J. Appl. Phys. 103, 064309 (2008).
[CrossRef]

Franzo, G.

G. Vijaya Prakash, M. Cazzaneli, Z. Gaburro, L. Pavesi, and F. Lacona, G. Franzo, and F. Priolo., "Nonlinear optical properties of silicon nanocrystals grown by plasma-enhanced chemical vapor deposition," J. Appl. Phys. 91, 4607-4610 (2002).
[CrossRef]

Fuji, M.

M. Fuji, D. Kovalev, J. Diener, F. Koch, S. Takkeoka, and S. Hayashi, "Breakdown of the k-conservation rule in Si1?xGex alloy nanocrystals: Resonant photoluminescence study," J. Appl. Phys. 88, 5772-5776 (2000).
[CrossRef]

Fujii, M.

M. Fujii, Y. Yamaguchi, Y. Takase, K. Ninomiya, and S. Hayashi, "Photoluminescence from impurity codoped and compensated Si nanocrystals," Appl. Phys. Lett. 87, 211919 (2005).
[CrossRef]

M. Fujii, Y. Yamaguchi, Y. Takase, K. Ninomiya, and S. Hayashi, "Control of photoluminescence properties of Si nanocrystals by simultaneously doping n- and p-type impurities," Appl. Phys. Lett. 85, 1158-1160 (2004).
[CrossRef]

M. Fujii, A. Mimura, and S. Hayashi, "Hyperfine Structure of the Electron Spin Resonance of Phosphorus-Doped Si Nanocrystals," Phys. Rev. Lett. 89, 206805 (2002).
[CrossRef] [PubMed]

S. Takeoka, M. Fujii, and S. Hayashi, "Size-dependent photoluminescence from surface-oxidized Si nanocrystals in a weak confinement regime," Phys. Rev. B 62, 16820-16825 (2000).
[CrossRef]

M. Fujii, A. Mimura, and S. Hayashi, "Improvement in photoluminescence efficiency of SiO2 films containing Si nanocrystals by P doping: An electron spin resonance study," J. Appl. Phys. 87, 1855-1857 (2000).
[CrossRef]

A. Mimura, M. Fujii, S. Hayashi, D. Kovalev, and F. Koch, "Photoluminescence and free-electron absorption in heavily phosphorus-doped Si nanocrystals," Phys. Rev. B 62, 12625-12627 (2000).
[CrossRef]

M. Fujii, S. Hayashi, and K. Yamamoto, "Photoluminescence from B-doped Si nanocrystals," J. Appl. Phys. 83, 7953-7956 (1998).
[CrossRef]

K. Imakita, M. Ito, M. Fujii, and S. Hayashi, J. Appl. Phys. (to be published).

Fujiwara, S.

Gaburro, Z.

L. Pavesi, Z. Gaburro, L. Dal Negro, P. bettotti, G. Vijaya Prakash, M. Cazzaneli, and C. J. Oton, "Nanostructured silicon as a photonic material," Opt. Lasers Eng. J. Opt. Soc. Am. B 39, 345-367 (2003).
[CrossRef]

G. Vijaya Prakash, M. Cazzaneli, Z. Gaburro, L. Pavesi, and F. Lacona, G. Franzo, and F. Priolo., "Nonlinear optical properties of silicon nanocrystals grown by plasma-enhanced chemical vapor deposition," J. Appl. Phys. 91, 4607-4610 (2002).
[CrossRef]

P. Bettotti, M. Cazzanelli, L. Dal Negro, B. Danese, Z. Gaburro, C. J. Oton, G. Vijaya Prakash, and L. Pavesi, "Silicon nanostructures for photonics," J. Phys:Condens. Matter 14, 8253-8281 (2002).
[CrossRef]

Garrido, B.

S. Hemandez, P. Pellegrino, A. Martinez, Y. lebour, B. Garrido, R. Spano, M. Cazzanelli, N. Daldosso, L. Pavesi, E. Jordana, and J. M. Fedeli, "Linear and nonlinear optical properties of Si nanocrystals in SiO2 deposited by plasma-enhanced chemical-vapor deposition," J. Appl. Phys. 103, 064309 (2008).
[CrossRef]

George, M. A.

S. Vijayalakshmi, M. A. George, and H. Grebel, "Nonlinear optical properties of silicon nanoclusters," Appl. Phys. Lett. 70, 708-710 (1997).
[CrossRef]

Glyde, H. R.

V. Sa-yakanit and H. R. Glyde, "Impurity-band density of states in heavily doped semiconductors: A variational calculation," Phys. Rev. B 22, 6222-6232 (1980).
[CrossRef]

Grebel, H.

S. Vijayalakshmi, A. Lan, Z. lqbal, and H. Grebel, "Nonlinear optical properties of laser ablated silicon nanostructures," J. Appl. Phys. 92, 2490-2494 (2002).
[CrossRef]

S. Vijayalakshumi, H. Grebel, G. Yaglioglu, R. Pino, R. Dorsinville, and C. W. White, "Nonlinear optical response of Si nanostructures in a silica matrix," J. Appl. Phys. 88, 6418-6422 (2000).
[CrossRef]

S. Vijayalakshmi, H. Grebel, Z. lqbal, and C. W. White, "Artificial dielectrics: Nonlinear properties of Si nanoclusters formed by ion implantation in SiO2 glassy matrix," J. Appl. Phys. 84, 6502-6506 (1998).
[CrossRef]

S. Vijayalakshmi, M. A. George, and H. Grebel, "Nonlinear optical properties of silicon nanoclusters," Appl. Phys. Lett. 70, 708-710 (1997).
[CrossRef]

Gregorkiewicz, T.

B. J. Pawlak, T. Gregorkiewicz, C. A. J. Ammerlaan, W. Takkenberg, F. D. Tichelaar, and P. F. A. Alkemade, "Experimental investigation of band structure modification in silicon nanocrystals," Phys. Rev. B 64, 115308 (2001).
[CrossRef]

Hall, D. W.

D. W. Hall, M. A. Newhouse, N. F. Borrelli, W. H. Dumbaugh, and D. L. Weidman, "Nonlinear optical susceptibilities of high-index glasses," Appl. Phys. Lett. 54, 1293 (1989).
[CrossRef]

Han, W.-T.

S. Moon, A. Lin, B.H. Kim, P. R. Watekar, and W.-T. Han, "Linear and nonlinear optical properties of the optical fiber doped with silicon nano-particles," J. Non-Cryst. Solids 354, 602-606 (2008).
[CrossRef]

Hayashi, S.

M. Fujii, Y. Yamaguchi, Y. Takase, K. Ninomiya, and S. Hayashi, "Photoluminescence from impurity codoped and compensated Si nanocrystals," Appl. Phys. Lett. 87, 211919 (2005).
[CrossRef]

M. Fujii, Y. Yamaguchi, Y. Takase, K. Ninomiya, and S. Hayashi, "Control of photoluminescence properties of Si nanocrystals by simultaneously doping n- and p-type impurities," Appl. Phys. Lett. 85, 1158-1160 (2004).
[CrossRef]

M. Fujii, A. Mimura, and S. Hayashi, "Hyperfine Structure of the Electron Spin Resonance of Phosphorus-Doped Si Nanocrystals," Phys. Rev. Lett. 89, 206805 (2002).
[CrossRef] [PubMed]

S. Takeoka, M. Fujii, and S. Hayashi, "Size-dependent photoluminescence from surface-oxidized Si nanocrystals in a weak confinement regime," Phys. Rev. B 62, 16820-16825 (2000).
[CrossRef]

A. Mimura, M. Fujii, S. Hayashi, D. Kovalev, and F. Koch, "Photoluminescence and free-electron absorption in heavily phosphorus-doped Si nanocrystals," Phys. Rev. B 62, 12625-12627 (2000).
[CrossRef]

M. Fuji, D. Kovalev, J. Diener, F. Koch, S. Takkeoka, and S. Hayashi, "Breakdown of the k-conservation rule in Si1?xGex alloy nanocrystals: Resonant photoluminescence study," J. Appl. Phys. 88, 5772-5776 (2000).
[CrossRef]

M. Fujii, A. Mimura, and S. Hayashi, "Improvement in photoluminescence efficiency of SiO2 films containing Si nanocrystals by P doping: An electron spin resonance study," J. Appl. Phys. 87, 1855-1857 (2000).
[CrossRef]

M. Fujii, S. Hayashi, and K. Yamamoto, "Photoluminescence from B-doped Si nanocrystals," J. Appl. Phys. 83, 7953-7956 (1998).
[CrossRef]

K. Imakita, M. Ito, M. Fujii, and S. Hayashi, J. Appl. Phys. (to be published).

Hemandez, S.

S. Hemandez, P. Pellegrino, A. Martinez, Y. lebour, B. Garrido, R. Spano, M. Cazzanelli, N. Daldosso, L. Pavesi, E. Jordana, and J. M. Fedeli, "Linear and nonlinear optical properties of Si nanocrystals in SiO2 deposited by plasma-enhanced chemical-vapor deposition," J. Appl. Phys. 103, 064309 (2008).
[CrossRef]

Hirao, K.

Hwang, H. Y.

Iadonisi, G.

G. Cantele, E. Degoli, E. Luppi, R. Magori, D. Ninno, G. Iadonisi, and S. Ossicini, "First-principles study of n -and p -doped silicon nanoclusters," Phys. Rev. B 72, 113303 (2005).
[CrossRef]

Imakita, K.

K. Imakita, M. Ito, M. Fujii, and S. Hayashi, J. Appl. Phys. (to be published).

Iori, F.

S. Ossicini, F. Iori, E. Degoli, E. Luppi, R. Magri, R. Poli, G. Cantele, F. Trani, and D. Ninno, "Understanding Doping In Silicon Nanostructures," IEEE J. Sel. Top. Quantum Electron. 12, 1585-1591 (2006).
[CrossRef]

Ito, M.

K. Imakita, M. Ito, M. Fujii, and S. Hayashi, J. Appl. Phys. (to be published).

Ji, W.

M. Yin, H.P. Li, S.H. Tang, and W. Ji, "Determination of nonlinear absorption and refraction by single Z-scan method," Appl. Phys. B 70, 587-591 (2000).
[CrossRef]

Jordana, E.

S. Hemandez, P. Pellegrino, A. Martinez, Y. lebour, B. Garrido, R. Spano, M. Cazzanelli, N. Daldosso, L. Pavesi, E. Jordana, and J. M. Fedeli, "Linear and nonlinear optical properties of Si nanocrystals in SiO2 deposited by plasma-enhanced chemical-vapor deposition," J. Appl. Phys. 103, 064309 (2008).
[CrossRef]

Kanbara, H.

Kanemitsu, Y.

Y. Kanemitsu, S. Okamoto, and A. Mito, "Third-order nonlinear optical susceptibility and photoluminescence in porous silicon," Phys. Rev. B 52, 10752-10755 (1995).
[CrossRef]

Katsufuji, T.

Kim, B.H.

S. Moon, A. Lin, B.H. Kim, P. R. Watekar, and W.-T. Han, "Linear and nonlinear optical properties of the optical fiber doped with silicon nano-particles," J. Non-Cryst. Solids 354, 602-606 (2008).
[CrossRef]

Kim, S.

S. Kim, T. Yoko and S. Sakka, "Linear and nonlinear optical properties of TeO2 glass," J. Am. Ceram. Soc. 76, 2486-2490 (2005).
[CrossRef]

Klimov, V. I.

V. I. Klimov, Ch. J. Schwarz, and D. W. McBranch, and C. W. White, "Initial carrier relaxation dynamics in ionimplanted Si nanocrystals: Femtosecond transient absorption study," Appl. Phys. Lett. 73, 2603-2605 (1998).
[CrossRef]

Koch, F.

A. Mimura, M. Fujii, S. Hayashi, D. Kovalev, and F. Koch, "Photoluminescence and free-electron absorption in heavily phosphorus-doped Si nanocrystals," Phys. Rev. B 62, 12625-12627 (2000).
[CrossRef]

M. Fuji, D. Kovalev, J. Diener, F. Koch, S. Takkeoka, and S. Hayashi, "Breakdown of the k-conservation rule in Si1?xGex alloy nanocrystals: Resonant photoluminescence study," J. Appl. Phys. 88, 5772-5776 (2000).
[CrossRef]

Kovalev, D.

M. Fuji, D. Kovalev, J. Diener, F. Koch, S. Takkeoka, and S. Hayashi, "Breakdown of the k-conservation rule in Si1?xGex alloy nanocrystals: Resonant photoluminescence study," J. Appl. Phys. 88, 5772-5776 (2000).
[CrossRef]

A. Mimura, M. Fujii, S. Hayashi, D. Kovalev, and F. Koch, "Photoluminescence and free-electron absorption in heavily phosphorus-doped Si nanocrystals," Phys. Rev. B 62, 12625-12627 (2000).
[CrossRef]

Lacona, F.

G. Vijaya Prakash, M. Cazzaneli, Z. Gaburro, L. Pavesi, and F. Lacona, G. Franzo, and F. Priolo., "Nonlinear optical properties of silicon nanocrystals grown by plasma-enhanced chemical vapor deposition," J. Appl. Phys. 91, 4607-4610 (2002).
[CrossRef]

Lan, A.

S. Vijayalakshmi, A. Lan, Z. lqbal, and H. Grebel, "Nonlinear optical properties of laser ablated silicon nanostructures," J. Appl. Phys. 92, 2490-2494 (2002).
[CrossRef]

Lannoo, M.

G. Allan, C. Delerue, M. Lannoo, and E. Martin, "Hydrogenic impurity levels, dielectric constant, and Coulomb charging effects in silicon crystallites," Phys. Rev. B 52, 11982-11988 (1995).
[CrossRef]

C. Delerue, M. Lannoo, G. Allan, and E. Martin, "Theoretical descriptions of porous silicon," Thin Solid Films 255, 27-34 (1995).
[CrossRef]

lebour, Y.

S. Hemandez, P. Pellegrino, A. Martinez, Y. lebour, B. Garrido, R. Spano, M. Cazzanelli, N. Daldosso, L. Pavesi, E. Jordana, and J. M. Fedeli, "Linear and nonlinear optical properties of Si nanocrystals in SiO2 deposited by plasma-enhanced chemical-vapor deposition," J. Appl. Phys. 103, 064309 (2008).
[CrossRef]

Lenz, G.

Lettieri, S.

S. Lettieri and P. Maddalena, "Nonresonant Kerr effect in microporous silicon: Nonbulk dispersive behavior of below band gap of ?(3)," J. Appl. Phys. 91, 5564-5570 (2002).
[CrossRef]

Li, H.P.

M. Yin, H.P. Li, S.H. Tang, and W. Ji, "Determination of nonlinear absorption and refraction by single Z-scan method," Appl. Phys. B 70, 587-591 (2000).
[CrossRef]

Lin, A.

S. Moon, A. Lin, B.H. Kim, P. R. Watekar, and W.-T. Han, "Linear and nonlinear optical properties of the optical fiber doped with silicon nano-particles," J. Non-Cryst. Solids 354, 602-606 (2008).
[CrossRef]

Lines, M. E.

lqbal, Z.

S. Vijayalakshmi, A. Lan, Z. lqbal, and H. Grebel, "Nonlinear optical properties of laser ablated silicon nanostructures," J. Appl. Phys. 92, 2490-2494 (2002).
[CrossRef]

Lubberts, G.

G. Lubberts, B. C. Burkey, F. Moser, and E. A. Trabka, "Optical properties of phosphorus-doped polycrystalline silicon layers," J. Appl. Phys. 52, 6870 (1981).
[CrossRef]

Luppi, E.

S. Ossicini, F. Iori, E. Degoli, E. Luppi, R. Magri, R. Poli, G. Cantele, F. Trani, and D. Ninno, "Understanding Doping In Silicon Nanostructures," IEEE J. Sel. Top. Quantum Electron. 12, 1585-1591 (2006).
[CrossRef]

G. Cantele, E. Degoli, E. Luppi, R. Magori, D. Ninno, G. Iadonisi, and S. Ossicini, "First-principles study of n -and p -doped silicon nanoclusters," Phys. Rev. B 72, 113303 (2005).
[CrossRef]

Maddalena, P.

S. Lettieri and P. Maddalena, "Nonresonant Kerr effect in microporous silicon: Nonbulk dispersive behavior of below band gap of ?(3)," J. Appl. Phys. 91, 5564-5570 (2002).
[CrossRef]

Magori, R.

G. Cantele, E. Degoli, E. Luppi, R. Magori, D. Ninno, G. Iadonisi, and S. Ossicini, "First-principles study of n -and p -doped silicon nanoclusters," Phys. Rev. B 72, 113303 (2005).
[CrossRef]

Magri, R.

S. Ossicini, F. Iori, E. Degoli, E. Luppi, R. Magri, R. Poli, G. Cantele, F. Trani, and D. Ninno, "Understanding Doping In Silicon Nanostructures," IEEE J. Sel. Top. Quantum Electron. 12, 1585-1591 (2006).
[CrossRef]

Martin, E.

G. Allan, C. Delerue, M. Lannoo, and E. Martin, "Hydrogenic impurity levels, dielectric constant, and Coulomb charging effects in silicon crystallites," Phys. Rev. B 52, 11982-11988 (1995).
[CrossRef]

C. Delerue, M. Lannoo, G. Allan, and E. Martin, "Theoretical descriptions of porous silicon," Thin Solid Films 255, 27-34 (1995).
[CrossRef]

Martinez, A.

S. Hemandez, P. Pellegrino, A. Martinez, Y. lebour, B. Garrido, R. Spano, M. Cazzanelli, N. Daldosso, L. Pavesi, E. Jordana, and J. M. Fedeli, "Linear and nonlinear optical properties of Si nanocrystals in SiO2 deposited by plasma-enhanced chemical-vapor deposition," J. Appl. Phys. 103, 064309 (2008).
[CrossRef]

McBranch, D. W.

V. I. Klimov, Ch. J. Schwarz, and D. W. McBranch, and C. W. White, "Initial carrier relaxation dynamics in ionimplanted Si nanocrystals: Femtosecond transient absorption study," Appl. Phys. Lett. 73, 2603-2605 (1998).
[CrossRef]

Melnikov, D. V.

D. V. Melnikov and J. R. Chelikowsky, "Quantum Confinement in Phosphorus-Doped Silicon Nanocrystals," Phys. Rev. Lett. 92, 046802 (2004).
[CrossRef] [PubMed]

Miller, R. C.

R. C. Miller, "Optical second harmonic generation in piezoelectric crystals," Appl. Phys. Lett. 5, 17 (1964).
[CrossRef]

Mimura, A.

M. Fujii, A. Mimura, and S. Hayashi, "Hyperfine Structure of the Electron Spin Resonance of Phosphorus-Doped Si Nanocrystals," Phys. Rev. Lett. 89, 206805 (2002).
[CrossRef] [PubMed]

A. Mimura, M. Fujii, S. Hayashi, D. Kovalev, and F. Koch, "Photoluminescence and free-electron absorption in heavily phosphorus-doped Si nanocrystals," Phys. Rev. B 62, 12625-12627 (2000).
[CrossRef]

M. Fujii, A. Mimura, and S. Hayashi, "Improvement in photoluminescence efficiency of SiO2 films containing Si nanocrystals by P doping: An electron spin resonance study," J. Appl. Phys. 87, 1855-1857 (2000).
[CrossRef]

Mito, A.

Y. Kanemitsu, S. Okamoto, and A. Mito, "Third-order nonlinear optical susceptibility and photoluminescence in porous silicon," Phys. Rev. B 52, 10752-10755 (1995).
[CrossRef]

Moon, S.

S. Moon, A. Lin, B.H. Kim, P. R. Watekar, and W.-T. Han, "Linear and nonlinear optical properties of the optical fiber doped with silicon nano-particles," J. Non-Cryst. Solids 354, 602-606 (2008).
[CrossRef]

Moser, F.

G. Lubberts, B. C. Burkey, F. Moser, and E. A. Trabka, "Optical properties of phosphorus-doped polycrystalline silicon layers," J. Appl. Phys. 52, 6870 (1981).
[CrossRef]

Newhouse, M. A.

D. W. Hall, M. A. Newhouse, N. F. Borrelli, W. H. Dumbaugh, and D. L. Weidman, "Nonlinear optical susceptibilities of high-index glasses," Appl. Phys. Lett. 54, 1293 (1989).
[CrossRef]

Ninno, D.

S. Ossicini, F. Iori, E. Degoli, E. Luppi, R. Magri, R. Poli, G. Cantele, F. Trani, and D. Ninno, "Understanding Doping In Silicon Nanostructures," IEEE J. Sel. Top. Quantum Electron. 12, 1585-1591 (2006).
[CrossRef]

G. Cantele, E. Degoli, E. Luppi, R. Magori, D. Ninno, G. Iadonisi, and S. Ossicini, "First-principles study of n -and p -doped silicon nanoclusters," Phys. Rev. B 72, 113303 (2005).
[CrossRef]

Ninomiya, K.

M. Fujii, Y. Yamaguchi, Y. Takase, K. Ninomiya, and S. Hayashi, "Photoluminescence from impurity codoped and compensated Si nanocrystals," Appl. Phys. Lett. 87, 211919 (2005).
[CrossRef]

M. Fujii, Y. Yamaguchi, Y. Takase, K. Ninomiya, and S. Hayashi, "Control of photoluminescence properties of Si nanocrystals by simultaneously doping n- and p-type impurities," Appl. Phys. Lett. 85, 1158-1160 (2004).
[CrossRef]

Okamoto, S.

Y. Kanemitsu, S. Okamoto, and A. Mito, "Third-order nonlinear optical susceptibility and photoluminescence in porous silicon," Phys. Rev. B 52, 10752-10755 (1995).
[CrossRef]

Ossicini, S.

S. Ossicini, F. Iori, E. Degoli, E. Luppi, R. Magri, R. Poli, G. Cantele, F. Trani, and D. Ninno, "Understanding Doping In Silicon Nanostructures," IEEE J. Sel. Top. Quantum Electron. 12, 1585-1591 (2006).
[CrossRef]

G. Cantele, E. Degoli, E. Luppi, R. Magori, D. Ninno, G. Iadonisi, and S. Ossicini, "First-principles study of n -and p -doped silicon nanoclusters," Phys. Rev. B 72, 113303 (2005).
[CrossRef]

Oton, C. J.

P. Bettotti, M. Cazzanelli, L. Dal Negro, B. Danese, Z. Gaburro, C. J. Oton, G. Vijaya Prakash, and L. Pavesi, "Silicon nanostructures for photonics," J. Phys:Condens. Matter 14, 8253-8281 (2002).
[CrossRef]

Oton, J.

L. Pavesi, Z. Gaburro, L. Dal Negro, P. bettotti, G. Vijaya Prakash, M. Cazzaneli, and C. J. Oton, "Nanostructured silicon as a photonic material," Opt. Lasers Eng. J. Opt. Soc. Am. B 39, 345-367 (2003).
[CrossRef]

Pavesi, L.

S. Hemandez, P. Pellegrino, A. Martinez, Y. lebour, B. Garrido, R. Spano, M. Cazzanelli, N. Daldosso, L. Pavesi, E. Jordana, and J. M. Fedeli, "Linear and nonlinear optical properties of Si nanocrystals in SiO2 deposited by plasma-enhanced chemical-vapor deposition," J. Appl. Phys. 103, 064309 (2008).
[CrossRef]

L. Pavesi, Z. Gaburro, L. Dal Negro, P. bettotti, G. Vijaya Prakash, M. Cazzaneli, and C. J. Oton, "Nanostructured silicon as a photonic material," Opt. Lasers Eng. J. Opt. Soc. Am. B 39, 345-367 (2003).
[CrossRef]

G. Vijaya Prakash, M. Cazzaneli, Z. Gaburro, L. Pavesi, and F. Lacona, G. Franzo, and F. Priolo., "Nonlinear optical properties of silicon nanocrystals grown by plasma-enhanced chemical vapor deposition," J. Appl. Phys. 91, 4607-4610 (2002).
[CrossRef]

P. Bettotti, M. Cazzanelli, L. Dal Negro, B. Danese, Z. Gaburro, C. J. Oton, G. Vijaya Prakash, and L. Pavesi, "Silicon nanostructures for photonics," J. Phys:Condens. Matter 14, 8253-8281 (2002).
[CrossRef]

Pawlak, B. J.

B. J. Pawlak, T. Gregorkiewicz, C. A. J. Ammerlaan, W. Takkenberg, F. D. Tichelaar, and P. F. A. Alkemade, "Experimental investigation of band structure modification in silicon nanocrystals," Phys. Rev. B 64, 115308 (2001).
[CrossRef]

Pellegrino, P.

S. Hemandez, P. Pellegrino, A. Martinez, Y. lebour, B. Garrido, R. Spano, M. Cazzanelli, N. Daldosso, L. Pavesi, E. Jordana, and J. M. Fedeli, "Linear and nonlinear optical properties of Si nanocrystals in SiO2 deposited by plasma-enhanced chemical-vapor deposition," J. Appl. Phys. 103, 064309 (2008).
[CrossRef]

Pino, R.

S. Vijayalakshumi, H. Grebel, G. Yaglioglu, R. Pino, R. Dorsinville, and C. W. White, "Nonlinear optical response of Si nanostructures in a silica matrix," J. Appl. Phys. 88, 6418-6422 (2000).
[CrossRef]

Poli, R.

S. Ossicini, F. Iori, E. Degoli, E. Luppi, R. Magri, R. Poli, G. Cantele, F. Trani, and D. Ninno, "Understanding Doping In Silicon Nanostructures," IEEE J. Sel. Top. Quantum Electron. 12, 1585-1591 (2006).
[CrossRef]

Priolo, F.

G. Vijaya Prakash, M. Cazzaneli, Z. Gaburro, L. Pavesi, and F. Lacona, G. Franzo, and F. Priolo., "Nonlinear optical properties of silicon nanocrystals grown by plasma-enhanced chemical vapor deposition," J. Appl. Phys. 91, 4607-4610 (2002).
[CrossRef]

Sakka, S.

S. Kim, T. Yoko and S. Sakka, "Linear and nonlinear optical properties of TeO2 glass," J. Am. Ceram. Soc. 76, 2486-2490 (2005).
[CrossRef]

Sanghera, J. S.

Sa-yakanit, V.

V. Sa-yakanit and H. R. Glyde, "Impurity-band density of states in heavily doped semiconductors: A variational calculation," Phys. Rev. B 22, 6222-6232 (1980).
[CrossRef]

Schmid, P. E.

P. E. Schmid, "Optical absorption in heavily doped silicon," Phys. Rev. B 23, 5531-5536 (1981).
[CrossRef]

Schwarz, Ch. J.

V. I. Klimov, Ch. J. Schwarz, and D. W. McBranch, and C. W. White, "Initial carrier relaxation dynamics in ionimplanted Si nanocrystals: Femtosecond transient absorption study," Appl. Phys. Lett. 73, 2603-2605 (1998).
[CrossRef]

Shimizugawa, Y.

Slusher, R. E.

Spalter, S.

Spano, R.

S. Hemandez, P. Pellegrino, A. Martinez, Y. lebour, B. Garrido, R. Spano, M. Cazzanelli, N. Daldosso, L. Pavesi, E. Jordana, and J. M. Fedeli, "Linear and nonlinear optical properties of Si nanocrystals in SiO2 deposited by plasma-enhanced chemical-vapor deposition," J. Appl. Phys. 103, 064309 (2008).
[CrossRef]

Sugimoto, N.

Takase, Y.

M. Fujii, Y. Yamaguchi, Y. Takase, K. Ninomiya, and S. Hayashi, "Photoluminescence from impurity codoped and compensated Si nanocrystals," Appl. Phys. Lett. 87, 211919 (2005).
[CrossRef]

M. Fujii, Y. Yamaguchi, Y. Takase, K. Ninomiya, and S. Hayashi, "Control of photoluminescence properties of Si nanocrystals by simultaneously doping n- and p-type impurities," Appl. Phys. Lett. 85, 1158-1160 (2004).
[CrossRef]

Takeoka, S.

S. Takeoka, M. Fujii, and S. Hayashi, "Size-dependent photoluminescence from surface-oxidized Si nanocrystals in a weak confinement regime," Phys. Rev. B 62, 16820-16825 (2000).
[CrossRef]

Takkenberg, W.

B. J. Pawlak, T. Gregorkiewicz, C. A. J. Ammerlaan, W. Takkenberg, F. D. Tichelaar, and P. F. A. Alkemade, "Experimental investigation of band structure modification in silicon nanocrystals," Phys. Rev. B 64, 115308 (2001).
[CrossRef]

Takkeoka, S.

M. Fuji, D. Kovalev, J. Diener, F. Koch, S. Takkeoka, and S. Hayashi, "Breakdown of the k-conservation rule in Si1?xGex alloy nanocrystals: Resonant photoluminescence study," J. Appl. Phys. 88, 5772-5776 (2000).
[CrossRef]

Tanaka, K.

Tang, S.H.

M. Yin, H.P. Li, S.H. Tang, and W. Ji, "Determination of nonlinear absorption and refraction by single Z-scan method," Appl. Phys. B 70, 587-591 (2000).
[CrossRef]

Tichelaar, F. D.

B. J. Pawlak, T. Gregorkiewicz, C. A. J. Ammerlaan, W. Takkenberg, F. D. Tichelaar, and P. F. A. Alkemade, "Experimental investigation of band structure modification in silicon nanocrystals," Phys. Rev. B 64, 115308 (2001).
[CrossRef]

Trabka, E. A.

G. Lubberts, B. C. Burkey, F. Moser, and E. A. Trabka, "Optical properties of phosphorus-doped polycrystalline silicon layers," J. Appl. Phys. 52, 6870 (1981).
[CrossRef]

Trani, F.

S. Ossicini, F. Iori, E. Degoli, E. Luppi, R. Magri, R. Poli, G. Cantele, F. Trani, and D. Ninno, "Understanding Doping In Silicon Nanostructures," IEEE J. Sel. Top. Quantum Electron. 12, 1585-1591 (2006).
[CrossRef]

Vijaya Prakash, G.

L. Pavesi, Z. Gaburro, L. Dal Negro, P. bettotti, G. Vijaya Prakash, M. Cazzaneli, and C. J. Oton, "Nanostructured silicon as a photonic material," Opt. Lasers Eng. J. Opt. Soc. Am. B 39, 345-367 (2003).
[CrossRef]

G. Vijaya Prakash, M. Cazzaneli, Z. Gaburro, L. Pavesi, and F. Lacona, G. Franzo, and F. Priolo., "Nonlinear optical properties of silicon nanocrystals grown by plasma-enhanced chemical vapor deposition," J. Appl. Phys. 91, 4607-4610 (2002).
[CrossRef]

P. Bettotti, M. Cazzanelli, L. Dal Negro, B. Danese, Z. Gaburro, C. J. Oton, G. Vijaya Prakash, and L. Pavesi, "Silicon nanostructures for photonics," J. Phys:Condens. Matter 14, 8253-8281 (2002).
[CrossRef]

Vijayalakshmi, S.

S. Vijayalakshmi, A. Lan, Z. lqbal, and H. Grebel, "Nonlinear optical properties of laser ablated silicon nanostructures," J. Appl. Phys. 92, 2490-2494 (2002).
[CrossRef]

S. Vijayalakshmi, H. Grebel, Z. lqbal, and C. W. White, "Artificial dielectrics: Nonlinear properties of Si nanoclusters formed by ion implantation in SiO2 glassy matrix," J. Appl. Phys. 84, 6502-6506 (1998).
[CrossRef]

S. Vijayalakshmi, M. A. George, and H. Grebel, "Nonlinear optical properties of silicon nanoclusters," Appl. Phys. Lett. 70, 708-710 (1997).
[CrossRef]

Vijayalakshumi, S.

S. Vijayalakshumi, H. Grebel, G. Yaglioglu, R. Pino, R. Dorsinville, and C. W. White, "Nonlinear optical response of Si nanostructures in a silica matrix," J. Appl. Phys. 88, 6418-6422 (2000).
[CrossRef]

Wang, C. C.

C. C. Wang, "Empirical Relation between the Linear and the Third-Order Nonlinear Optical Susceptibilities," Phys. Rev. B 2, 2045-2048 (1970).
[CrossRef]

Watekar, P. R.

S. Moon, A. Lin, B.H. Kim, P. R. Watekar, and W.-T. Han, "Linear and nonlinear optical properties of the optical fiber doped with silicon nano-particles," J. Non-Cryst. Solids 354, 602-606 (2008).
[CrossRef]

Weidman, D. L.

D. W. Hall, M. A. Newhouse, N. F. Borrelli, W. H. Dumbaugh, and D. L. Weidman, "Nonlinear optical susceptibilities of high-index glasses," Appl. Phys. Lett. 54, 1293 (1989).
[CrossRef]

White, C. W.

S. Vijayalakshumi, H. Grebel, G. Yaglioglu, R. Pino, R. Dorsinville, and C. W. White, "Nonlinear optical response of Si nanostructures in a silica matrix," J. Appl. Phys. 88, 6418-6422 (2000).
[CrossRef]

V. I. Klimov, Ch. J. Schwarz, and D. W. McBranch, and C. W. White, "Initial carrier relaxation dynamics in ionimplanted Si nanocrystals: Femtosecond transient absorption study," Appl. Phys. Lett. 73, 2603-2605 (1998).
[CrossRef]

Yaglioglu, G.

S. Vijayalakshumi, H. Grebel, G. Yaglioglu, R. Pino, R. Dorsinville, and C. W. White, "Nonlinear optical response of Si nanostructures in a silica matrix," J. Appl. Phys. 88, 6418-6422 (2000).
[CrossRef]

Yamaguchi, Y.

M. Fujii, Y. Yamaguchi, Y. Takase, K. Ninomiya, and S. Hayashi, "Photoluminescence from impurity codoped and compensated Si nanocrystals," Appl. Phys. Lett. 87, 211919 (2005).
[CrossRef]

M. Fujii, Y. Yamaguchi, Y. Takase, K. Ninomiya, and S. Hayashi, "Control of photoluminescence properties of Si nanocrystals by simultaneously doping n- and p-type impurities," Appl. Phys. Lett. 85, 1158-1160 (2004).
[CrossRef]

Yamamoto, K.

M. Fujii, S. Hayashi, and K. Yamamoto, "Photoluminescence from B-doped Si nanocrystals," J. Appl. Phys. 83, 7953-7956 (1998).
[CrossRef]

Yin, M.

M. Yin, H.P. Li, S.H. Tang, and W. Ji, "Determination of nonlinear absorption and refraction by single Z-scan method," Appl. Phys. B 70, 587-591 (2000).
[CrossRef]

Yoko, T.

S. Kim, T. Yoko and S. Sakka, "Linear and nonlinear optical properties of TeO2 glass," J. Am. Ceram. Soc. 76, 2486-2490 (2005).
[CrossRef]

Zimmermann, J.

Ann. Phys. (1)

D. A. G. Bruggeman,"Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen," Ann. Phys. 24, 636-679 (1935).
[CrossRef]

Appl. Phys. B (1)

M. Yin, H.P. Li, S.H. Tang, and W. Ji, "Determination of nonlinear absorption and refraction by single Z-scan method," Appl. Phys. B 70, 587-591 (2000).
[CrossRef]

Appl. Phys. Lett. (8)

M. Fujii, Y. Yamaguchi, Y. Takase, K. Ninomiya, and S. Hayashi, "Control of photoluminescence properties of Si nanocrystals by simultaneously doping n- and p-type impurities," Appl. Phys. Lett. 85, 1158-1160 (2004).
[CrossRef]

M. Fujii, Y. Yamaguchi, Y. Takase, K. Ninomiya, and S. Hayashi, "Photoluminescence from impurity codoped and compensated Si nanocrystals," Appl. Phys. Lett. 87, 211919 (2005).
[CrossRef]

S. Vijayalakshmi, M. A. George, and H. Grebel, "Nonlinear optical properties of silicon nanoclusters," Appl. Phys. Lett. 70, 708-710 (1997).
[CrossRef]

L. T. Canham, "Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers," Appl. Phys. Lett. 57, 1046-1048 (1990).
[CrossRef]

E. L. de Oliveira, E. L. Albuquerque, J. S. de Sousa, and G. A. Farias, "Radiative transitions in P- and B-doped silicon nanocrystals," Appl. Phys. Lett. 94, 103114 (2009).
[CrossRef]

V. I. Klimov, Ch. J. Schwarz, and D. W. McBranch, and C. W. White, "Initial carrier relaxation dynamics in ionimplanted Si nanocrystals: Femtosecond transient absorption study," Appl. Phys. Lett. 73, 2603-2605 (1998).
[CrossRef]

R. C. Miller, "Optical second harmonic generation in piezoelectric crystals," Appl. Phys. Lett. 5, 17 (1964).
[CrossRef]

D. W. Hall, M. A. Newhouse, N. F. Borrelli, W. H. Dumbaugh, and D. L. Weidman, "Nonlinear optical susceptibilities of high-index glasses," Appl. Phys. Lett. 54, 1293 (1989).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

S. Ossicini, F. Iori, E. Degoli, E. Luppi, R. Magri, R. Poli, G. Cantele, F. Trani, and D. Ninno, "Understanding Doping In Silicon Nanostructures," IEEE J. Sel. Top. Quantum Electron. 12, 1585-1591 (2006).
[CrossRef]

J. Am. Ceram. Soc. (1)

S. Kim, T. Yoko and S. Sakka, "Linear and nonlinear optical properties of TeO2 glass," J. Am. Ceram. Soc. 76, 2486-2490 (2005).
[CrossRef]

J. Appl. Phys. (11)

M. Fujii, S. Hayashi, and K. Yamamoto, "Photoluminescence from B-doped Si nanocrystals," J. Appl. Phys. 83, 7953-7956 (1998).
[CrossRef]

G. Lubberts, B. C. Burkey, F. Moser, and E. A. Trabka, "Optical properties of phosphorus-doped polycrystalline silicon layers," J. Appl. Phys. 52, 6870 (1981).
[CrossRef]

M. Fuji, D. Kovalev, J. Diener, F. Koch, S. Takkeoka, and S. Hayashi, "Breakdown of the k-conservation rule in Si1?xGex alloy nanocrystals: Resonant photoluminescence study," J. Appl. Phys. 88, 5772-5776 (2000).
[CrossRef]

M. Fujii, A. Mimura, and S. Hayashi, "Improvement in photoluminescence efficiency of SiO2 films containing Si nanocrystals by P doping: An electron spin resonance study," J. Appl. Phys. 87, 1855-1857 (2000).
[CrossRef]

S. Vijayalakshumi, H. Grebel, G. Yaglioglu, R. Pino, R. Dorsinville, and C. W. White, "Nonlinear optical response of Si nanostructures in a silica matrix," J. Appl. Phys. 88, 6418-6422 (2000).
[CrossRef]

S. Vijayalakshmi, H. Grebel, Z. lqbal, and C. W. White, "Artificial dielectrics: Nonlinear properties of Si nanoclusters formed by ion implantation in SiO2 glassy matrix," J. Appl. Phys. 84, 6502-6506 (1998).
[CrossRef]

S. Hemandez, P. Pellegrino, A. Martinez, Y. lebour, B. Garrido, R. Spano, M. Cazzanelli, N. Daldosso, L. Pavesi, E. Jordana, and J. M. Fedeli, "Linear and nonlinear optical properties of Si nanocrystals in SiO2 deposited by plasma-enhanced chemical-vapor deposition," J. Appl. Phys. 103, 064309 (2008).
[CrossRef]

G. Vijaya Prakash, M. Cazzaneli, Z. Gaburro, L. Pavesi, and F. Lacona, G. Franzo, and F. Priolo., "Nonlinear optical properties of silicon nanocrystals grown by plasma-enhanced chemical vapor deposition," J. Appl. Phys. 91, 4607-4610 (2002).
[CrossRef]

K. Imakita, M. Ito, M. Fujii, and S. Hayashi, J. Appl. Phys. (to be published).

S. Vijayalakshmi, A. Lan, Z. lqbal, and H. Grebel, "Nonlinear optical properties of laser ablated silicon nanostructures," J. Appl. Phys. 92, 2490-2494 (2002).
[CrossRef]

S. Lettieri and P. Maddalena, "Nonresonant Kerr effect in microporous silicon: Nonbulk dispersive behavior of below band gap of ?(3)," J. Appl. Phys. 91, 5564-5570 (2002).
[CrossRef]

J. Non-Cryst. Solids (1)

S. Moon, A. Lin, B.H. Kim, P. R. Watekar, and W.-T. Han, "Linear and nonlinear optical properties of the optical fiber doped with silicon nano-particles," J. Non-Cryst. Solids 354, 602-606 (2008).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys:Condens. Matter (1)

P. Bettotti, M. Cazzanelli, L. Dal Negro, B. Danese, Z. Gaburro, C. J. Oton, G. Vijaya Prakash, and L. Pavesi, "Silicon nanostructures for photonics," J. Phys:Condens. Matter 14, 8253-8281 (2002).
[CrossRef]

Opt. Lasers Eng. J. Opt. Soc. Am. B (1)

L. Pavesi, Z. Gaburro, L. Dal Negro, P. bettotti, G. Vijaya Prakash, M. Cazzaneli, and C. J. Oton, "Nanostructured silicon as a photonic material," Opt. Lasers Eng. J. Opt. Soc. Am. B 39, 345-367 (2003).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. B (9)

C. C. Wang, "Empirical Relation between the Linear and the Third-Order Nonlinear Optical Susceptibilities," Phys. Rev. B 2, 2045-2048 (1970).
[CrossRef]

P. E. Schmid, "Optical absorption in heavily doped silicon," Phys. Rev. B 23, 5531-5536 (1981).
[CrossRef]

V. Sa-yakanit and H. R. Glyde, "Impurity-band density of states in heavily doped semiconductors: A variational calculation," Phys. Rev. B 22, 6222-6232 (1980).
[CrossRef]

G. Cantele, E. Degoli, E. Luppi, R. Magori, D. Ninno, G. Iadonisi, and S. Ossicini, "First-principles study of n -and p -doped silicon nanoclusters," Phys. Rev. B 72, 113303 (2005).
[CrossRef]

G. Allan, C. Delerue, M. Lannoo, and E. Martin, "Hydrogenic impurity levels, dielectric constant, and Coulomb charging effects in silicon crystallites," Phys. Rev. B 52, 11982-11988 (1995).
[CrossRef]

S. Takeoka, M. Fujii, and S. Hayashi, "Size-dependent photoluminescence from surface-oxidized Si nanocrystals in a weak confinement regime," Phys. Rev. B 62, 16820-16825 (2000).
[CrossRef]

Y. Kanemitsu, S. Okamoto, and A. Mito, "Third-order nonlinear optical susceptibility and photoluminescence in porous silicon," Phys. Rev. B 52, 10752-10755 (1995).
[CrossRef]

A. Mimura, M. Fujii, S. Hayashi, D. Kovalev, and F. Koch, "Photoluminescence and free-electron absorption in heavily phosphorus-doped Si nanocrystals," Phys. Rev. B 62, 12625-12627 (2000).
[CrossRef]

B. J. Pawlak, T. Gregorkiewicz, C. A. J. Ammerlaan, W. Takkenberg, F. D. Tichelaar, and P. F. A. Alkemade, "Experimental investigation of band structure modification in silicon nanocrystals," Phys. Rev. B 64, 115308 (2001).
[CrossRef]

Phys. Rev. Lett. (2)

M. Fujii, A. Mimura, and S. Hayashi, "Hyperfine Structure of the Electron Spin Resonance of Phosphorus-Doped Si Nanocrystals," Phys. Rev. Lett. 89, 206805 (2002).
[CrossRef] [PubMed]

D. V. Melnikov and J. R. Chelikowsky, "Quantum Confinement in Phosphorus-Doped Silicon Nanocrystals," Phys. Rev. Lett. 92, 046802 (2004).
[CrossRef] [PubMed]

Thin Solid Films (1)

C. Delerue, M. Lannoo, G. Allan, and E. Martin, "Theoretical descriptions of porous silicon," Thin Solid Films 255, 27-34 (1995).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a)Absorption spectra of pure and P-doped Si-ncs (CP =0.8mol% ). The inset shows the PL spectra of the same samples. (b)P2O5 concentration (CP ) dependence of PL intensity at 1.3 eV (Left axis) and absorbance at 0.5 eV (Right axis).

Fig. 2.
Fig. 2.

z-scan measurements for (a) a closed aperture (Tcl ), (b) an open aperture (Top ) and (c) the ratio of the two results (Tcl /Top ). The squares are experimental results and the solid curves are results of fittings. P2O5 concentration (CP ) is changed from 0 to 1.2mol% .

Fig. 3.
Fig. 3.

P2O5 concentration dependence of n 2 (left axis) and β (right axis).

Fig. 4.
Fig. 4.

n 2 spectra of samples with different P2O5 concentration (CP ). The inset shows the absorption spectra of the same samples.

Fig. 5.
Fig. 5.

n 2 is plotted as a function of linear refractive index. The dashed line is the prediction of the Miller’s rule. Circles, squares and triangles are the results of several kinds of typical glasses, P-doped Si-ncs embedded in PSG (P-doped Si-nc:PSG) and pure Si-ncs embedded in SiO2 (Si-nc:SiO2), respectively.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

T op ( z ) = 1 + β I 0 L 1 + ( z / z 0 ) 2 ,
T cl / T op ( z ) = 1 + 4 Δϕ ( ( z / z 0 ) 2 + 9 ) ( ( z / z 0 ) 2 + 1 )
n 2 = λ α Δ ϕ 2 π I 0 ( 1 e αL ) ,

Metrics