Abstract

We report on NIR efficient end-coupling in single-mode silicon on insulator waveguides. Efficient coupling has been achieved using Polymer-Tipped Optical Fibers (PTOF) of adaptable radius of curvature (ROC). When compared with commercial micro lenses, systematic studies as a function of PTOF ROC, lead for subwavelength PTOF to a coupling factor enhancement as high as 2.5. This experimental behavior is clearly corroborated by radial FDTD simulations and an absolute coupling efficiency of about 50% is also estimated.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Orobtchouk, A. Layadi, H. Gualous, D. Pascal, A. Koster, and S. Laval, "High-Efficiency Light Coupling in a Submicrometric Silicon-on-Insulator Waveguide," Appl. Opt. 39, 5773-5777 (2000), http://www.opticsinfobase.org/abstract.cfm?URI=ao-39-31-5773.
    [CrossRef]
  2. D. Taillaert, W. Bogaerts, and R. Baets, "Efficient coupling between submicron SOI- waveguides and single-mode fibers," IEEE/LEOS Benelux Chapter, Enscheda (2003).
  3. L. Vivien, D. Pascal, S. Lardenois, D. Marris-Morini, E. Cassan, F. Grillot, S. Laval, J. Fédéli, and L. El Melhaoui, "Light Injection in SOI Microwaveguides Using High-Efficiency Grating Couplers," J. Lightwave Technol. 24, 3810-3815(2006), http://www.opticsinfobase.org/JLT/abstract.cfm?URI=JLT-24-10-3810.
    [CrossRef]
  4. L. Vivien, S. Laval, E. Cassan, X. L. Roux, and D. Pascal, "2-D Taper for Low-Loss Coupling Between Polarization-Insensitive Microwaveguides and Single-Mode Optical Fibers," J. Lightwave Technol. 21, 2429-(2003), http://www.opticsinfobase.org/JLT/abstract.cfm?URI=JLT-21-10-2429.
    [CrossRef]
  5. J. V. Galán, P. Sanchis, G. Sánchez, and J. Martí, "Polarization insensitive low-loss coupling technique between SOI waveguides and high mode field diameter single-mode fibers," Opt. Express 15, 7058-7065 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-11-7058.
    [CrossRef] [PubMed]
  6. Almeida, R. R. Panepucci, and M. Lipson, "Nanotaper for compact mode conversion," Opt. Lett. 28, 1302-1304 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=OL-28-15-1302.
    [CrossRef] [PubMed]
  7. T. Wahlbrinka, W. S. Tsaic, M. Waldowb, M. Förstb, J. Boltena, T. Mollenhauera, and H. Kurza, "Fabrication of high efficiency SOI taper structures," Mic. Eng.in press.
  8. G. Masanovic, G. Reed, W. Headley, B. Timotijevic, V. Passaro, R. Atta, G. Ensell, and A. Evans, "A high efficiency input/output coupler for small silicon photonic devices," Opt. Express 13, 7374-7379 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-19-7374.
    [CrossRef] [PubMed]
  9. R. Bachelot, C. Ecoffet, P. Deloeil, P. Royer, and D. J. Lougnot. "Integration of Micrometer-Sized Polymer Elements at the End of Optical Fibers by Free-Radical Photopolymerization," Appl. Opt. 40, 5860-5871 (2001).
    [CrossRef]
  10. R. Bachelot, A. Fares, R. Fikri, D. Barchiesi, G. Lerondel, and P. Royer," Coupling semiconductor lasers into single-mode optical fibers by use of tips grown by photo polymerization," Opt. Lett. 29, 1971-1973 (2004), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-29-17-1971.
    [CrossRef] [PubMed]
  11. A. Taflove and S. C. Hagness, "The Finite-Difference Time-Domain Method in Computational Electrodynamics," 2nd edition, (Boston Artech House 2000).
  12. M. Skorobogatiy, S. Jacobs, S. Johnson, and Y. Fink, "Geometric variations in high index-contrast waveguides, coupled mode theory in curvilinear coordinates," Opt. Express 10, 1227-1243 (2002), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-10-21-1227.
    [PubMed]
  13. The difference observed between the two polarizations is small, mainly du to the fact that the waveguide’s cross-section is almost square (250nmx300nm) and also because the influence of the air/ sample surface is weak since the waveguide is notably buried.

2007 (1)

2006 (1)

2005 (1)

2004 (1)

2003 (1)

2002 (1)

2001 (1)

2000 (1)

Almeida,

Atta, R.

Bachelot, R.

Barchiesi, D.

Boltena, J.

T. Wahlbrinka, W. S. Tsaic, M. Waldowb, M. Förstb, J. Boltena, T. Mollenhauera, and H. Kurza, "Fabrication of high efficiency SOI taper structures," Mic. Eng.in press.

Cassan, E.

Deloeil, P.

Ecoffet, C.

El Melhaoui, L.

Ensell, G.

Evans, A.

Fares, A.

Fédéli, J.

Fikri, R.

Fink, Y.

Förstb, M.

T. Wahlbrinka, W. S. Tsaic, M. Waldowb, M. Förstb, J. Boltena, T. Mollenhauera, and H. Kurza, "Fabrication of high efficiency SOI taper structures," Mic. Eng.in press.

Galán, J. V.

Grillot, F.

Gualous, H.

Headley, W.

Jacobs, S.

Johnson, S.

Koster, A.

Kurza, H.

T. Wahlbrinka, W. S. Tsaic, M. Waldowb, M. Förstb, J. Boltena, T. Mollenhauera, and H. Kurza, "Fabrication of high efficiency SOI taper structures," Mic. Eng.in press.

Lardenois, S.

Laval, S.

Layadi, A.

Lerondel, G.

Lougnot, D. J.

Marris-Morini, D.

Martí, J.

Masanovic, G.

Mollenhauera, T.

T. Wahlbrinka, W. S. Tsaic, M. Waldowb, M. Förstb, J. Boltena, T. Mollenhauera, and H. Kurza, "Fabrication of high efficiency SOI taper structures," Mic. Eng.in press.

Orobtchouk, R.

Pascal, D.

Passaro, V.

Reed, G.

Royer, P.

Sánchez, G.

Sanchis, P.

Skorobogatiy, M.

Timotijevic, B.

Tsaic, W. S.

T. Wahlbrinka, W. S. Tsaic, M. Waldowb, M. Förstb, J. Boltena, T. Mollenhauera, and H. Kurza, "Fabrication of high efficiency SOI taper structures," Mic. Eng.in press.

Vivien, L.

Wahlbrinka, T.

T. Wahlbrinka, W. S. Tsaic, M. Waldowb, M. Förstb, J. Boltena, T. Mollenhauera, and H. Kurza, "Fabrication of high efficiency SOI taper structures," Mic. Eng.in press.

Waldowb, M.

T. Wahlbrinka, W. S. Tsaic, M. Waldowb, M. Förstb, J. Boltena, T. Mollenhauera, and H. Kurza, "Fabrication of high efficiency SOI taper structures," Mic. Eng.in press.

Appl. Opt. (2)

J. Lightwave Technol. (1)

Mic. Eng. (1)

T. Wahlbrinka, W. S. Tsaic, M. Waldowb, M. Förstb, J. Boltena, T. Mollenhauera, and H. Kurza, "Fabrication of high efficiency SOI taper structures," Mic. Eng.in press.

Opt. Express (3)

Opt. Lett. (2)

Other (4)

L. Vivien, S. Laval, E. Cassan, X. L. Roux, and D. Pascal, "2-D Taper for Low-Loss Coupling Between Polarization-Insensitive Microwaveguides and Single-Mode Optical Fibers," J. Lightwave Technol. 21, 2429-(2003), http://www.opticsinfobase.org/JLT/abstract.cfm?URI=JLT-21-10-2429.
[CrossRef]

D. Taillaert, W. Bogaerts, and R. Baets, "Efficient coupling between submicron SOI- waveguides and single-mode fibers," IEEE/LEOS Benelux Chapter, Enscheda (2003).

A. Taflove and S. C. Hagness, "The Finite-Difference Time-Domain Method in Computational Electrodynamics," 2nd edition, (Boston Artech House 2000).

The difference observed between the two polarizations is small, mainly du to the fact that the waveguide’s cross-section is almost square (250nmx300nm) and also because the influence of the air/ sample surface is weak since the waveguide is notably buried.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

SEM Images of two polymer micro-tip (a) flat PTOF, (b) sharp PTOF.

Fig. 2.
Fig. 2.

End-coupling experimental setup. The optical detection includes a micro lensed fiber for spatial filtering.

Fig. 3.
Fig. 3.

Detected intensity at the output of SOI waveguide (untapered) as a function of the injection fiber position for a commercial microlens (a,b) and for a PTOF with a ROC of 0.58 μm (c, d). The intensity is given as a function of the tip position along the Y direction (propagation direction) (b, d) and as a function of the tip position in the transverse plan at the working distances (a, c).

Fig. 4.
Fig. 4.

(a-d) FDTD intensity maps for different radius of curvature: (a) flat PTOF (b) ROC=1.55um (c) ROC=1.05um (d) ROC=0.58um. (e): Working Distance (WD), (f): the Focus Spot Diameter (W). The four tapers are described by equation (1) with (a) α=0.15 (b) α=0.31 (c) α=0.41 and (d) α=0.49.

Fig. 5.
Fig. 5.

Radial FDTD simulation of PTOF-waveguide (ROC=0.58¼m, cylindrical waveguide of 0.3μm).

Tables (2)

Tables Icon

Table 1. Enhancement factor and estimated working distances obtained for different ROC on the submicron SOI waveguide without taper.

Tables Icon

Table 2. Simulation results for various radius of curvature

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

w ( z ) = w 0 ( L z L ) α ,

Metrics