Abstract

We demonstrate high quality pulse compression at high repetition rates by use of spectral broadening of short parabolic-like pulses in a normally-dispersive highly nonlinear fiber (HNLF) followed by linear dispersion compensation with a conventional SMF-28 fiber. The key contribution of this work is on the use of a simple and efficient long-period fiber grating (LPFG) filter for synthesizing the desired parabolic-like pulses from sech2-like input optical pulses; this all-fiber low-loss filter enables reducing significantly the required input pulse power as compared with the use of previous all-fiber pulse re-shaping solutions (e.g. fiber Bragg gratings). A detailed numerical analysis has been performed in order to optimize the system’s performance, including investigation of the optimal initial pulse shape to be launched into the HNLF fiber. We found that the pulse shape launched into the HNLF is critically important for suppressing the undesired wave breaking in the nonlinear spectral broadening process. The optimal shape is found to be independent on the parameters of normally dispersive HNLFs. In our experiments, 1.5-ps pulses emitted by a 10-GHz mode-locked laser are first reshaped into 3.2-ps parabolic-like pulses using our LPFG-based pulse reshaper. Flat spectrum broadening of the amplified initial parabolic-like pulses has been generated using propagation through a commercially-available HNLF. Pulses of 260 fs duration with satellite peak and pedestal suppression greater than 17 dB have been obtained after the linear dispersion compensation fiber. The generated pulses exhibit a 20-nm wide supercontinuum energy spectrum that has almost a square-like spectral profile with >85% of the pulse energy contained in its FWHM spectral bandwidth.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. K. Oxenlowe, R. Slavík, M. Galili, H. C. H. Mulvad, A. T. Clausen, Y. Park, J. Azaña, and P. Jeppesen, "640 Gb/s timing jitter-tolerant data processing using a long-period fiber-grating-based flat-top pulse shaper," IEEE J. Sel. Top. in Quantum Electron. 14, 566-572 (2008).
  2. F. Parmigiani, M. Ibsen, T. T. Ng, L. Provost, P. Petropoulos, and D. J. Richardson, "An efficient wavelength converter exploiting a grating based saw-tooth pulse shaper," Photon. Technol. Lett. 20, 1461-1463 (2008).
  3. R. Slavík, Y. Park, and J. Azaña, "Long period fiber grating-based filter for generation of picosecond and sub-picosecond transform-limited flat-top pulses," Photon. Technol. Lett. 20, 806-808 (2008).
  4. A. M. Wiener, D. E. Leaird, J. S. Patel, and J. R. Wullert, "Programmable femtosecond pulse shaping by use of amultielement liquid-crystal phase modulator," Opt. Lett. 15, 326-328 (1990).
  5. K. Takiguchi, K. Okamoto, T. Kominato, H. Takahashi, and T. Shibata, "Flexible pulse waveform generation using silica-waveguide-based spectrum synthesis circuit," Electron. Lett. 40, 537-538 (2004).
  6. F. Parmigiani, C. Finot, K. Mukasa, M. Ibsen, M. A. F. Roelens, P. Petropoulos, and D. J. Richardson, "Ultra-flat SPM-broadened spectra in a highly nonlinear fiber using parabolic pulses formed in a fiber Bragg grating," Opt. Express 14, 7617-7622 (2006).
    [PubMed]
  7. F. Parmigiani, T. T. Ng, M. Ibsen, P. Petropoulos, and D. J. Richardson, "Timing jitter tolerant OTDM demultiplexing using a saw-tooth pulse shaper," presented at ECOC, Brussels, Belgium, 2008.
  8. A. I. Latkin, S. Boscolo, R. S. Bhamber, and S. K. Turitsyn, "Optical frequency conversion, pulse compression and signal copying using triangular pulses," presented at ECOC, Brussels, Belgium, 2008, Paper Mo.3.F.4.
  9. D. Anderson, M. Desaix, M. Karlsson, M. Lisak, and M. L. Quiroga-Teixeiro, "Wave-breaking-free pulses in nonlinear-optical fibers," J. Opt. Soc. Am. B 10, 1185-1190 (1993).
  10. M. Nakazawa, E. Yoshida, H. Kubota, and Y. Kimura, "Generation of a 170 fs, 10 GHz transform-limited pulse train at 1.55 ?m using a dispersion-decreasing, erbium-doped active soliton compressor," Electron. Lett. 30, 2038-2039 (1994).
  11. C. Finot, B. Barviau, G. Millot, A. Guryanov, A. Sysoliatin, and S. Wabnitz, "Parabolic pulse generation with active or passive dispersion decreasing optical fibers," Opt. Lett. 15, 15824-15835 (2007).
  12. L. F. Mollenauer, R. H. Stolen, J. P. Gordon, and W. J. Tomlinson, "Extreme picosecond pulse narrowing by means of soliton effect in single-mode optical fibers," Opt. Lett. 8, 289-291 (1983).
    [PubMed]
  13. M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, "Self-similar propagation and amplification of parabolic pulses in optical fibers," Phys. Rev. Lett. 85, 6010-6013 (2003).
  14. Y. Park, M. H. Asghari, T. -J. Ahn, and J. Azaña, "Transform-limited picosecond pulse shaping based on coherence synthesization," Opt. Express 15, 9584-9599 (2007).
    [PubMed]
  15. R. Slavík, Y. Park, T. -J. Ahn, and J. Azaña, "Synthesis of picosecond parabolic pulses formed by a long period fiber grating structure and its application for flat-top supercontinuum generation," presented at OFC/NFOEC, San Diego, CA, 2008, Paper OTuB4.
  16. A. I. Latkin, S. Boscolo, and S. K. Turitsyn, "Passive nonlinear pulse shaping in normally dispersive fiber," presented at OFC/NFOEC, San Diego, CA, 2008, Paper OTuB7.
  17. Y. Takushima, and K. Kikuchi, "10-GHz, over 20-Channel Multiwavelength Pulse Source by Slicing Super-Continuum Spectrum Generated in Normal-Dispersion Fiber," Photon. Technol. Lett. 11, 322 (1999).
  18. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, "Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber," Opt. Lett. 26, 608-610 (2001).
  19. D. D. David, T. K. Gaylord, E. N. Glytsis, and S. C. Mettler, "CO2 laser-induced long-period fibre gratings: spectral characteristics, cladding modes and polarization independence," Electron. Lett. 34, 1416-1417 (1998).
  20. C. Finot, G. Millot, C. Billet, and J. M. Dudley, "Experimental generation of parabolic pulses via Raman amplification in optical fiber," Opt. Express 11, 1547-1552 (2003).
    [PubMed]
  21. K. J. Blow and D. Wood, "Theoretical description of Transient Stimulated Raman Scattering in Optical Fibers," IEEE J. Quantum. Electron. 25, 2665-2673 (1989).
  22. N. Q. Ngo, S. F. Yu, S. C. Tjin, and C. H. Kam, "A new theoretical basis of higher-order optical differentiators," Opt. Commun. 230, 115-129 (2004).

2008 (3)

L. K. Oxenlowe, R. Slavík, M. Galili, H. C. H. Mulvad, A. T. Clausen, Y. Park, J. Azaña, and P. Jeppesen, "640 Gb/s timing jitter-tolerant data processing using a long-period fiber-grating-based flat-top pulse shaper," IEEE J. Sel. Top. in Quantum Electron. 14, 566-572 (2008).

F. Parmigiani, M. Ibsen, T. T. Ng, L. Provost, P. Petropoulos, and D. J. Richardson, "An efficient wavelength converter exploiting a grating based saw-tooth pulse shaper," Photon. Technol. Lett. 20, 1461-1463 (2008).

R. Slavík, Y. Park, and J. Azaña, "Long period fiber grating-based filter for generation of picosecond and sub-picosecond transform-limited flat-top pulses," Photon. Technol. Lett. 20, 806-808 (2008).

2007 (2)

C. Finot, B. Barviau, G. Millot, A. Guryanov, A. Sysoliatin, and S. Wabnitz, "Parabolic pulse generation with active or passive dispersion decreasing optical fibers," Opt. Lett. 15, 15824-15835 (2007).

Y. Park, M. H. Asghari, T. -J. Ahn, and J. Azaña, "Transform-limited picosecond pulse shaping based on coherence synthesization," Opt. Express 15, 9584-9599 (2007).
[PubMed]

2006 (1)

2004 (2)

K. Takiguchi, K. Okamoto, T. Kominato, H. Takahashi, and T. Shibata, "Flexible pulse waveform generation using silica-waveguide-based spectrum synthesis circuit," Electron. Lett. 40, 537-538 (2004).

N. Q. Ngo, S. F. Yu, S. C. Tjin, and C. H. Kam, "A new theoretical basis of higher-order optical differentiators," Opt. Commun. 230, 115-129 (2004).

2003 (2)

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, "Self-similar propagation and amplification of parabolic pulses in optical fibers," Phys. Rev. Lett. 85, 6010-6013 (2003).

C. Finot, G. Millot, C. Billet, and J. M. Dudley, "Experimental generation of parabolic pulses via Raman amplification in optical fiber," Opt. Express 11, 1547-1552 (2003).
[PubMed]

2001 (1)

1999 (1)

Y. Takushima, and K. Kikuchi, "10-GHz, over 20-Channel Multiwavelength Pulse Source by Slicing Super-Continuum Spectrum Generated in Normal-Dispersion Fiber," Photon. Technol. Lett. 11, 322 (1999).

1998 (1)

D. D. David, T. K. Gaylord, E. N. Glytsis, and S. C. Mettler, "CO2 laser-induced long-period fibre gratings: spectral characteristics, cladding modes and polarization independence," Electron. Lett. 34, 1416-1417 (1998).

1994 (1)

M. Nakazawa, E. Yoshida, H. Kubota, and Y. Kimura, "Generation of a 170 fs, 10 GHz transform-limited pulse train at 1.55 ?m using a dispersion-decreasing, erbium-doped active soliton compressor," Electron. Lett. 30, 2038-2039 (1994).

1993 (1)

1990 (1)

1989 (1)

K. J. Blow and D. Wood, "Theoretical description of Transient Stimulated Raman Scattering in Optical Fibers," IEEE J. Quantum. Electron. 25, 2665-2673 (1989).

1983 (1)

Ahn, T. -J.

Anderson, D.

Asghari, M. H.

Azaña, J.

L. K. Oxenlowe, R. Slavík, M. Galili, H. C. H. Mulvad, A. T. Clausen, Y. Park, J. Azaña, and P. Jeppesen, "640 Gb/s timing jitter-tolerant data processing using a long-period fiber-grating-based flat-top pulse shaper," IEEE J. Sel. Top. in Quantum Electron. 14, 566-572 (2008).

R. Slavík, Y. Park, and J. Azaña, "Long period fiber grating-based filter for generation of picosecond and sub-picosecond transform-limited flat-top pulses," Photon. Technol. Lett. 20, 806-808 (2008).

Y. Park, M. H. Asghari, T. -J. Ahn, and J. Azaña, "Transform-limited picosecond pulse shaping based on coherence synthesization," Opt. Express 15, 9584-9599 (2007).
[PubMed]

Barviau, B.

C. Finot, B. Barviau, G. Millot, A. Guryanov, A. Sysoliatin, and S. Wabnitz, "Parabolic pulse generation with active or passive dispersion decreasing optical fibers," Opt. Lett. 15, 15824-15835 (2007).

Billet, C.

Blow, K. J.

K. J. Blow and D. Wood, "Theoretical description of Transient Stimulated Raman Scattering in Optical Fibers," IEEE J. Quantum. Electron. 25, 2665-2673 (1989).

Chudoba, C.

Clausen, A. T.

L. K. Oxenlowe, R. Slavík, M. Galili, H. C. H. Mulvad, A. T. Clausen, Y. Park, J. Azaña, and P. Jeppesen, "640 Gb/s timing jitter-tolerant data processing using a long-period fiber-grating-based flat-top pulse shaper," IEEE J. Sel. Top. in Quantum Electron. 14, 566-572 (2008).

David, D. D.

D. D. David, T. K. Gaylord, E. N. Glytsis, and S. C. Mettler, "CO2 laser-induced long-period fibre gratings: spectral characteristics, cladding modes and polarization independence," Electron. Lett. 34, 1416-1417 (1998).

Desaix, M.

Dudley, J. M.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, "Self-similar propagation and amplification of parabolic pulses in optical fibers," Phys. Rev. Lett. 85, 6010-6013 (2003).

C. Finot, G. Millot, C. Billet, and J. M. Dudley, "Experimental generation of parabolic pulses via Raman amplification in optical fiber," Opt. Express 11, 1547-1552 (2003).
[PubMed]

Fermann, M. E.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, "Self-similar propagation and amplification of parabolic pulses in optical fibers," Phys. Rev. Lett. 85, 6010-6013 (2003).

Finot, C.

Fujimoto, J. G.

Galili, M.

L. K. Oxenlowe, R. Slavík, M. Galili, H. C. H. Mulvad, A. T. Clausen, Y. Park, J. Azaña, and P. Jeppesen, "640 Gb/s timing jitter-tolerant data processing using a long-period fiber-grating-based flat-top pulse shaper," IEEE J. Sel. Top. in Quantum Electron. 14, 566-572 (2008).

Gaylord, T. K.

D. D. David, T. K. Gaylord, E. N. Glytsis, and S. C. Mettler, "CO2 laser-induced long-period fibre gratings: spectral characteristics, cladding modes and polarization independence," Electron. Lett. 34, 1416-1417 (1998).

Ghanta, R. K.

Glytsis, E. N.

D. D. David, T. K. Gaylord, E. N. Glytsis, and S. C. Mettler, "CO2 laser-induced long-period fibre gratings: spectral characteristics, cladding modes and polarization independence," Electron. Lett. 34, 1416-1417 (1998).

Gordon, J. P.

Guryanov, A.

C. Finot, B. Barviau, G. Millot, A. Guryanov, A. Sysoliatin, and S. Wabnitz, "Parabolic pulse generation with active or passive dispersion decreasing optical fibers," Opt. Lett. 15, 15824-15835 (2007).

Hartl, I.

Harvey, J. D.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, "Self-similar propagation and amplification of parabolic pulses in optical fibers," Phys. Rev. Lett. 85, 6010-6013 (2003).

Ibsen, M.

F. Parmigiani, M. Ibsen, T. T. Ng, L. Provost, P. Petropoulos, and D. J. Richardson, "An efficient wavelength converter exploiting a grating based saw-tooth pulse shaper," Photon. Technol. Lett. 20, 1461-1463 (2008).

F. Parmigiani, C. Finot, K. Mukasa, M. Ibsen, M. A. F. Roelens, P. Petropoulos, and D. J. Richardson, "Ultra-flat SPM-broadened spectra in a highly nonlinear fiber using parabolic pulses formed in a fiber Bragg grating," Opt. Express 14, 7617-7622 (2006).
[PubMed]

Jeppesen, P.

L. K. Oxenlowe, R. Slavík, M. Galili, H. C. H. Mulvad, A. T. Clausen, Y. Park, J. Azaña, and P. Jeppesen, "640 Gb/s timing jitter-tolerant data processing using a long-period fiber-grating-based flat-top pulse shaper," IEEE J. Sel. Top. in Quantum Electron. 14, 566-572 (2008).

Kam, C. H.

N. Q. Ngo, S. F. Yu, S. C. Tjin, and C. H. Kam, "A new theoretical basis of higher-order optical differentiators," Opt. Commun. 230, 115-129 (2004).

Karlsson, M.

Kikuchi, K.

Y. Takushima, and K. Kikuchi, "10-GHz, over 20-Channel Multiwavelength Pulse Source by Slicing Super-Continuum Spectrum Generated in Normal-Dispersion Fiber," Photon. Technol. Lett. 11, 322 (1999).

Kimura, Y.

M. Nakazawa, E. Yoshida, H. Kubota, and Y. Kimura, "Generation of a 170 fs, 10 GHz transform-limited pulse train at 1.55 ?m using a dispersion-decreasing, erbium-doped active soliton compressor," Electron. Lett. 30, 2038-2039 (1994).

Ko, T. H.

Kominato, T.

K. Takiguchi, K. Okamoto, T. Kominato, H. Takahashi, and T. Shibata, "Flexible pulse waveform generation using silica-waveguide-based spectrum synthesis circuit," Electron. Lett. 40, 537-538 (2004).

Kruglov, V. I.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, "Self-similar propagation and amplification of parabolic pulses in optical fibers," Phys. Rev. Lett. 85, 6010-6013 (2003).

Kubota, H.

M. Nakazawa, E. Yoshida, H. Kubota, and Y. Kimura, "Generation of a 170 fs, 10 GHz transform-limited pulse train at 1.55 ?m using a dispersion-decreasing, erbium-doped active soliton compressor," Electron. Lett. 30, 2038-2039 (1994).

Leaird, D. E.

Li, X. D.

Lisak, M.

Mettler, S. C.

D. D. David, T. K. Gaylord, E. N. Glytsis, and S. C. Mettler, "CO2 laser-induced long-period fibre gratings: spectral characteristics, cladding modes and polarization independence," Electron. Lett. 34, 1416-1417 (1998).

Millot, G.

C. Finot, B. Barviau, G. Millot, A. Guryanov, A. Sysoliatin, and S. Wabnitz, "Parabolic pulse generation with active or passive dispersion decreasing optical fibers," Opt. Lett. 15, 15824-15835 (2007).

C. Finot, G. Millot, C. Billet, and J. M. Dudley, "Experimental generation of parabolic pulses via Raman amplification in optical fiber," Opt. Express 11, 1547-1552 (2003).
[PubMed]

Mollenauer, L. F.

Mukasa, K.

Mulvad, H. C. H.

L. K. Oxenlowe, R. Slavík, M. Galili, H. C. H. Mulvad, A. T. Clausen, Y. Park, J. Azaña, and P. Jeppesen, "640 Gb/s timing jitter-tolerant data processing using a long-period fiber-grating-based flat-top pulse shaper," IEEE J. Sel. Top. in Quantum Electron. 14, 566-572 (2008).

Nakazawa, M.

M. Nakazawa, E. Yoshida, H. Kubota, and Y. Kimura, "Generation of a 170 fs, 10 GHz transform-limited pulse train at 1.55 ?m using a dispersion-decreasing, erbium-doped active soliton compressor," Electron. Lett. 30, 2038-2039 (1994).

Ng, T. T.

F. Parmigiani, M. Ibsen, T. T. Ng, L. Provost, P. Petropoulos, and D. J. Richardson, "An efficient wavelength converter exploiting a grating based saw-tooth pulse shaper," Photon. Technol. Lett. 20, 1461-1463 (2008).

Ngo, N. Q.

N. Q. Ngo, S. F. Yu, S. C. Tjin, and C. H. Kam, "A new theoretical basis of higher-order optical differentiators," Opt. Commun. 230, 115-129 (2004).

Okamoto, K.

K. Takiguchi, K. Okamoto, T. Kominato, H. Takahashi, and T. Shibata, "Flexible pulse waveform generation using silica-waveguide-based spectrum synthesis circuit," Electron. Lett. 40, 537-538 (2004).

Oxenlowe, L. K.

L. K. Oxenlowe, R. Slavík, M. Galili, H. C. H. Mulvad, A. T. Clausen, Y. Park, J. Azaña, and P. Jeppesen, "640 Gb/s timing jitter-tolerant data processing using a long-period fiber-grating-based flat-top pulse shaper," IEEE J. Sel. Top. in Quantum Electron. 14, 566-572 (2008).

Park, Y.

L. K. Oxenlowe, R. Slavík, M. Galili, H. C. H. Mulvad, A. T. Clausen, Y. Park, J. Azaña, and P. Jeppesen, "640 Gb/s timing jitter-tolerant data processing using a long-period fiber-grating-based flat-top pulse shaper," IEEE J. Sel. Top. in Quantum Electron. 14, 566-572 (2008).

R. Slavík, Y. Park, and J. Azaña, "Long period fiber grating-based filter for generation of picosecond and sub-picosecond transform-limited flat-top pulses," Photon. Technol. Lett. 20, 806-808 (2008).

Y. Park, M. H. Asghari, T. -J. Ahn, and J. Azaña, "Transform-limited picosecond pulse shaping based on coherence synthesization," Opt. Express 15, 9584-9599 (2007).
[PubMed]

Parmigiani, F.

F. Parmigiani, M. Ibsen, T. T. Ng, L. Provost, P. Petropoulos, and D. J. Richardson, "An efficient wavelength converter exploiting a grating based saw-tooth pulse shaper," Photon. Technol. Lett. 20, 1461-1463 (2008).

F. Parmigiani, C. Finot, K. Mukasa, M. Ibsen, M. A. F. Roelens, P. Petropoulos, and D. J. Richardson, "Ultra-flat SPM-broadened spectra in a highly nonlinear fiber using parabolic pulses formed in a fiber Bragg grating," Opt. Express 14, 7617-7622 (2006).
[PubMed]

Patel, J. S.

Petropoulos, P.

F. Parmigiani, M. Ibsen, T. T. Ng, L. Provost, P. Petropoulos, and D. J. Richardson, "An efficient wavelength converter exploiting a grating based saw-tooth pulse shaper," Photon. Technol. Lett. 20, 1461-1463 (2008).

F. Parmigiani, C. Finot, K. Mukasa, M. Ibsen, M. A. F. Roelens, P. Petropoulos, and D. J. Richardson, "Ultra-flat SPM-broadened spectra in a highly nonlinear fiber using parabolic pulses formed in a fiber Bragg grating," Opt. Express 14, 7617-7622 (2006).
[PubMed]

Provost, L.

F. Parmigiani, M. Ibsen, T. T. Ng, L. Provost, P. Petropoulos, and D. J. Richardson, "An efficient wavelength converter exploiting a grating based saw-tooth pulse shaper," Photon. Technol. Lett. 20, 1461-1463 (2008).

Quiroga-Teixeiro, M. L.

Ranka, J. K.

Richardson, D. J.

F. Parmigiani, M. Ibsen, T. T. Ng, L. Provost, P. Petropoulos, and D. J. Richardson, "An efficient wavelength converter exploiting a grating based saw-tooth pulse shaper," Photon. Technol. Lett. 20, 1461-1463 (2008).

F. Parmigiani, C. Finot, K. Mukasa, M. Ibsen, M. A. F. Roelens, P. Petropoulos, and D. J. Richardson, "Ultra-flat SPM-broadened spectra in a highly nonlinear fiber using parabolic pulses formed in a fiber Bragg grating," Opt. Express 14, 7617-7622 (2006).
[PubMed]

Roelens, M. A. F.

Shibata, T.

K. Takiguchi, K. Okamoto, T. Kominato, H. Takahashi, and T. Shibata, "Flexible pulse waveform generation using silica-waveguide-based spectrum synthesis circuit," Electron. Lett. 40, 537-538 (2004).

Slavík, R.

R. Slavík, Y. Park, and J. Azaña, "Long period fiber grating-based filter for generation of picosecond and sub-picosecond transform-limited flat-top pulses," Photon. Technol. Lett. 20, 806-808 (2008).

L. K. Oxenlowe, R. Slavík, M. Galili, H. C. H. Mulvad, A. T. Clausen, Y. Park, J. Azaña, and P. Jeppesen, "640 Gb/s timing jitter-tolerant data processing using a long-period fiber-grating-based flat-top pulse shaper," IEEE J. Sel. Top. in Quantum Electron. 14, 566-572 (2008).

Stolen, R. H.

Sysoliatin, A.

C. Finot, B. Barviau, G. Millot, A. Guryanov, A. Sysoliatin, and S. Wabnitz, "Parabolic pulse generation with active or passive dispersion decreasing optical fibers," Opt. Lett. 15, 15824-15835 (2007).

Takahashi, H.

K. Takiguchi, K. Okamoto, T. Kominato, H. Takahashi, and T. Shibata, "Flexible pulse waveform generation using silica-waveguide-based spectrum synthesis circuit," Electron. Lett. 40, 537-538 (2004).

Takiguchi, K.

K. Takiguchi, K. Okamoto, T. Kominato, H. Takahashi, and T. Shibata, "Flexible pulse waveform generation using silica-waveguide-based spectrum synthesis circuit," Electron. Lett. 40, 537-538 (2004).

Takushima, Y.

Y. Takushima, and K. Kikuchi, "10-GHz, over 20-Channel Multiwavelength Pulse Source by Slicing Super-Continuum Spectrum Generated in Normal-Dispersion Fiber," Photon. Technol. Lett. 11, 322 (1999).

Thomsen, B. C.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, "Self-similar propagation and amplification of parabolic pulses in optical fibers," Phys. Rev. Lett. 85, 6010-6013 (2003).

Tjin, S. C.

N. Q. Ngo, S. F. Yu, S. C. Tjin, and C. H. Kam, "A new theoretical basis of higher-order optical differentiators," Opt. Commun. 230, 115-129 (2004).

Tomlinson, W. J.

Wabnitz, S.

C. Finot, B. Barviau, G. Millot, A. Guryanov, A. Sysoliatin, and S. Wabnitz, "Parabolic pulse generation with active or passive dispersion decreasing optical fibers," Opt. Lett. 15, 15824-15835 (2007).

Wiener, A. M.

Windeler, R. S.

Wood, D.

K. J. Blow and D. Wood, "Theoretical description of Transient Stimulated Raman Scattering in Optical Fibers," IEEE J. Quantum. Electron. 25, 2665-2673 (1989).

Wullert, J. R.

Yoshida, E.

M. Nakazawa, E. Yoshida, H. Kubota, and Y. Kimura, "Generation of a 170 fs, 10 GHz transform-limited pulse train at 1.55 ?m using a dispersion-decreasing, erbium-doped active soliton compressor," Electron. Lett. 30, 2038-2039 (1994).

Yu, S. F.

N. Q. Ngo, S. F. Yu, S. C. Tjin, and C. H. Kam, "A new theoretical basis of higher-order optical differentiators," Opt. Commun. 230, 115-129 (2004).

Electron. Lett. (3)

K. Takiguchi, K. Okamoto, T. Kominato, H. Takahashi, and T. Shibata, "Flexible pulse waveform generation using silica-waveguide-based spectrum synthesis circuit," Electron. Lett. 40, 537-538 (2004).

M. Nakazawa, E. Yoshida, H. Kubota, and Y. Kimura, "Generation of a 170 fs, 10 GHz transform-limited pulse train at 1.55 ?m using a dispersion-decreasing, erbium-doped active soliton compressor," Electron. Lett. 30, 2038-2039 (1994).

D. D. David, T. K. Gaylord, E. N. Glytsis, and S. C. Mettler, "CO2 laser-induced long-period fibre gratings: spectral characteristics, cladding modes and polarization independence," Electron. Lett. 34, 1416-1417 (1998).

IEEE J. Quantum. Electron. (1)

K. J. Blow and D. Wood, "Theoretical description of Transient Stimulated Raman Scattering in Optical Fibers," IEEE J. Quantum. Electron. 25, 2665-2673 (1989).

IEEE J. Sel. Top. in Quantum Electron. (1)

L. K. Oxenlowe, R. Slavík, M. Galili, H. C. H. Mulvad, A. T. Clausen, Y. Park, J. Azaña, and P. Jeppesen, "640 Gb/s timing jitter-tolerant data processing using a long-period fiber-grating-based flat-top pulse shaper," IEEE J. Sel. Top. in Quantum Electron. 14, 566-572 (2008).

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

N. Q. Ngo, S. F. Yu, S. C. Tjin, and C. H. Kam, "A new theoretical basis of higher-order optical differentiators," Opt. Commun. 230, 115-129 (2004).

Opt. Express (3)

Opt. Lett. (4)

Photon. Technol. Lett. (3)

F. Parmigiani, M. Ibsen, T. T. Ng, L. Provost, P. Petropoulos, and D. J. Richardson, "An efficient wavelength converter exploiting a grating based saw-tooth pulse shaper," Photon. Technol. Lett. 20, 1461-1463 (2008).

R. Slavík, Y. Park, and J. Azaña, "Long period fiber grating-based filter for generation of picosecond and sub-picosecond transform-limited flat-top pulses," Photon. Technol. Lett. 20, 806-808 (2008).

Y. Takushima, and K. Kikuchi, "10-GHz, over 20-Channel Multiwavelength Pulse Source by Slicing Super-Continuum Spectrum Generated in Normal-Dispersion Fiber," Photon. Technol. Lett. 11, 322 (1999).

Phys. Rev. Lett. (1)

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, "Self-similar propagation and amplification of parabolic pulses in optical fibers," Phys. Rev. Lett. 85, 6010-6013 (2003).

Other (4)

R. Slavík, Y. Park, T. -J. Ahn, and J. Azaña, "Synthesis of picosecond parabolic pulses formed by a long period fiber grating structure and its application for flat-top supercontinuum generation," presented at OFC/NFOEC, San Diego, CA, 2008, Paper OTuB4.

A. I. Latkin, S. Boscolo, and S. K. Turitsyn, "Passive nonlinear pulse shaping in normally dispersive fiber," presented at OFC/NFOEC, San Diego, CA, 2008, Paper OTuB7.

F. Parmigiani, T. T. Ng, M. Ibsen, P. Petropoulos, and D. J. Richardson, "Timing jitter tolerant OTDM demultiplexing using a saw-tooth pulse shaper," presented at ECOC, Brussels, Belgium, 2008.

A. I. Latkin, S. Boscolo, R. S. Bhamber, and S. K. Turitsyn, "Optical frequency conversion, pulse compression and signal copying using triangular pulses," presented at ECOC, Brussels, Belgium, 2008, Paper Mo.3.F.4.

Supplementary Material (1)

» Media 1: MPG (440 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

(a) Examples of the temporal coherent synthesis concept. Here, dashed lines are time-delayed replicas of a transform-limited input pulse, and the solid lines are the synthesized waveform intensity (b) Pulse shaping device with two LPFG-based fiber interferometer: principle of coherent superposition of the core and cladding modes.

Fig. 2.
Fig. 2.

Pulse shapes that can be synthesized with the used device (solid lines) from a 1.5-ps FWHM sech2 pulse (violet) together with their parabolic fits (dashed). Black: parabolic pulse (relative inter-pulse delay = 0.8xFWHM), red: flat-top pulse (1xFWHM), green: optimal pulse (1.3xFWHM), and blue: double pulse (1.5xFWHM).

Fig. 3.
Fig. 3.

Comparison of different initial pulse shapes in terms of FWHM time-width (a) and ERs (b) of the compressed pulses as a function of the average power at the HNLF input; black solid – sech2 (FWHM=1.5 ps), red dashed – ideal parabolic (FWHM=3.2 ps), green dotted – ‘optimal’ (delay 1.2xFWHM) for 640 Gbit/s systems, blue dash-doted – ‘optimal’ (delay 1.3xFWHM) for maximum compression.

Fig. 4.
Fig. 4.

Maximally compressed output temporal pulse waveforms for different input pulse shapes (a) and their corresponding spectra (b); solid – sech2, dashed – ideal parabolic (3.2 ps), dotted – ‘optimized’ (delay=1.3xFWHM); temporal evolution along the HNLF and SMF for the ‘optimized’ MZI-synthesized pulse shape – (Media 1) (Fig. 4a).

Fig. 5.
Fig. 5.

Pulses compressed to 400 fs FWHM using LPFG-MZI with 1.2xFWHM delay: (a) temporal and (b) spectral intensity characteristics.

Fig. 6.
Fig. 6.

Experimental set-up: the design parameters were LPFG-MZI delay, pulse energy at the HNLF input and the length of the dispersion-compensating SMF-28 fiber.

Fig. 7.
Fig. 7.

Spectral transmission function of the used LPFG-MZI filter (solid, black) and spectral power density of the 1.5-ps input pulse after being filtered by the shown LPFG-MZI (blue, dashed).

Fig. 8.
Fig. 8.

Measured autocorrelation traces of the pulses at the HNLF output (dashed) and after subsequent compression in a 24-m long SMF-28 fiber (solid), considering a 1.5-ps input pulse (a) and a 1.35-ps input pulse (b). Inset: FWHM time-width of the compressed pulses for different HNLF input powers.

Fig. 9.
Fig. 9.

Measured spectral characteristics of the signal at the HNLF output considering 1.5-ps FWHM sech2 input pulses (blue, dashed) and considering ‘optimized’ shaped input pulses (solid, black). Average power level at the HNLF input is 160 mW.

Tables (1)

Tables Icon

Tab. 1: Parameters of the used fibers (experiment)

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

A ( z , t ) z + α 2 A ( z , t ) i n = 1 i n β n n n ! n t n A ( z , t ) = ( 1 + i ω 0 t ) × A ( z , t ) g ( t ) A ( z , t t ) 2 dt
g ( t ) = ( t ) + ( 1 b ) g R ( t ) .
g R ( t ) = τ 1 2 + τ 2 2 τ 1 τ 2 2 exp ( t τ 2 ) sin ( t τ 1 ) ,
SD = n = 1 2 × N FWHM y ( n ) y parabolic ( n ) 2 2 × N FWHM ,

Metrics