Abstract

Lasing requires an active gain medium and a feedback mechanism. In conventional lasers the feedback is provided externally, e.g. by mirrors. An alternate approach is through Bloch waves in photonic crystals composed of periodic dielectric materials in which propagation of light in certain frequency ranges, known as photonic bandgaps, is forbidden. Compared to periodic crystals, quasicrystals have higher symmetry and are more favorable for the formation of photonic bandgaps. Hence quasicrystals are more efficient in providing the feedback mechanism for lasing. Here we report observation of lasing at visible wavelengths from dye-doped three-dimensional icosahedral quasicrystals fabricated in dichromate gelatin emulsions using a novel seven-beam optical interference holographic method. Multi-directional lasing exhibiting the icosahedral symmetry was observed. The lasing modes and pattern were explained by using the lasing condition expressed in the reciprocal lattice space of the icosahedral quasicrystal.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, "Photonic crystals: putting a new twist on light," Nature 386, 143-149 (1997).
    [CrossRef]
  2. D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, "Localization of light in a disordered medium," Nature 390, 671-673 (1997).
    [CrossRef]
  3. C. M. Soukoulis, Photonic Bandgap Materials (Kluwer, Dordrecht, 1996).
  4. E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
    [CrossRef] [PubMed]
  5. S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
    [CrossRef] [PubMed]
  6. J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, "The photonic band edge laser: A new approach to gain enhancement," J. Appl. Phys. 75, 1896-1899 (1994).
    [CrossRef]
  7. M. D. Tocci and M. Scalora, "Measurement of spontaneous-emission enhancement near the one-dimensional photonic band edge of semiconductor heterostructures," Phys. Rev. A 53, 2799-2803 (1996).
    [CrossRef] [PubMed]
  8. T. Komikado, S. Yoshida, and S. Umegaki, "Surface-emitting distributed-feedback dye laser of a polymeric multilayer fabricated by spin coating," Appl. Phys. Lett. 89, 061123 (2006).
    [CrossRef]
  9. J. Yoon, W. Lee, J. M. Caruge, M. Bawendi, E. L. Thomas, and S. Kooi, "Defect-mode mirrorless lasing in dye-doped organic/inorganic hybrid one-dimensional photonic crystal," Appl. Phys. Lett. 88, 091102 (2006).
    [CrossRef]
  10. M. H. Kok, W. Lu, J. C. W. Lee, W. Y. Tam, G. K. L. Wong, and C. T. Chan, "Lasing from dye-doped photonic crystals with graded layers in dichromate gelatin emulsions," Appl. Phys. Lett. 92, 151108/1-3 (2008).
    [CrossRef]
  11. M. Meier, A. Mekis, A. Dodabalapur, A. Timko, and R. E. Slusher, "Laser action from two-dimensional distributed feedback in photonic crystals," Appl. Phys. Lett. 74, 7-9 (1999).
    [CrossRef]
  12. M. Imada, S. Noda, A. Chutinan, T. Tokuda, M Murata, and G. Sasaki, "Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure," Appl. Phys. Lett. 75, 316-319 (1999).
    [CrossRef]
  13. M. Notomi, H. Suzuki, and T. Tamamura, "Directional lasing oscillation of two-dimensional organic photonic crystal lasers at several photonic band gaps," Appl. Phys. Lett. 78, 1325-1328 (2001).
    [CrossRef]
  14. N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, "Laser action in strongly scattering media," Nature 368, 436-438 (1994).
    [CrossRef]
  15. H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, "Random laser action in semiconductor powder," Phys. Rev. Lett. 82, 2278-2281 (1999).
    [CrossRef]
  16. P. J. Steinhardt and S. Ostlund, The Physics of Quasicrystals (World Scientific, 1987).
  17. Z. M. Stadnik, Physical Properties of Quasicrystals (Springer, 1999).
    [CrossRef]
  18. Y. S. Chan, C. T. Chan, and Z. Y. Liu, "Photonic band gaps in two dimensional photonic quasicrystals," Phys. Rev. Lett. 80, 956-959 (1998).
    [CrossRef]
  19. X. Zhang, Z. Q. Zhang, and C. T. Chan, "Absolute photonic band gaps in 12-fold symmetric photonic quasicrystals," Phys. Rev. B 63, 081105/1-4 (2001).
    [CrossRef]
  20. L. D. Negro, C. J. Oton, Z. Gaburro, L. Pavesi, P. Johnson, A. Lagendijk, R. Righini, M. Colocci, and D. S. Wiersma, "Light transport through the band-edge states of Fibonacci quasicrystals," Phys. Rev. Lett. 90, 055501 (2003).
    [CrossRef]
  21. M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumberg, and M. C. Netti, "Complete photonic bandgaps in 12-fold symmetric quasicrystals," Nature 404, 740-743 (2000).
    [CrossRef] [PubMed]
  22. M. A. Kaliteevski, S. Brand, R. A. Abram, T. F. Krauss, P. Millar, and R. M. De La Rue, "Diffraction and transmission of light in low-refractive index Penrose-tiled photonic quasicrystals," J. Phys. Condens. Matter 13, 10459-10470 (2001).
    [CrossRef]
  23. C. J. Jin, B. Y. Cheng, B. Y. Man, Z. L. Li, and D. Z. Zhang, "Two-dimensional dodecagonal and decagonal quasiperiodic photonic crystals in the microwave region," Phys. Rev. B 61, 10762-10767 (2000).
    [CrossRef]
  24. B. Freedman, G. Bartal, M. Segev, R. Lifshitz, D. N. Christodoulides, and J. W. Fleischer, "Wave and defect dynamics in nonlinear photonic quasicrystals," Nature 440, 1166-1169 (2006).
    [CrossRef] [PubMed]
  25. J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, A. N. Poddubny, E. L. Ivchenko, M. Wegener, and H. M. Gibbs, "Excitonic polaritons in Fibonacci quasicrystals," Opt. Express 16, 15382-15387 (2008).
    [CrossRef] [PubMed]
  26. M. Notomi, H. Suzuki, T. Tamamura, and K. Edagawa, "Lasing action due to the two-dimensional quasicperiodicity of photonic quasicrystals with a Penrose lattice," Phys. Rev. Lett. 92, 123906-1 (2004).
    [CrossRef] [PubMed]
  27. K. Nozaki and T. Baba, "Quasiperiodic photonic crystal microcavity lasers," Appl. Phys. Lett. 84, 4875-4877 (2004).
    [CrossRef]
  28. S. K. Kim, J. H. Lee, S. H. Kim, I. K. Hwang, Y. H. Lee, and S, B. Kim, "Photonic quasicrystals single-cell cavity mode," App. Phys. Lett. 86, 031101-3 (2005).
    [CrossRef]
  29. W. Man, M. Megens, P. J. Steinhardt, and P. M. Chaikin, "Experimental measurement of the photonic properties of icosahedral quasicrystals," Nature 436, 993-996 (2005).
    [CrossRef] [PubMed]
  30. A. Ledermann, L. Cademartiri, M. Hermatschweiler, C. Toninelli, G. A. Ozin, D. S. Wiersma, M. Wegener, and G. von Freymann, "Three-dimensional silicon inverse photonic quasicrystals for infrared wavelengths," Nat. Mater. 5, 942-945 (2006).
    [CrossRef]
  31. W. Y. Tam, "Icosahedral quasicrystals by optical interference holography," Appl. Phys. Lett. 89, 0251111 (2006).
    [CrossRef]
  32. J. Xu, R. Ma, X. Wang, and W. Y. Tam, "Icosahedral quasicrystals for visible wavelength by optical interference holography," Opt. Express 15, 4287-4295 (2007).
    [CrossRef] [PubMed]
  33. D. S. Rokhsar, D. C. Wright, and N. D. Mermin, "Scale equivalence of quasicrystallographic space groups," Phys. Rev. B 37, 8145-8149 (1988).
    [CrossRef]
  34. R. Ma, J. Xu and W. Y. Tam, "Wide bandgap photonic structures in dichromate gelatin emulsions," Appl. Phys. Lett. 89, 081116 (2006).
    [CrossRef]
  35. B. Jin, J. Xu, Y. K. Pang, and W. Y. Tam, "Optical characterization of woodpile structures in gelatin emulsions fabricated by optical interference holography," J. Opt. A: Pure Appl. Opt. 10, 085204/1-7 (2008).
    [CrossRef]

2008 (1)

2007 (1)

2006 (6)

B. Freedman, G. Bartal, M. Segev, R. Lifshitz, D. N. Christodoulides, and J. W. Fleischer, "Wave and defect dynamics in nonlinear photonic quasicrystals," Nature 440, 1166-1169 (2006).
[CrossRef] [PubMed]

R. Ma, J. Xu and W. Y. Tam, "Wide bandgap photonic structures in dichromate gelatin emulsions," Appl. Phys. Lett. 89, 081116 (2006).
[CrossRef]

A. Ledermann, L. Cademartiri, M. Hermatschweiler, C. Toninelli, G. A. Ozin, D. S. Wiersma, M. Wegener, and G. von Freymann, "Three-dimensional silicon inverse photonic quasicrystals for infrared wavelengths," Nat. Mater. 5, 942-945 (2006).
[CrossRef]

W. Y. Tam, "Icosahedral quasicrystals by optical interference holography," Appl. Phys. Lett. 89, 0251111 (2006).
[CrossRef]

T. Komikado, S. Yoshida, and S. Umegaki, "Surface-emitting distributed-feedback dye laser of a polymeric multilayer fabricated by spin coating," Appl. Phys. Lett. 89, 061123 (2006).
[CrossRef]

J. Yoon, W. Lee, J. M. Caruge, M. Bawendi, E. L. Thomas, and S. Kooi, "Defect-mode mirrorless lasing in dye-doped organic/inorganic hybrid one-dimensional photonic crystal," Appl. Phys. Lett. 88, 091102 (2006).
[CrossRef]

2005 (2)

S. K. Kim, J. H. Lee, S. H. Kim, I. K. Hwang, Y. H. Lee, and S, B. Kim, "Photonic quasicrystals single-cell cavity mode," App. Phys. Lett. 86, 031101-3 (2005).
[CrossRef]

W. Man, M. Megens, P. J. Steinhardt, and P. M. Chaikin, "Experimental measurement of the photonic properties of icosahedral quasicrystals," Nature 436, 993-996 (2005).
[CrossRef] [PubMed]

2004 (2)

M. Notomi, H. Suzuki, T. Tamamura, and K. Edagawa, "Lasing action due to the two-dimensional quasicperiodicity of photonic quasicrystals with a Penrose lattice," Phys. Rev. Lett. 92, 123906-1 (2004).
[CrossRef] [PubMed]

K. Nozaki and T. Baba, "Quasiperiodic photonic crystal microcavity lasers," Appl. Phys. Lett. 84, 4875-4877 (2004).
[CrossRef]

2003 (1)

L. D. Negro, C. J. Oton, Z. Gaburro, L. Pavesi, P. Johnson, A. Lagendijk, R. Righini, M. Colocci, and D. S. Wiersma, "Light transport through the band-edge states of Fibonacci quasicrystals," Phys. Rev. Lett. 90, 055501 (2003).
[CrossRef]

2001 (2)

M. Notomi, H. Suzuki, and T. Tamamura, "Directional lasing oscillation of two-dimensional organic photonic crystal lasers at several photonic band gaps," Appl. Phys. Lett. 78, 1325-1328 (2001).
[CrossRef]

M. A. Kaliteevski, S. Brand, R. A. Abram, T. F. Krauss, P. Millar, and R. M. De La Rue, "Diffraction and transmission of light in low-refractive index Penrose-tiled photonic quasicrystals," J. Phys. Condens. Matter 13, 10459-10470 (2001).
[CrossRef]

2000 (2)

C. J. Jin, B. Y. Cheng, B. Y. Man, Z. L. Li, and D. Z. Zhang, "Two-dimensional dodecagonal and decagonal quasiperiodic photonic crystals in the microwave region," Phys. Rev. B 61, 10762-10767 (2000).
[CrossRef]

M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumberg, and M. C. Netti, "Complete photonic bandgaps in 12-fold symmetric quasicrystals," Nature 404, 740-743 (2000).
[CrossRef] [PubMed]

1999 (3)

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, "Random laser action in semiconductor powder," Phys. Rev. Lett. 82, 2278-2281 (1999).
[CrossRef]

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, and R. E. Slusher, "Laser action from two-dimensional distributed feedback in photonic crystals," Appl. Phys. Lett. 74, 7-9 (1999).
[CrossRef]

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M Murata, and G. Sasaki, "Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure," Appl. Phys. Lett. 75, 316-319 (1999).
[CrossRef]

1998 (1)

Y. S. Chan, C. T. Chan, and Z. Y. Liu, "Photonic band gaps in two dimensional photonic quasicrystals," Phys. Rev. Lett. 80, 956-959 (1998).
[CrossRef]

1997 (2)

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, "Photonic crystals: putting a new twist on light," Nature 386, 143-149 (1997).
[CrossRef]

D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, "Localization of light in a disordered medium," Nature 390, 671-673 (1997).
[CrossRef]

1996 (1)

M. D. Tocci and M. Scalora, "Measurement of spontaneous-emission enhancement near the one-dimensional photonic band edge of semiconductor heterostructures," Phys. Rev. A 53, 2799-2803 (1996).
[CrossRef] [PubMed]

1994 (2)

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, "The photonic band edge laser: A new approach to gain enhancement," J. Appl. Phys. 75, 1896-1899 (1994).
[CrossRef]

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, "Laser action in strongly scattering media," Nature 368, 436-438 (1994).
[CrossRef]

1988 (1)

D. S. Rokhsar, D. C. Wright, and N. D. Mermin, "Scale equivalence of quasicrystallographic space groups," Phys. Rev. B 37, 8145-8149 (1988).
[CrossRef]

1987 (2)

E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

Abram, R. A.

M. A. Kaliteevski, S. Brand, R. A. Abram, T. F. Krauss, P. Millar, and R. M. De La Rue, "Diffraction and transmission of light in low-refractive index Penrose-tiled photonic quasicrystals," J. Phys. Condens. Matter 13, 10459-10470 (2001).
[CrossRef]

Baba, T.

K. Nozaki and T. Baba, "Quasiperiodic photonic crystal microcavity lasers," Appl. Phys. Lett. 84, 4875-4877 (2004).
[CrossRef]

Balachandran, R. M.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, "Laser action in strongly scattering media," Nature 368, 436-438 (1994).
[CrossRef]

Bartal, G.

B. Freedman, G. Bartal, M. Segev, R. Lifshitz, D. N. Christodoulides, and J. W. Fleischer, "Wave and defect dynamics in nonlinear photonic quasicrystals," Nature 440, 1166-1169 (2006).
[CrossRef] [PubMed]

Bartolini, P.

D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, "Localization of light in a disordered medium," Nature 390, 671-673 (1997).
[CrossRef]

Baumberg, J. J.

M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumberg, and M. C. Netti, "Complete photonic bandgaps in 12-fold symmetric quasicrystals," Nature 404, 740-743 (2000).
[CrossRef] [PubMed]

Bawendi, M.

J. Yoon, W. Lee, J. M. Caruge, M. Bawendi, E. L. Thomas, and S. Kooi, "Defect-mode mirrorless lasing in dye-doped organic/inorganic hybrid one-dimensional photonic crystal," Appl. Phys. Lett. 88, 091102 (2006).
[CrossRef]

Bloemer, M. J.

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, "The photonic band edge laser: A new approach to gain enhancement," J. Appl. Phys. 75, 1896-1899 (1994).
[CrossRef]

Bowden, C. M.

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, "The photonic band edge laser: A new approach to gain enhancement," J. Appl. Phys. 75, 1896-1899 (1994).
[CrossRef]

Brand, S.

M. A. Kaliteevski, S. Brand, R. A. Abram, T. F. Krauss, P. Millar, and R. M. De La Rue, "Diffraction and transmission of light in low-refractive index Penrose-tiled photonic quasicrystals," J. Phys. Condens. Matter 13, 10459-10470 (2001).
[CrossRef]

Cademartiri, L.

A. Ledermann, L. Cademartiri, M. Hermatschweiler, C. Toninelli, G. A. Ozin, D. S. Wiersma, M. Wegener, and G. von Freymann, "Three-dimensional silicon inverse photonic quasicrystals for infrared wavelengths," Nat. Mater. 5, 942-945 (2006).
[CrossRef]

Cao, H.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, "Random laser action in semiconductor powder," Phys. Rev. Lett. 82, 2278-2281 (1999).
[CrossRef]

Caruge, J. M.

J. Yoon, W. Lee, J. M. Caruge, M. Bawendi, E. L. Thomas, and S. Kooi, "Defect-mode mirrorless lasing in dye-doped organic/inorganic hybrid one-dimensional photonic crystal," Appl. Phys. Lett. 88, 091102 (2006).
[CrossRef]

Chaikin, P. M.

W. Man, M. Megens, P. J. Steinhardt, and P. M. Chaikin, "Experimental measurement of the photonic properties of icosahedral quasicrystals," Nature 436, 993-996 (2005).
[CrossRef] [PubMed]

Chan, C. T.

Y. S. Chan, C. T. Chan, and Z. Y. Liu, "Photonic band gaps in two dimensional photonic quasicrystals," Phys. Rev. Lett. 80, 956-959 (1998).
[CrossRef]

X. Zhang, Z. Q. Zhang, and C. T. Chan, "Absolute photonic band gaps in 12-fold symmetric photonic quasicrystals," Phys. Rev. B 63, 081105/1-4 (2001).
[CrossRef]

M. H. Kok, W. Lu, J. C. W. Lee, W. Y. Tam, G. K. L. Wong, and C. T. Chan, "Lasing from dye-doped photonic crystals with graded layers in dichromate gelatin emulsions," Appl. Phys. Lett. 92, 151108/1-3 (2008).
[CrossRef]

Chan, Y. S.

Y. S. Chan, C. T. Chan, and Z. Y. Liu, "Photonic band gaps in two dimensional photonic quasicrystals," Phys. Rev. Lett. 80, 956-959 (1998).
[CrossRef]

Chang, R. P. H.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, "Random laser action in semiconductor powder," Phys. Rev. Lett. 82, 2278-2281 (1999).
[CrossRef]

Charlton, M. D. B.

M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumberg, and M. C. Netti, "Complete photonic bandgaps in 12-fold symmetric quasicrystals," Nature 404, 740-743 (2000).
[CrossRef] [PubMed]

Cheng, B. Y.

C. J. Jin, B. Y. Cheng, B. Y. Man, Z. L. Li, and D. Z. Zhang, "Two-dimensional dodecagonal and decagonal quasiperiodic photonic crystals in the microwave region," Phys. Rev. B 61, 10762-10767 (2000).
[CrossRef]

Christodoulides, D. N.

B. Freedman, G. Bartal, M. Segev, R. Lifshitz, D. N. Christodoulides, and J. W. Fleischer, "Wave and defect dynamics in nonlinear photonic quasicrystals," Nature 440, 1166-1169 (2006).
[CrossRef] [PubMed]

Chutinan, A.

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M Murata, and G. Sasaki, "Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure," Appl. Phys. Lett. 75, 316-319 (1999).
[CrossRef]

Colocci, M.

L. D. Negro, C. J. Oton, Z. Gaburro, L. Pavesi, P. Johnson, A. Lagendijk, R. Righini, M. Colocci, and D. S. Wiersma, "Light transport through the band-edge states of Fibonacci quasicrystals," Phys. Rev. Lett. 90, 055501 (2003).
[CrossRef]

De La Rue, R. M.

M. A. Kaliteevski, S. Brand, R. A. Abram, T. F. Krauss, P. Millar, and R. M. De La Rue, "Diffraction and transmission of light in low-refractive index Penrose-tiled photonic quasicrystals," J. Phys. Condens. Matter 13, 10459-10470 (2001).
[CrossRef]

Dodabalapur, A.

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, and R. E. Slusher, "Laser action from two-dimensional distributed feedback in photonic crystals," Appl. Phys. Lett. 74, 7-9 (1999).
[CrossRef]

Dowling, J. P.

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, "The photonic band edge laser: A new approach to gain enhancement," J. Appl. Phys. 75, 1896-1899 (1994).
[CrossRef]

Edagawa, K.

M. Notomi, H. Suzuki, T. Tamamura, and K. Edagawa, "Lasing action due to the two-dimensional quasicperiodicity of photonic quasicrystals with a Penrose lattice," Phys. Rev. Lett. 92, 123906-1 (2004).
[CrossRef] [PubMed]

Fan, S.

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, "Photonic crystals: putting a new twist on light," Nature 386, 143-149 (1997).
[CrossRef]

Fleischer, J. W.

B. Freedman, G. Bartal, M. Segev, R. Lifshitz, D. N. Christodoulides, and J. W. Fleischer, "Wave and defect dynamics in nonlinear photonic quasicrystals," Nature 440, 1166-1169 (2006).
[CrossRef] [PubMed]

Freedman, B.

B. Freedman, G. Bartal, M. Segev, R. Lifshitz, D. N. Christodoulides, and J. W. Fleischer, "Wave and defect dynamics in nonlinear photonic quasicrystals," Nature 440, 1166-1169 (2006).
[CrossRef] [PubMed]

Gaburro, Z.

L. D. Negro, C. J. Oton, Z. Gaburro, L. Pavesi, P. Johnson, A. Lagendijk, R. Righini, M. Colocci, and D. S. Wiersma, "Light transport through the band-edge states of Fibonacci quasicrystals," Phys. Rev. Lett. 90, 055501 (2003).
[CrossRef]

Gibbs, H. M.

Gomes, A. S. L.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, "Laser action in strongly scattering media," Nature 368, 436-438 (1994).
[CrossRef]

Hendrickson, J.

Hermatschweiler, M.

A. Ledermann, L. Cademartiri, M. Hermatschweiler, C. Toninelli, G. A. Ozin, D. S. Wiersma, M. Wegener, and G. von Freymann, "Three-dimensional silicon inverse photonic quasicrystals for infrared wavelengths," Nat. Mater. 5, 942-945 (2006).
[CrossRef]

Ho, S. T.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, "Random laser action in semiconductor powder," Phys. Rev. Lett. 82, 2278-2281 (1999).
[CrossRef]

Hwang, I. K.

S. K. Kim, J. H. Lee, S. H. Kim, I. K. Hwang, Y. H. Lee, and S, B. Kim, "Photonic quasicrystals single-cell cavity mode," App. Phys. Lett. 86, 031101-3 (2005).
[CrossRef]

Imada, M.

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M Murata, and G. Sasaki, "Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure," Appl. Phys. Lett. 75, 316-319 (1999).
[CrossRef]

Ivchenko, E. L.

Jin, B.

B. Jin, J. Xu, Y. K. Pang, and W. Y. Tam, "Optical characterization of woodpile structures in gelatin emulsions fabricated by optical interference holography," J. Opt. A: Pure Appl. Opt. 10, 085204/1-7 (2008).
[CrossRef]

Jin, C. J.

C. J. Jin, B. Y. Cheng, B. Y. Man, Z. L. Li, and D. Z. Zhang, "Two-dimensional dodecagonal and decagonal quasiperiodic photonic crystals in the microwave region," Phys. Rev. B 61, 10762-10767 (2000).
[CrossRef]

Joannopoulos, J. D.

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, "Photonic crystals: putting a new twist on light," Nature 386, 143-149 (1997).
[CrossRef]

John, S.

S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

Johnson, P.

L. D. Negro, C. J. Oton, Z. Gaburro, L. Pavesi, P. Johnson, A. Lagendijk, R. Righini, M. Colocci, and D. S. Wiersma, "Light transport through the band-edge states of Fibonacci quasicrystals," Phys. Rev. Lett. 90, 055501 (2003).
[CrossRef]

Kaliteevski, M. A.

M. A. Kaliteevski, S. Brand, R. A. Abram, T. F. Krauss, P. Millar, and R. M. De La Rue, "Diffraction and transmission of light in low-refractive index Penrose-tiled photonic quasicrystals," J. Phys. Condens. Matter 13, 10459-10470 (2001).
[CrossRef]

Khitrova, G.

Kim, S. H.

S. K. Kim, J. H. Lee, S. H. Kim, I. K. Hwang, Y. H. Lee, and S, B. Kim, "Photonic quasicrystals single-cell cavity mode," App. Phys. Lett. 86, 031101-3 (2005).
[CrossRef]

Kim, S. K.

S. K. Kim, J. H. Lee, S. H. Kim, I. K. Hwang, Y. H. Lee, and S, B. Kim, "Photonic quasicrystals single-cell cavity mode," App. Phys. Lett. 86, 031101-3 (2005).
[CrossRef]

Kok, M. H.

M. H. Kok, W. Lu, J. C. W. Lee, W. Y. Tam, G. K. L. Wong, and C. T. Chan, "Lasing from dye-doped photonic crystals with graded layers in dichromate gelatin emulsions," Appl. Phys. Lett. 92, 151108/1-3 (2008).
[CrossRef]

Komikado, T.

T. Komikado, S. Yoshida, and S. Umegaki, "Surface-emitting distributed-feedback dye laser of a polymeric multilayer fabricated by spin coating," Appl. Phys. Lett. 89, 061123 (2006).
[CrossRef]

Kooi, S.

J. Yoon, W. Lee, J. M. Caruge, M. Bawendi, E. L. Thomas, and S. Kooi, "Defect-mode mirrorless lasing in dye-doped organic/inorganic hybrid one-dimensional photonic crystal," Appl. Phys. Lett. 88, 091102 (2006).
[CrossRef]

Krauss, T. F.

M. A. Kaliteevski, S. Brand, R. A. Abram, T. F. Krauss, P. Millar, and R. M. De La Rue, "Diffraction and transmission of light in low-refractive index Penrose-tiled photonic quasicrystals," J. Phys. Condens. Matter 13, 10459-10470 (2001).
[CrossRef]

Lagendijk, A.

L. D. Negro, C. J. Oton, Z. Gaburro, L. Pavesi, P. Johnson, A. Lagendijk, R. Righini, M. Colocci, and D. S. Wiersma, "Light transport through the band-edge states of Fibonacci quasicrystals," Phys. Rev. Lett. 90, 055501 (2003).
[CrossRef]

D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, "Localization of light in a disordered medium," Nature 390, 671-673 (1997).
[CrossRef]

Lawandy, N. M.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, "Laser action in strongly scattering media," Nature 368, 436-438 (1994).
[CrossRef]

Ledermann, A.

A. Ledermann, L. Cademartiri, M. Hermatschweiler, C. Toninelli, G. A. Ozin, D. S. Wiersma, M. Wegener, and G. von Freymann, "Three-dimensional silicon inverse photonic quasicrystals for infrared wavelengths," Nat. Mater. 5, 942-945 (2006).
[CrossRef]

Lee, J. C. W.

M. H. Kok, W. Lu, J. C. W. Lee, W. Y. Tam, G. K. L. Wong, and C. T. Chan, "Lasing from dye-doped photonic crystals with graded layers in dichromate gelatin emulsions," Appl. Phys. Lett. 92, 151108/1-3 (2008).
[CrossRef]

Lee, J. H.

S. K. Kim, J. H. Lee, S. H. Kim, I. K. Hwang, Y. H. Lee, and S, B. Kim, "Photonic quasicrystals single-cell cavity mode," App. Phys. Lett. 86, 031101-3 (2005).
[CrossRef]

Lee, W.

J. Yoon, W. Lee, J. M. Caruge, M. Bawendi, E. L. Thomas, and S. Kooi, "Defect-mode mirrorless lasing in dye-doped organic/inorganic hybrid one-dimensional photonic crystal," Appl. Phys. Lett. 88, 091102 (2006).
[CrossRef]

Lee, Y. H.

S. K. Kim, J. H. Lee, S. H. Kim, I. K. Hwang, Y. H. Lee, and S, B. Kim, "Photonic quasicrystals single-cell cavity mode," App. Phys. Lett. 86, 031101-3 (2005).
[CrossRef]

Li, Z. L.

C. J. Jin, B. Y. Cheng, B. Y. Man, Z. L. Li, and D. Z. Zhang, "Two-dimensional dodecagonal and decagonal quasiperiodic photonic crystals in the microwave region," Phys. Rev. B 61, 10762-10767 (2000).
[CrossRef]

Lifshitz, R.

B. Freedman, G. Bartal, M. Segev, R. Lifshitz, D. N. Christodoulides, and J. W. Fleischer, "Wave and defect dynamics in nonlinear photonic quasicrystals," Nature 440, 1166-1169 (2006).
[CrossRef] [PubMed]

Liu, Z. Y.

Y. S. Chan, C. T. Chan, and Z. Y. Liu, "Photonic band gaps in two dimensional photonic quasicrystals," Phys. Rev. Lett. 80, 956-959 (1998).
[CrossRef]

Lu, W.

M. H. Kok, W. Lu, J. C. W. Lee, W. Y. Tam, G. K. L. Wong, and C. T. Chan, "Lasing from dye-doped photonic crystals with graded layers in dichromate gelatin emulsions," Appl. Phys. Lett. 92, 151108/1-3 (2008).
[CrossRef]

Ma, R.

J. Xu, R. Ma, X. Wang, and W. Y. Tam, "Icosahedral quasicrystals for visible wavelength by optical interference holography," Opt. Express 15, 4287-4295 (2007).
[CrossRef] [PubMed]

R. Ma, J. Xu and W. Y. Tam, "Wide bandgap photonic structures in dichromate gelatin emulsions," Appl. Phys. Lett. 89, 081116 (2006).
[CrossRef]

Man, B. Y.

C. J. Jin, B. Y. Cheng, B. Y. Man, Z. L. Li, and D. Z. Zhang, "Two-dimensional dodecagonal and decagonal quasiperiodic photonic crystals in the microwave region," Phys. Rev. B 61, 10762-10767 (2000).
[CrossRef]

Man, W.

W. Man, M. Megens, P. J. Steinhardt, and P. M. Chaikin, "Experimental measurement of the photonic properties of icosahedral quasicrystals," Nature 436, 993-996 (2005).
[CrossRef] [PubMed]

Megens, M.

W. Man, M. Megens, P. J. Steinhardt, and P. M. Chaikin, "Experimental measurement of the photonic properties of icosahedral quasicrystals," Nature 436, 993-996 (2005).
[CrossRef] [PubMed]

Meier, M.

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, and R. E. Slusher, "Laser action from two-dimensional distributed feedback in photonic crystals," Appl. Phys. Lett. 74, 7-9 (1999).
[CrossRef]

Mekis, A.

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, and R. E. Slusher, "Laser action from two-dimensional distributed feedback in photonic crystals," Appl. Phys. Lett. 74, 7-9 (1999).
[CrossRef]

Mermin, N. D.

D. S. Rokhsar, D. C. Wright, and N. D. Mermin, "Scale equivalence of quasicrystallographic space groups," Phys. Rev. B 37, 8145-8149 (1988).
[CrossRef]

Millar, P.

M. A. Kaliteevski, S. Brand, R. A. Abram, T. F. Krauss, P. Millar, and R. M. De La Rue, "Diffraction and transmission of light in low-refractive index Penrose-tiled photonic quasicrystals," J. Phys. Condens. Matter 13, 10459-10470 (2001).
[CrossRef]

Murata, M

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M Murata, and G. Sasaki, "Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure," Appl. Phys. Lett. 75, 316-319 (1999).
[CrossRef]

Negro, L. D.

L. D. Negro, C. J. Oton, Z. Gaburro, L. Pavesi, P. Johnson, A. Lagendijk, R. Righini, M. Colocci, and D. S. Wiersma, "Light transport through the band-edge states of Fibonacci quasicrystals," Phys. Rev. Lett. 90, 055501 (2003).
[CrossRef]

Netti, M. C.

M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumberg, and M. C. Netti, "Complete photonic bandgaps in 12-fold symmetric quasicrystals," Nature 404, 740-743 (2000).
[CrossRef] [PubMed]

Noda, S.

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M Murata, and G. Sasaki, "Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure," Appl. Phys. Lett. 75, 316-319 (1999).
[CrossRef]

Notomi, M.

M. Notomi, H. Suzuki, T. Tamamura, and K. Edagawa, "Lasing action due to the two-dimensional quasicperiodicity of photonic quasicrystals with a Penrose lattice," Phys. Rev. Lett. 92, 123906-1 (2004).
[CrossRef] [PubMed]

M. Notomi, H. Suzuki, and T. Tamamura, "Directional lasing oscillation of two-dimensional organic photonic crystal lasers at several photonic band gaps," Appl. Phys. Lett. 78, 1325-1328 (2001).
[CrossRef]

Nozaki, K.

K. Nozaki and T. Baba, "Quasiperiodic photonic crystal microcavity lasers," Appl. Phys. Lett. 84, 4875-4877 (2004).
[CrossRef]

Oton, C. J.

L. D. Negro, C. J. Oton, Z. Gaburro, L. Pavesi, P. Johnson, A. Lagendijk, R. Righini, M. Colocci, and D. S. Wiersma, "Light transport through the band-edge states of Fibonacci quasicrystals," Phys. Rev. Lett. 90, 055501 (2003).
[CrossRef]

Ozin, G. A.

A. Ledermann, L. Cademartiri, M. Hermatschweiler, C. Toninelli, G. A. Ozin, D. S. Wiersma, M. Wegener, and G. von Freymann, "Three-dimensional silicon inverse photonic quasicrystals for infrared wavelengths," Nat. Mater. 5, 942-945 (2006).
[CrossRef]

Pang, Y. K.

B. Jin, J. Xu, Y. K. Pang, and W. Y. Tam, "Optical characterization of woodpile structures in gelatin emulsions fabricated by optical interference holography," J. Opt. A: Pure Appl. Opt. 10, 085204/1-7 (2008).
[CrossRef]

Parker, G. J.

M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumberg, and M. C. Netti, "Complete photonic bandgaps in 12-fold symmetric quasicrystals," Nature 404, 740-743 (2000).
[CrossRef] [PubMed]

Pavesi, L.

L. D. Negro, C. J. Oton, Z. Gaburro, L. Pavesi, P. Johnson, A. Lagendijk, R. Righini, M. Colocci, and D. S. Wiersma, "Light transport through the band-edge states of Fibonacci quasicrystals," Phys. Rev. Lett. 90, 055501 (2003).
[CrossRef]

Poddubny, A. N.

Richards, B. C.

Righini, R.

L. D. Negro, C. J. Oton, Z. Gaburro, L. Pavesi, P. Johnson, A. Lagendijk, R. Righini, M. Colocci, and D. S. Wiersma, "Light transport through the band-edge states of Fibonacci quasicrystals," Phys. Rev. Lett. 90, 055501 (2003).
[CrossRef]

D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, "Localization of light in a disordered medium," Nature 390, 671-673 (1997).
[CrossRef]

Rokhsar, D. S.

D. S. Rokhsar, D. C. Wright, and N. D. Mermin, "Scale equivalence of quasicrystallographic space groups," Phys. Rev. B 37, 8145-8149 (1988).
[CrossRef]

Sasaki, G.

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M Murata, and G. Sasaki, "Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure," Appl. Phys. Lett. 75, 316-319 (1999).
[CrossRef]

Sauvain, E.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, "Laser action in strongly scattering media," Nature 368, 436-438 (1994).
[CrossRef]

Scalora, M.

M. D. Tocci and M. Scalora, "Measurement of spontaneous-emission enhancement near the one-dimensional photonic band edge of semiconductor heterostructures," Phys. Rev. A 53, 2799-2803 (1996).
[CrossRef] [PubMed]

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, "The photonic band edge laser: A new approach to gain enhancement," J. Appl. Phys. 75, 1896-1899 (1994).
[CrossRef]

Seelig, E. W.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, "Random laser action in semiconductor powder," Phys. Rev. Lett. 82, 2278-2281 (1999).
[CrossRef]

Segev, M.

B. Freedman, G. Bartal, M. Segev, R. Lifshitz, D. N. Christodoulides, and J. W. Fleischer, "Wave and defect dynamics in nonlinear photonic quasicrystals," Nature 440, 1166-1169 (2006).
[CrossRef] [PubMed]

Slusher, R. E.

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, and R. E. Slusher, "Laser action from two-dimensional distributed feedback in photonic crystals," Appl. Phys. Lett. 74, 7-9 (1999).
[CrossRef]

Steinhardt, P. J.

W. Man, M. Megens, P. J. Steinhardt, and P. M. Chaikin, "Experimental measurement of the photonic properties of icosahedral quasicrystals," Nature 436, 993-996 (2005).
[CrossRef] [PubMed]

Suzuki, H.

M. Notomi, H. Suzuki, T. Tamamura, and K. Edagawa, "Lasing action due to the two-dimensional quasicperiodicity of photonic quasicrystals with a Penrose lattice," Phys. Rev. Lett. 92, 123906-1 (2004).
[CrossRef] [PubMed]

M. Notomi, H. Suzuki, and T. Tamamura, "Directional lasing oscillation of two-dimensional organic photonic crystal lasers at several photonic band gaps," Appl. Phys. Lett. 78, 1325-1328 (2001).
[CrossRef]

Sweet, J.

Tam, W. Y.

J. Xu, R. Ma, X. Wang, and W. Y. Tam, "Icosahedral quasicrystals for visible wavelength by optical interference holography," Opt. Express 15, 4287-4295 (2007).
[CrossRef] [PubMed]

R. Ma, J. Xu and W. Y. Tam, "Wide bandgap photonic structures in dichromate gelatin emulsions," Appl. Phys. Lett. 89, 081116 (2006).
[CrossRef]

W. Y. Tam, "Icosahedral quasicrystals by optical interference holography," Appl. Phys. Lett. 89, 0251111 (2006).
[CrossRef]

B. Jin, J. Xu, Y. K. Pang, and W. Y. Tam, "Optical characterization of woodpile structures in gelatin emulsions fabricated by optical interference holography," J. Opt. A: Pure Appl. Opt. 10, 085204/1-7 (2008).
[CrossRef]

M. H. Kok, W. Lu, J. C. W. Lee, W. Y. Tam, G. K. L. Wong, and C. T. Chan, "Lasing from dye-doped photonic crystals with graded layers in dichromate gelatin emulsions," Appl. Phys. Lett. 92, 151108/1-3 (2008).
[CrossRef]

Tamamura, T.

M. Notomi, H. Suzuki, T. Tamamura, and K. Edagawa, "Lasing action due to the two-dimensional quasicperiodicity of photonic quasicrystals with a Penrose lattice," Phys. Rev. Lett. 92, 123906-1 (2004).
[CrossRef] [PubMed]

M. Notomi, H. Suzuki, and T. Tamamura, "Directional lasing oscillation of two-dimensional organic photonic crystal lasers at several photonic band gaps," Appl. Phys. Lett. 78, 1325-1328 (2001).
[CrossRef]

Thomas, E. L.

J. Yoon, W. Lee, J. M. Caruge, M. Bawendi, E. L. Thomas, and S. Kooi, "Defect-mode mirrorless lasing in dye-doped organic/inorganic hybrid one-dimensional photonic crystal," Appl. Phys. Lett. 88, 091102 (2006).
[CrossRef]

Timko, A.

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, and R. E. Slusher, "Laser action from two-dimensional distributed feedback in photonic crystals," Appl. Phys. Lett. 74, 7-9 (1999).
[CrossRef]

Tocci, M. D.

M. D. Tocci and M. Scalora, "Measurement of spontaneous-emission enhancement near the one-dimensional photonic band edge of semiconductor heterostructures," Phys. Rev. A 53, 2799-2803 (1996).
[CrossRef] [PubMed]

Tokuda, T.

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M Murata, and G. Sasaki, "Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure," Appl. Phys. Lett. 75, 316-319 (1999).
[CrossRef]

Toninelli, C.

A. Ledermann, L. Cademartiri, M. Hermatschweiler, C. Toninelli, G. A. Ozin, D. S. Wiersma, M. Wegener, and G. von Freymann, "Three-dimensional silicon inverse photonic quasicrystals for infrared wavelengths," Nat. Mater. 5, 942-945 (2006).
[CrossRef]

Umegaki, S.

T. Komikado, S. Yoshida, and S. Umegaki, "Surface-emitting distributed-feedback dye laser of a polymeric multilayer fabricated by spin coating," Appl. Phys. Lett. 89, 061123 (2006).
[CrossRef]

Villeneuve, P. R.

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, "Photonic crystals: putting a new twist on light," Nature 386, 143-149 (1997).
[CrossRef]

von Freymann, G.

A. Ledermann, L. Cademartiri, M. Hermatschweiler, C. Toninelli, G. A. Ozin, D. S. Wiersma, M. Wegener, and G. von Freymann, "Three-dimensional silicon inverse photonic quasicrystals for infrared wavelengths," Nat. Mater. 5, 942-945 (2006).
[CrossRef]

Wang, Q. H.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, "Random laser action in semiconductor powder," Phys. Rev. Lett. 82, 2278-2281 (1999).
[CrossRef]

Wang, X.

Wegener, M.

J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, A. N. Poddubny, E. L. Ivchenko, M. Wegener, and H. M. Gibbs, "Excitonic polaritons in Fibonacci quasicrystals," Opt. Express 16, 15382-15387 (2008).
[CrossRef] [PubMed]

A. Ledermann, L. Cademartiri, M. Hermatschweiler, C. Toninelli, G. A. Ozin, D. S. Wiersma, M. Wegener, and G. von Freymann, "Three-dimensional silicon inverse photonic quasicrystals for infrared wavelengths," Nat. Mater. 5, 942-945 (2006).
[CrossRef]

Wiersma, D. S.

A. Ledermann, L. Cademartiri, M. Hermatschweiler, C. Toninelli, G. A. Ozin, D. S. Wiersma, M. Wegener, and G. von Freymann, "Three-dimensional silicon inverse photonic quasicrystals for infrared wavelengths," Nat. Mater. 5, 942-945 (2006).
[CrossRef]

L. D. Negro, C. J. Oton, Z. Gaburro, L. Pavesi, P. Johnson, A. Lagendijk, R. Righini, M. Colocci, and D. S. Wiersma, "Light transport through the band-edge states of Fibonacci quasicrystals," Phys. Rev. Lett. 90, 055501 (2003).
[CrossRef]

D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, "Localization of light in a disordered medium," Nature 390, 671-673 (1997).
[CrossRef]

Wong, G. K. L.

M. H. Kok, W. Lu, J. C. W. Lee, W. Y. Tam, G. K. L. Wong, and C. T. Chan, "Lasing from dye-doped photonic crystals with graded layers in dichromate gelatin emulsions," Appl. Phys. Lett. 92, 151108/1-3 (2008).
[CrossRef]

Wright, D. C.

D. S. Rokhsar, D. C. Wright, and N. D. Mermin, "Scale equivalence of quasicrystallographic space groups," Phys. Rev. B 37, 8145-8149 (1988).
[CrossRef]

Xu, J.

J. Xu, R. Ma, X. Wang, and W. Y. Tam, "Icosahedral quasicrystals for visible wavelength by optical interference holography," Opt. Express 15, 4287-4295 (2007).
[CrossRef] [PubMed]

R. Ma, J. Xu and W. Y. Tam, "Wide bandgap photonic structures in dichromate gelatin emulsions," Appl. Phys. Lett. 89, 081116 (2006).
[CrossRef]

B. Jin, J. Xu, Y. K. Pang, and W. Y. Tam, "Optical characterization of woodpile structures in gelatin emulsions fabricated by optical interference holography," J. Opt. A: Pure Appl. Opt. 10, 085204/1-7 (2008).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

Yoon, J.

J. Yoon, W. Lee, J. M. Caruge, M. Bawendi, E. L. Thomas, and S. Kooi, "Defect-mode mirrorless lasing in dye-doped organic/inorganic hybrid one-dimensional photonic crystal," Appl. Phys. Lett. 88, 091102 (2006).
[CrossRef]

Yoshida, S.

T. Komikado, S. Yoshida, and S. Umegaki, "Surface-emitting distributed-feedback dye laser of a polymeric multilayer fabricated by spin coating," Appl. Phys. Lett. 89, 061123 (2006).
[CrossRef]

Zhang, D. Z.

C. J. Jin, B. Y. Cheng, B. Y. Man, Z. L. Li, and D. Z. Zhang, "Two-dimensional dodecagonal and decagonal quasiperiodic photonic crystals in the microwave region," Phys. Rev. B 61, 10762-10767 (2000).
[CrossRef]

Zhang, X.

X. Zhang, Z. Q. Zhang, and C. T. Chan, "Absolute photonic band gaps in 12-fold symmetric photonic quasicrystals," Phys. Rev. B 63, 081105/1-4 (2001).
[CrossRef]

Zhang, Z. Q.

X. Zhang, Z. Q. Zhang, and C. T. Chan, "Absolute photonic band gaps in 12-fold symmetric photonic quasicrystals," Phys. Rev. B 63, 081105/1-4 (2001).
[CrossRef]

Zhao, Y. G.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, "Random laser action in semiconductor powder," Phys. Rev. Lett. 82, 2278-2281 (1999).
[CrossRef]

Zoorob, M. E.

M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumberg, and M. C. Netti, "Complete photonic bandgaps in 12-fold symmetric quasicrystals," Nature 404, 740-743 (2000).
[CrossRef] [PubMed]

App. Phys. Lett. (1)

S. K. Kim, J. H. Lee, S. H. Kim, I. K. Hwang, Y. H. Lee, and S, B. Kim, "Photonic quasicrystals single-cell cavity mode," App. Phys. Lett. 86, 031101-3 (2005).
[CrossRef]

Appl. Phys. Lett. (8)

W. Y. Tam, "Icosahedral quasicrystals by optical interference holography," Appl. Phys. Lett. 89, 0251111 (2006).
[CrossRef]

R. Ma, J. Xu and W. Y. Tam, "Wide bandgap photonic structures in dichromate gelatin emulsions," Appl. Phys. Lett. 89, 081116 (2006).
[CrossRef]

K. Nozaki and T. Baba, "Quasiperiodic photonic crystal microcavity lasers," Appl. Phys. Lett. 84, 4875-4877 (2004).
[CrossRef]

T. Komikado, S. Yoshida, and S. Umegaki, "Surface-emitting distributed-feedback dye laser of a polymeric multilayer fabricated by spin coating," Appl. Phys. Lett. 89, 061123 (2006).
[CrossRef]

J. Yoon, W. Lee, J. M. Caruge, M. Bawendi, E. L. Thomas, and S. Kooi, "Defect-mode mirrorless lasing in dye-doped organic/inorganic hybrid one-dimensional photonic crystal," Appl. Phys. Lett. 88, 091102 (2006).
[CrossRef]

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, and R. E. Slusher, "Laser action from two-dimensional distributed feedback in photonic crystals," Appl. Phys. Lett. 74, 7-9 (1999).
[CrossRef]

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M Murata, and G. Sasaki, "Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure," Appl. Phys. Lett. 75, 316-319 (1999).
[CrossRef]

M. Notomi, H. Suzuki, and T. Tamamura, "Directional lasing oscillation of two-dimensional organic photonic crystal lasers at several photonic band gaps," Appl. Phys. Lett. 78, 1325-1328 (2001).
[CrossRef]

J. Appl. Phys. (1)

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, "The photonic band edge laser: A new approach to gain enhancement," J. Appl. Phys. 75, 1896-1899 (1994).
[CrossRef]

J. Phys. Condens. Matter (1)

M. A. Kaliteevski, S. Brand, R. A. Abram, T. F. Krauss, P. Millar, and R. M. De La Rue, "Diffraction and transmission of light in low-refractive index Penrose-tiled photonic quasicrystals," J. Phys. Condens. Matter 13, 10459-10470 (2001).
[CrossRef]

Nature (6)

B. Freedman, G. Bartal, M. Segev, R. Lifshitz, D. N. Christodoulides, and J. W. Fleischer, "Wave and defect dynamics in nonlinear photonic quasicrystals," Nature 440, 1166-1169 (2006).
[CrossRef] [PubMed]

W. Man, M. Megens, P. J. Steinhardt, and P. M. Chaikin, "Experimental measurement of the photonic properties of icosahedral quasicrystals," Nature 436, 993-996 (2005).
[CrossRef] [PubMed]

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, "Photonic crystals: putting a new twist on light," Nature 386, 143-149 (1997).
[CrossRef]

D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, "Localization of light in a disordered medium," Nature 390, 671-673 (1997).
[CrossRef]

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, "Laser action in strongly scattering media," Nature 368, 436-438 (1994).
[CrossRef]

M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumberg, and M. C. Netti, "Complete photonic bandgaps in 12-fold symmetric quasicrystals," Nature 404, 740-743 (2000).
[CrossRef] [PubMed]

Nature Mat. (1)

A. Ledermann, L. Cademartiri, M. Hermatschweiler, C. Toninelli, G. A. Ozin, D. S. Wiersma, M. Wegener, and G. von Freymann, "Three-dimensional silicon inverse photonic quasicrystals for infrared wavelengths," Nat. Mater. 5, 942-945 (2006).
[CrossRef]

Opt. Express (2)

Phys. Rev. A (1)

M. D. Tocci and M. Scalora, "Measurement of spontaneous-emission enhancement near the one-dimensional photonic band edge of semiconductor heterostructures," Phys. Rev. A 53, 2799-2803 (1996).
[CrossRef] [PubMed]

Phys. Rev. B (2)

C. J. Jin, B. Y. Cheng, B. Y. Man, Z. L. Li, and D. Z. Zhang, "Two-dimensional dodecagonal and decagonal quasiperiodic photonic crystals in the microwave region," Phys. Rev. B 61, 10762-10767 (2000).
[CrossRef]

D. S. Rokhsar, D. C. Wright, and N. D. Mermin, "Scale equivalence of quasicrystallographic space groups," Phys. Rev. B 37, 8145-8149 (1988).
[CrossRef]

Phys. Rev. Lett. (6)

M. Notomi, H. Suzuki, T. Tamamura, and K. Edagawa, "Lasing action due to the two-dimensional quasicperiodicity of photonic quasicrystals with a Penrose lattice," Phys. Rev. Lett. 92, 123906-1 (2004).
[CrossRef] [PubMed]

E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

L. D. Negro, C. J. Oton, Z. Gaburro, L. Pavesi, P. Johnson, A. Lagendijk, R. Righini, M. Colocci, and D. S. Wiersma, "Light transport through the band-edge states of Fibonacci quasicrystals," Phys. Rev. Lett. 90, 055501 (2003).
[CrossRef]

Y. S. Chan, C. T. Chan, and Z. Y. Liu, "Photonic band gaps in two dimensional photonic quasicrystals," Phys. Rev. Lett. 80, 956-959 (1998).
[CrossRef]

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, "Random laser action in semiconductor powder," Phys. Rev. Lett. 82, 2278-2281 (1999).
[CrossRef]

Other (6)

P. J. Steinhardt and S. Ostlund, The Physics of Quasicrystals (World Scientific, 1987).

Z. M. Stadnik, Physical Properties of Quasicrystals (Springer, 1999).
[CrossRef]

X. Zhang, Z. Q. Zhang, and C. T. Chan, "Absolute photonic band gaps in 12-fold symmetric photonic quasicrystals," Phys. Rev. B 63, 081105/1-4 (2001).
[CrossRef]

C. M. Soukoulis, Photonic Bandgap Materials (Kluwer, Dordrecht, 1996).

M. H. Kok, W. Lu, J. C. W. Lee, W. Y. Tam, G. K. L. Wong, and C. T. Chan, "Lasing from dye-doped photonic crystals with graded layers in dichromate gelatin emulsions," Appl. Phys. Lett. 92, 151108/1-3 (2008).
[CrossRef]

B. Jin, J. Xu, Y. K. Pang, and W. Y. Tam, "Optical characterization of woodpile structures in gelatin emulsions fabricated by optical interference holography," J. Opt. A: Pure Appl. Opt. 10, 085204/1-7 (2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Icosahedral quasicrystal lattice. (b) 7-beam configuration for the icosahedral quasicrystal. (c) Actual 7-beam arrangement using a truncated pentagonal pyramid.

Fig. 2.
Fig. 2.

(a) Normal transmittance of dye-doped DCG icosahedral quasicrystal (green) and dye transmission back ground (red). Violet line is the PL of the dye. Inset is an enhanced diffraction pattern of the quasicrystal under white light. (b) Angular transmission spectrum for rotation about an axis perpendicular to a 5-fold axis for the dye-doped sample in 2(a). The scale bar on the right is the normalized (in percentage) transmittance intensity. The color lines are bandgaps from diffraction planes inside the icosahedral quasicrystal obtained by the reciprocal vectors ∆k0-6 (orange), ∆k i-6 (green), ∆k0-j (red), and ∆k i-j (yellow), for i,j = 1-5. (c) Normal transmittance of un-doped DCG icosahedral quasicrystal. Inset is a diffraction pattern of the quasicrystal under white light. (d) Angular transmission spectrum for rotation about a 5-fold axis for the un-doped sample in 2(c). The color lines, following the same color scheme as in 2(b), are calculated bandgaps for a regular icosahedral quasicrystal. Note that the discreteness in the transmittance in both 2(b) and 2(d) is due to the finite angular steps taken in the experiment.

Fig. 3.
Fig. 3.

(a) Icosahedral quasicrystal lasing pattern projected on the back side of the glass substrate (see inset) pumped with a 532 nm 0.4 μJ/pulse and polarization ϕ = 30°. (b) Higher resolution projection of the icosahedral quasicrystal lasing for inner region. The lines are guides to the eyes. The circled spot was used for lasing onset measurement in Fig. 4(a). The white bar is 0.5 unit in the scale of Fig. 5(b) below. (c) Lasing patterns of the icosahedral quasicrystal with different pumping polarization ϕ at energy 0.4 μJ/pulse. Top-left inset is the schematic for the sample orientation with a 5-fold axis aligned vertically and pointing downward.

Fig. 4.
Fig. 4.

(a) Lasing spectrum taken at the spot circled in white in Fig. 3(b) for different pumping energies with ϕ = 30° The inset is the integrated PL intensity. (b) Normalized spectra obtained from lasing areas 1- 4 as shown in the inset for the DCG sample in Fig. 2 using 0.5μJ/pulse pumping energy. (The overall lasing pattern of this sample is by and large the same as Fig. 3, except for a slightly different intensity contrast.)

Fig. 5.
Fig. 5.

(a) Lasing pattern selected with wavelengths from 570 - 610 nm, including the results in Table 1. Circles (groups A, B, and C) and pentagons (lasing group D) corresponding to the inner and middle lasing regions observed in the experiment, respectively. (b) Inner lasing region from Fig. 5(a) in expanded scale with groups A (red, blue, green, magenta), B (dark yellow, cyan), and C (violet), corresponding to the sequence listed in Table 1. The circled lasing spot (in black) corresponds to that circled in white in Fig. 3(b).

Tables (1)

Tables Icon

Table 1. Possible lasing processes for the icosahedral quasicrystal with wavelengths in the range of 570 - 610 nm. i = 1 - 5 and q i = q i+5.

Metrics