Abstract

We present a theoretical study of the performance of distributed Raman amplifiers with higher order pumping schemes, focusing in particular on double Rayleigh scattering (DRS) noise. Results show an unexpected significant DRS noise reduction for pumping order higher than third, allowing for an overall performance improvement of carefully designed distributed amplifiers, ensuring a large optical signal-to-noise ratio improvement together with reduced DRS-induced penalties.

© 2009 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Full characterization of modern transmission fibers for Raman amplified-based communication systems

Shifeng Jiang, Bruno Bristiel, Yves Jaouën, Philippe Gallion, Erwan Pincemin, and Sylvain Capouilliet
Opt. Express 15(8) 4883-4892 (2007)

Quasi-lossless transmission using second-order Raman amplification and fibre Bragg gratings

Juan Diego Ania-Castañón
Opt. Express 12(19) 4372-4377 (2004)

Detailed theoretical investigation on improved quasi-lossless transmission using third-order Raman amplification based on ultralong fiber lasers

Xin-Hong Jia, Yun-Jiang Rao, Zi-Nan Wang, Wei-Li Zhang, Zeng-Ling Ran, Kun Deng, and Zi-Xin Yang
J. Opt. Soc. Am. B 29(4) 847-854 (2012)

References

  • View by:
  • |
  • |
  • |

  1. M. Scheiders, S. Vorbeck, R. Leppla, E. Lach, M. Schmidt, S. B. Papernyi, and K. Sanapi, “Field transmission of 8×170 Gb/s over high-loss SSMF link using third-order distributed Raman amplification,” J. Lightwave Technol. 24, 175–182 (2006).
    [Crossref]
  2. V. Karpov, S. B. Papernyi, V. Ivanov, W. Clements, T. Araki, and Y. Koyano, “Cascaded pump delivery for remotely pumped erbium doped fiber amplifiers,” in Proceedings of SubopticConference, 2004, p. We 8.8.
  3. S. Faralli and F. Di Pasquale, “Impact of double Rayleigh scattering noise in distributed higher order Raman pumping schemes,” IEEE Photon. Technol. Lett. 15, 804–806 (2003).
    [Crossref]
  4. M. Nissov, K. Rottwitt, H. D. Kidorf, and M. X. Ma, “Rayleigh crosstalk in long cascades of distributed unsaturated Raman amplifiers,” Electron. Lett. 35, 997opex-17-09-6996-g004998 (1999).
    [Crossref]
  5. S. Papernyi, V. Ivanov, Y. Koyano, and H. Yamamoto, “Sixth-order cascaded Raman amplification,” in Optical Fiber Communication Conference, 2008 OSA Technical Digest, (Optical Society of America, 2008), paper OthF4.
  6. G. Bolognini, S. Sugliani, and F. Di Pasquale, “Double Rayleigh scattering noise in Raman amplifiers using pump time-division multiplexing schemes,” IEEE Photon. Technol. Lett., IEEE Press,  16, 1286–1288 (2004).
    [Crossref]
  7. P. Kim, J. Park, H. Yoon, J. Park, and N. Park, “In situ design method for multichannel gain of a distributed Raman amplifier with multiwave OTDR,” IEEE Photon. Technol. Lett. 14, 1683–1685 (2002).
    [Crossref]

2006 (1)

2004 (1)

G. Bolognini, S. Sugliani, and F. Di Pasquale, “Double Rayleigh scattering noise in Raman amplifiers using pump time-division multiplexing schemes,” IEEE Photon. Technol. Lett., IEEE Press,  16, 1286–1288 (2004).
[Crossref]

2003 (1)

S. Faralli and F. Di Pasquale, “Impact of double Rayleigh scattering noise in distributed higher order Raman pumping schemes,” IEEE Photon. Technol. Lett. 15, 804–806 (2003).
[Crossref]

2002 (1)

P. Kim, J. Park, H. Yoon, J. Park, and N. Park, “In situ design method for multichannel gain of a distributed Raman amplifier with multiwave OTDR,” IEEE Photon. Technol. Lett. 14, 1683–1685 (2002).
[Crossref]

1999 (1)

M. Nissov, K. Rottwitt, H. D. Kidorf, and M. X. Ma, “Rayleigh crosstalk in long cascades of distributed unsaturated Raman amplifiers,” Electron. Lett. 35, 997opex-17-09-6996-g004998 (1999).
[Crossref]

Araki, T.

V. Karpov, S. B. Papernyi, V. Ivanov, W. Clements, T. Araki, and Y. Koyano, “Cascaded pump delivery for remotely pumped erbium doped fiber amplifiers,” in Proceedings of SubopticConference, 2004, p. We 8.8.

Bolognini, G.

G. Bolognini, S. Sugliani, and F. Di Pasquale, “Double Rayleigh scattering noise in Raman amplifiers using pump time-division multiplexing schemes,” IEEE Photon. Technol. Lett., IEEE Press,  16, 1286–1288 (2004).
[Crossref]

Clements, W.

V. Karpov, S. B. Papernyi, V. Ivanov, W. Clements, T. Araki, and Y. Koyano, “Cascaded pump delivery for remotely pumped erbium doped fiber amplifiers,” in Proceedings of SubopticConference, 2004, p. We 8.8.

Faralli, S.

S. Faralli and F. Di Pasquale, “Impact of double Rayleigh scattering noise in distributed higher order Raman pumping schemes,” IEEE Photon. Technol. Lett. 15, 804–806 (2003).
[Crossref]

Ivanov, V.

V. Karpov, S. B. Papernyi, V. Ivanov, W. Clements, T. Araki, and Y. Koyano, “Cascaded pump delivery for remotely pumped erbium doped fiber amplifiers,” in Proceedings of SubopticConference, 2004, p. We 8.8.

S. Papernyi, V. Ivanov, Y. Koyano, and H. Yamamoto, “Sixth-order cascaded Raman amplification,” in Optical Fiber Communication Conference, 2008 OSA Technical Digest, (Optical Society of America, 2008), paper OthF4.

Karpov, V.

V. Karpov, S. B. Papernyi, V. Ivanov, W. Clements, T. Araki, and Y. Koyano, “Cascaded pump delivery for remotely pumped erbium doped fiber amplifiers,” in Proceedings of SubopticConference, 2004, p. We 8.8.

Kidorf, H. D.

M. Nissov, K. Rottwitt, H. D. Kidorf, and M. X. Ma, “Rayleigh crosstalk in long cascades of distributed unsaturated Raman amplifiers,” Electron. Lett. 35, 997opex-17-09-6996-g004998 (1999).
[Crossref]

Kim, P.

P. Kim, J. Park, H. Yoon, J. Park, and N. Park, “In situ design method for multichannel gain of a distributed Raman amplifier with multiwave OTDR,” IEEE Photon. Technol. Lett. 14, 1683–1685 (2002).
[Crossref]

Koyano, Y.

S. Papernyi, V. Ivanov, Y. Koyano, and H. Yamamoto, “Sixth-order cascaded Raman amplification,” in Optical Fiber Communication Conference, 2008 OSA Technical Digest, (Optical Society of America, 2008), paper OthF4.

V. Karpov, S. B. Papernyi, V. Ivanov, W. Clements, T. Araki, and Y. Koyano, “Cascaded pump delivery for remotely pumped erbium doped fiber amplifiers,” in Proceedings of SubopticConference, 2004, p. We 8.8.

Lach, E.

Leppla, R.

Ma, M. X.

M. Nissov, K. Rottwitt, H. D. Kidorf, and M. X. Ma, “Rayleigh crosstalk in long cascades of distributed unsaturated Raman amplifiers,” Electron. Lett. 35, 997opex-17-09-6996-g004998 (1999).
[Crossref]

Nissov, M.

M. Nissov, K. Rottwitt, H. D. Kidorf, and M. X. Ma, “Rayleigh crosstalk in long cascades of distributed unsaturated Raman amplifiers,” Electron. Lett. 35, 997opex-17-09-6996-g004998 (1999).
[Crossref]

Papernyi, S.

S. Papernyi, V. Ivanov, Y. Koyano, and H. Yamamoto, “Sixth-order cascaded Raman amplification,” in Optical Fiber Communication Conference, 2008 OSA Technical Digest, (Optical Society of America, 2008), paper OthF4.

Papernyi, S. B.

M. Scheiders, S. Vorbeck, R. Leppla, E. Lach, M. Schmidt, S. B. Papernyi, and K. Sanapi, “Field transmission of 8×170 Gb/s over high-loss SSMF link using third-order distributed Raman amplification,” J. Lightwave Technol. 24, 175–182 (2006).
[Crossref]

V. Karpov, S. B. Papernyi, V. Ivanov, W. Clements, T. Araki, and Y. Koyano, “Cascaded pump delivery for remotely pumped erbium doped fiber amplifiers,” in Proceedings of SubopticConference, 2004, p. We 8.8.

Park, J.

P. Kim, J. Park, H. Yoon, J. Park, and N. Park, “In situ design method for multichannel gain of a distributed Raman amplifier with multiwave OTDR,” IEEE Photon. Technol. Lett. 14, 1683–1685 (2002).
[Crossref]

P. Kim, J. Park, H. Yoon, J. Park, and N. Park, “In situ design method for multichannel gain of a distributed Raman amplifier with multiwave OTDR,” IEEE Photon. Technol. Lett. 14, 1683–1685 (2002).
[Crossref]

Park, N.

P. Kim, J. Park, H. Yoon, J. Park, and N. Park, “In situ design method for multichannel gain of a distributed Raman amplifier with multiwave OTDR,” IEEE Photon. Technol. Lett. 14, 1683–1685 (2002).
[Crossref]

Pasquale, F. Di

G. Bolognini, S. Sugliani, and F. Di Pasquale, “Double Rayleigh scattering noise in Raman amplifiers using pump time-division multiplexing schemes,” IEEE Photon. Technol. Lett., IEEE Press,  16, 1286–1288 (2004).
[Crossref]

S. Faralli and F. Di Pasquale, “Impact of double Rayleigh scattering noise in distributed higher order Raman pumping schemes,” IEEE Photon. Technol. Lett. 15, 804–806 (2003).
[Crossref]

Rottwitt, K.

M. Nissov, K. Rottwitt, H. D. Kidorf, and M. X. Ma, “Rayleigh crosstalk in long cascades of distributed unsaturated Raman amplifiers,” Electron. Lett. 35, 997opex-17-09-6996-g004998 (1999).
[Crossref]

Sanapi, K.

Scheiders, M.

Schmidt, M.

Sugliani, S.

G. Bolognini, S. Sugliani, and F. Di Pasquale, “Double Rayleigh scattering noise in Raman amplifiers using pump time-division multiplexing schemes,” IEEE Photon. Technol. Lett., IEEE Press,  16, 1286–1288 (2004).
[Crossref]

Vorbeck, S.

Yamamoto, H.

S. Papernyi, V. Ivanov, Y. Koyano, and H. Yamamoto, “Sixth-order cascaded Raman amplification,” in Optical Fiber Communication Conference, 2008 OSA Technical Digest, (Optical Society of America, 2008), paper OthF4.

Yoon, H.

P. Kim, J. Park, H. Yoon, J. Park, and N. Park, “In situ design method for multichannel gain of a distributed Raman amplifier with multiwave OTDR,” IEEE Photon. Technol. Lett. 14, 1683–1685 (2002).
[Crossref]

Electron. Lett. (1)

M. Nissov, K. Rottwitt, H. D. Kidorf, and M. X. Ma, “Rayleigh crosstalk in long cascades of distributed unsaturated Raman amplifiers,” Electron. Lett. 35, 997opex-17-09-6996-g004998 (1999).
[Crossref]

IEEE Photon. Technol. Lett. (2)

S. Faralli and F. Di Pasquale, “Impact of double Rayleigh scattering noise in distributed higher order Raman pumping schemes,” IEEE Photon. Technol. Lett. 15, 804–806 (2003).
[Crossref]

P. Kim, J. Park, H. Yoon, J. Park, and N. Park, “In situ design method for multichannel gain of a distributed Raman amplifier with multiwave OTDR,” IEEE Photon. Technol. Lett. 14, 1683–1685 (2002).
[Crossref]

IEEE Photon. Technol. Lett., IEEE Press (1)

G. Bolognini, S. Sugliani, and F. Di Pasquale, “Double Rayleigh scattering noise in Raman amplifiers using pump time-division multiplexing schemes,” IEEE Photon. Technol. Lett., IEEE Press,  16, 1286–1288 (2004).
[Crossref]

J. Lightwave Technol. (1)

Other (2)

V. Karpov, S. B. Papernyi, V. Ivanov, W. Clements, T. Araki, and Y. Koyano, “Cascaded pump delivery for remotely pumped erbium doped fiber amplifiers,” in Proceedings of SubopticConference, 2004, p. We 8.8.

S. Papernyi, V. Ivanov, Y. Koyano, and H. Yamamoto, “Sixth-order cascaded Raman amplification,” in Optical Fiber Communication Conference, 2008 OSA Technical Digest, (Optical Society of America, 2008), paper OthF4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(Left) Examples of simplified gain profiles versus fiber length. (Right) Signal to DRS ratio, normalized to fully distributed value, versus normalized coordinate of breakpoint between initial lossy section and final gain section.

Fig. 2.
Fig. 2.

(Left) Scheme of simulated counter-propagating Raman amplification with increasing pumping orders. (Right) Power evolution for the 1450 nm pump under different pumping orders.

Fig. 3.
Fig. 3.

Scheme of signal power evolution at 1550.1 nm under different higher-order schemes.

Fig. 4.
Fig. 4.

OSXR vs pumping order calculated with full numerical and semi-analytical method.

Tables (1)

Tables Icon

Table 1. Fiber parameters and pump conditions for the highest-order pump employed under different pumping order schemes

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

d P S _ i , p _ i ± ( z ) dz = α S _ i , p _ i P S _ i , p _ i ± ( z ) ± γ i P S _ i , p _ i ± ± j i C ij P S _ i , p _ i i ± · [ P p _ j + + P p _ j + P S _ j + + P S _ j _ ]
d P DRS _ i + ( z ) dz = α S _ i P DRS _ i + + j C j P ¯ P _ j · P DRS _ j + + γ i P ¯ SRS _ i
C ij = g ij A eff for λ i > λ j , C ij = λ j λ i g ij A eff for λ i < λ j
P DRS = P S · γ 2 0 L 0 z [ G ( z ) G ( ς ) ] 2 dςdz
G ( z ) = { exp [ α z ] z [ 0 , L 1 ] exp [ g ( z L ) ] z [ L 1 , L ] ,
P DRS P S = γ 2 L 2 2 [ ( G 1 2 + 2 ln G 1 1 ) x 2 + G 1 2 ( 1 G 1 2 ) 2 x ( 1 x ) + ( G 1 2 2 ln G 1 1 ) ( 1 x ) 2 2 ( ln G 1 ) 2 ]
OSXR OSXR D = 2 ( ln G 1 ) 2 G 1 2 + 2 ln G 1 1 = 2 ( α L ) 2 e 2 α L + 2 α L 1 α L

Metrics