Abstract

We propose a new solution for high hot–spot density creation by coupling a particle and a cavity in a structure dubbed a plasmonic enhanced particle–cavity (PEP–C) antenna. In comparison to analogous particle–based dimer antenna structures, the PEP–C allows both a higher maximum field and an order–of–magnitude higher hot–spot density. In addition, the hot–spots of the PEP–C antenna can be precisely controlled, resulting in increased reliability. We elucidate the photonic characteristics of the PEP–C antenna and show tuning and optimization through choice of geometric parameters. These properties make the PEP–C antenna an excellent candidate for plasmonic–based biomolecular sensors.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. K. Gramotnev, M. W. Vogel, and M. I. Stockman, "Optimized nonadiabatic nanofocusing of plasmons by tapered metal rods," J. Appl. Phys. 104, 034311 (2008).
    [CrossRef]
  2. T. H. Taminiau, F. B. Segerink, R. J. Moerland, L. (K.) Kuipers, and N. F. Van Hulst, "Near-field driving of a optical monopole antenna," J. Opt. A 9, S315-S321 (2007).
    [CrossRef]
  3. V. Giannini and J. A. S’anchez-Gil, "Excitation and emission enhancement of single molecule fluorescence through multiple surface-plasmon resonances on metal trimer nanoantennas," Opt. Lett. 33, 899-901 (2008).
    [CrossRef] [PubMed]
  4. S. Chen, L. Han, A. Schulzgen, H. Li, L. Li, J. V. Moloney, and N. Peyghambarian, "Local electric field enhancement and polarization effects in a surface-enhanced Raman scattering fiber sensor with chessboard nanostructure," Opt. Express 16, 13016-13023 (2008).
    [CrossRef] [PubMed]
  5. M. Li, Z. S. Zhang, X. Zhang, K. Y. Li, and X. F. Yu, "Optical properties of Au/Ag core/shell nanoshuttles," Opt. Express 16, 14288-14293 (2008).
    [CrossRef] [PubMed]
  6. B. M. Ross and L. P. Lee, "Plasmon tuning and local field enhancement maximization of the nanocrescent," Nanotechnology 19, 275201 (2008).
    [CrossRef] [PubMed]
  7. L. Guerrini, J. V. Garcia-Ramos, C. Domingo, and S. Sanchez-Cortes, "Building highly selective hot spots in Ag nanoparticles using bifunctional viologens: application to the SERS detection of PAHs," J. Phys. Chem. C 112, 7527-7530 (2008).
    [CrossRef]
  8. K. Kneipp,M. Moskovits, and H. Kneipp (Eds.), Surface-Enhanced Raman Scattering: Physics and Applications (Springer, Germany, 2006).
    [CrossRef]
  9. E. Fort and S. Gresillon, "Surface enhanced fluorescence," J. Phys. D. 41, 013001 (2008).
    [CrossRef]
  10. K. Willets and R. P. Van Duyne, "Localized surface plasmon resonance spectroscopy and sensing," Ann. Rev. Phys. Chem. 58, 267-297 (2006).
    [CrossRef]
  11. G. L. Liu, Y.-T. Long, Y. Choi, T. Kang, and L. P. Lee, "Quantized plasmon quenching dips nanospectroscopy via plasmon resonance energy transfer," Nat. Methods 4, 1015-1017 (2007).
    [CrossRef] [PubMed]
  12. E. Hao and G. C. Schatz, "Electromagnetic fields around silver nanoparticles and dimers," J. Chem. Phys. 120, 357-366 (2004).
    [CrossRef] [PubMed]
  13. Y. Lu, G. L. Liu, and L. P. Lee, "High-density silver nanoparticle film with temperature-controllable interparticle spacing for a tunable surface enhanced Raman scattering substrate," Nano. Lett. 5, 5-9 (2005).
    [CrossRef] [PubMed]
  14. I. Romero, J. Aizpurua, G. W. Bryant, and F. J. Garc?a de Abajo, "Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers," Opt. Express 14, 9988-9999 (2006).
    [CrossRef] [PubMed]
  15. A. L. Lereu, G. Sanchez-Mosteiro, P. Ghenuche, R. Quidant, and N. F. Van Hulst, "Individual gold dimmers investigated by far- and near-field imaging," J. Microsc. 229, 254-258 (2008).
    [CrossRef] [PubMed]
  16. H. G. Frey, F. Keilmann, A. Kriele, and R. Guckenberger, "Enhancing the resolution of scanning near-field optical microscopy by a metal tip grown on an aperture probe," App. Phys. Lett. 81, 5030-5032 (2002).
    [CrossRef]
  17. J. Merlein et al., "Nanomechanical control of an optical antenna," Nature Photon. 2, 230-233 (2008).
    [CrossRef]
  18. N. P. W. Pieczonka and R. F. Aroca, "Single molecule analysis by surfaced-enhanced Raman scattering," Chem. Soc. Rev. 37, 946-954 (2008).
    [CrossRef] [PubMed]
  19. J. K. Daniels and G. Chumanov, "Nanoparticle-mirror sandwich substrates for surface-enhanced Raman scattering," J. Phys. Chem. B 109, 17936-17942 (2005).
    [CrossRef]
  20. K.-H. Su et al., "Raman enhancement factor of a single tunable nanoplasmonic resonator," J. Phys. Chem. B 110, 3964-3968 (2006).
    [CrossRef] [PubMed]
  21. C. J. Orendorff, A. Gole, T. K. Sau, and C. J. Murphy, "Surface-enhanced Raman spectroscopy of self-assembled monolayers: sandwich architecture and nanoparticle shape dependence," Anal. Chem. 77, 3261-3266 (2009).
    [CrossRef]
  22. V. Santhanam, J. Liu., R. Agarwal, and R. P. Andres, "Self-assembly of uniform monolayer arrays of nanoparticles," Langmuir 19, 7881 (2003).
    [CrossRef]
  23. Y. K. Hwang et al., "Palladium and gold nanoparticle array films formed by using self-assembly of block copolymer," J. Nanosci. Nanotechnol. 6, 1850 (2006).
    [CrossRef]
  24. P. G. Etchegoin, E. C. Le Ru, and M. Meyer, "An analytic model for the optical properties of gold," J. Chem. Phys. 125, 164705 (2006).
    [CrossRef] [PubMed]
  25. P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
    [CrossRef]
  26. J. D. Jackson, Classical Electrodynamics, 3rd Ed. (John Wiley and Sons, USA, 1999).
  27. M. Born and E. Wolf, Principles of Optics, 4th Ed. (Permagon Press, Scotland, 1970).
  28. C. E. Talley et al., "Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimmer substrates," Nano. Lett. 5, 1569 (2005).
    [CrossRef] [PubMed]
  29. A. J. Haes, S. Zou, G. C. Schatz, and R. P. Van Duyne, "Nanoscale optical biosensor: short range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles," J. Phys. Chem. B 108, 6961-6968 (2004).
    [CrossRef]
  30. A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, "Wavelength-scanned surface-enhanced Raman excitation spectroscopy," J. Phys. Chem. B 109, 11279-11285 (2005).
    [CrossRef]
  31. A. J. Haes, S. Zou, J. Zhao, G. C. Schatz, and R. P. Van Duyne, "Localized surface plasmon resonance spectroscopy near molecular resonances," J. Am. Chem. Soc. 128, 10905-10914 (2006).
    [CrossRef] [PubMed]
  32. R. M. Cole et al., "Understanding plasmons in nanoscale voids," Nano. Lett. 7, 2094-2100 (2007).
    [CrossRef]

2009

C. J. Orendorff, A. Gole, T. K. Sau, and C. J. Murphy, "Surface-enhanced Raman spectroscopy of self-assembled monolayers: sandwich architecture and nanoparticle shape dependence," Anal. Chem. 77, 3261-3266 (2009).
[CrossRef]

2008

J. Merlein et al., "Nanomechanical control of an optical antenna," Nature Photon. 2, 230-233 (2008).
[CrossRef]

N. P. W. Pieczonka and R. F. Aroca, "Single molecule analysis by surfaced-enhanced Raman scattering," Chem. Soc. Rev. 37, 946-954 (2008).
[CrossRef] [PubMed]

A. L. Lereu, G. Sanchez-Mosteiro, P. Ghenuche, R. Quidant, and N. F. Van Hulst, "Individual gold dimmers investigated by far- and near-field imaging," J. Microsc. 229, 254-258 (2008).
[CrossRef] [PubMed]

V. Giannini and J. A. S’anchez-Gil, "Excitation and emission enhancement of single molecule fluorescence through multiple surface-plasmon resonances on metal trimer nanoantennas," Opt. Lett. 33, 899-901 (2008).
[CrossRef] [PubMed]

S. Chen, L. Han, A. Schulzgen, H. Li, L. Li, J. V. Moloney, and N. Peyghambarian, "Local electric field enhancement and polarization effects in a surface-enhanced Raman scattering fiber sensor with chessboard nanostructure," Opt. Express 16, 13016-13023 (2008).
[CrossRef] [PubMed]

M. Li, Z. S. Zhang, X. Zhang, K. Y. Li, and X. F. Yu, "Optical properties of Au/Ag core/shell nanoshuttles," Opt. Express 16, 14288-14293 (2008).
[CrossRef] [PubMed]

B. M. Ross and L. P. Lee, "Plasmon tuning and local field enhancement maximization of the nanocrescent," Nanotechnology 19, 275201 (2008).
[CrossRef] [PubMed]

L. Guerrini, J. V. Garcia-Ramos, C. Domingo, and S. Sanchez-Cortes, "Building highly selective hot spots in Ag nanoparticles using bifunctional viologens: application to the SERS detection of PAHs," J. Phys. Chem. C 112, 7527-7530 (2008).
[CrossRef]

E. Fort and S. Gresillon, "Surface enhanced fluorescence," J. Phys. D. 41, 013001 (2008).
[CrossRef]

D. K. Gramotnev, M. W. Vogel, and M. I. Stockman, "Optimized nonadiabatic nanofocusing of plasmons by tapered metal rods," J. Appl. Phys. 104, 034311 (2008).
[CrossRef]

2007

T. H. Taminiau, F. B. Segerink, R. J. Moerland, L. (K.) Kuipers, and N. F. Van Hulst, "Near-field driving of a optical monopole antenna," J. Opt. A 9, S315-S321 (2007).
[CrossRef]

G. L. Liu, Y.-T. Long, Y. Choi, T. Kang, and L. P. Lee, "Quantized plasmon quenching dips nanospectroscopy via plasmon resonance energy transfer," Nat. Methods 4, 1015-1017 (2007).
[CrossRef] [PubMed]

R. M. Cole et al., "Understanding plasmons in nanoscale voids," Nano. Lett. 7, 2094-2100 (2007).
[CrossRef]

2006

A. J. Haes, S. Zou, J. Zhao, G. C. Schatz, and R. P. Van Duyne, "Localized surface plasmon resonance spectroscopy near molecular resonances," J. Am. Chem. Soc. 128, 10905-10914 (2006).
[CrossRef] [PubMed]

K.-H. Su et al., "Raman enhancement factor of a single tunable nanoplasmonic resonator," J. Phys. Chem. B 110, 3964-3968 (2006).
[CrossRef] [PubMed]

Y. K. Hwang et al., "Palladium and gold nanoparticle array films formed by using self-assembly of block copolymer," J. Nanosci. Nanotechnol. 6, 1850 (2006).
[CrossRef]

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, "An analytic model for the optical properties of gold," J. Chem. Phys. 125, 164705 (2006).
[CrossRef] [PubMed]

K. Willets and R. P. Van Duyne, "Localized surface plasmon resonance spectroscopy and sensing," Ann. Rev. Phys. Chem. 58, 267-297 (2006).
[CrossRef]

I. Romero, J. Aizpurua, G. W. Bryant, and F. J. Garc?a de Abajo, "Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers," Opt. Express 14, 9988-9999 (2006).
[CrossRef] [PubMed]

2005

Y. Lu, G. L. Liu, and L. P. Lee, "High-density silver nanoparticle film with temperature-controllable interparticle spacing for a tunable surface enhanced Raman scattering substrate," Nano. Lett. 5, 5-9 (2005).
[CrossRef] [PubMed]

J. K. Daniels and G. Chumanov, "Nanoparticle-mirror sandwich substrates for surface-enhanced Raman scattering," J. Phys. Chem. B 109, 17936-17942 (2005).
[CrossRef]

C. E. Talley et al., "Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimmer substrates," Nano. Lett. 5, 1569 (2005).
[CrossRef] [PubMed]

A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, "Wavelength-scanned surface-enhanced Raman excitation spectroscopy," J. Phys. Chem. B 109, 11279-11285 (2005).
[CrossRef]

2004

A. J. Haes, S. Zou, G. C. Schatz, and R. P. Van Duyne, "Nanoscale optical biosensor: short range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles," J. Phys. Chem. B 108, 6961-6968 (2004).
[CrossRef]

E. Hao and G. C. Schatz, "Electromagnetic fields around silver nanoparticles and dimers," J. Chem. Phys. 120, 357-366 (2004).
[CrossRef] [PubMed]

2003

V. Santhanam, J. Liu., R. Agarwal, and R. P. Andres, "Self-assembly of uniform monolayer arrays of nanoparticles," Langmuir 19, 7881 (2003).
[CrossRef]

2002

H. G. Frey, F. Keilmann, A. Kriele, and R. Guckenberger, "Enhancing the resolution of scanning near-field optical microscopy by a metal tip grown on an aperture probe," App. Phys. Lett. 81, 5030-5032 (2002).
[CrossRef]

1972

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Aizpurua, J.

Aroca, R. F.

N. P. W. Pieczonka and R. F. Aroca, "Single molecule analysis by surfaced-enhanced Raman scattering," Chem. Soc. Rev. 37, 946-954 (2008).
[CrossRef] [PubMed]

Bryant, G. W.

Chen, S.

Choi, Y.

G. L. Liu, Y.-T. Long, Y. Choi, T. Kang, and L. P. Lee, "Quantized plasmon quenching dips nanospectroscopy via plasmon resonance energy transfer," Nat. Methods 4, 1015-1017 (2007).
[CrossRef] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Chumanov, G.

J. K. Daniels and G. Chumanov, "Nanoparticle-mirror sandwich substrates for surface-enhanced Raman scattering," J. Phys. Chem. B 109, 17936-17942 (2005).
[CrossRef]

Cole, R. M.

R. M. Cole et al., "Understanding plasmons in nanoscale voids," Nano. Lett. 7, 2094-2100 (2007).
[CrossRef]

Daniels, J. K.

J. K. Daniels and G. Chumanov, "Nanoparticle-mirror sandwich substrates for surface-enhanced Raman scattering," J. Phys. Chem. B 109, 17936-17942 (2005).
[CrossRef]

Dieringer, J. A.

A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, "Wavelength-scanned surface-enhanced Raman excitation spectroscopy," J. Phys. Chem. B 109, 11279-11285 (2005).
[CrossRef]

Domingo, C.

L. Guerrini, J. V. Garcia-Ramos, C. Domingo, and S. Sanchez-Cortes, "Building highly selective hot spots in Ag nanoparticles using bifunctional viologens: application to the SERS detection of PAHs," J. Phys. Chem. C 112, 7527-7530 (2008).
[CrossRef]

Etchegoin, P. G.

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, "An analytic model for the optical properties of gold," J. Chem. Phys. 125, 164705 (2006).
[CrossRef] [PubMed]

Fort, E.

E. Fort and S. Gresillon, "Surface enhanced fluorescence," J. Phys. D. 41, 013001 (2008).
[CrossRef]

Frey, H. G.

H. G. Frey, F. Keilmann, A. Kriele, and R. Guckenberger, "Enhancing the resolution of scanning near-field optical microscopy by a metal tip grown on an aperture probe," App. Phys. Lett. 81, 5030-5032 (2002).
[CrossRef]

Garcia de Abajo, F. J.

Garcia-Ramos, J. V.

L. Guerrini, J. V. Garcia-Ramos, C. Domingo, and S. Sanchez-Cortes, "Building highly selective hot spots in Ag nanoparticles using bifunctional viologens: application to the SERS detection of PAHs," J. Phys. Chem. C 112, 7527-7530 (2008).
[CrossRef]

Ghenuche, P.

A. L. Lereu, G. Sanchez-Mosteiro, P. Ghenuche, R. Quidant, and N. F. Van Hulst, "Individual gold dimmers investigated by far- and near-field imaging," J. Microsc. 229, 254-258 (2008).
[CrossRef] [PubMed]

Giannini, V.

Gole, A.

C. J. Orendorff, A. Gole, T. K. Sau, and C. J. Murphy, "Surface-enhanced Raman spectroscopy of self-assembled monolayers: sandwich architecture and nanoparticle shape dependence," Anal. Chem. 77, 3261-3266 (2009).
[CrossRef]

Gramotnev, D. K.

D. K. Gramotnev, M. W. Vogel, and M. I. Stockman, "Optimized nonadiabatic nanofocusing of plasmons by tapered metal rods," J. Appl. Phys. 104, 034311 (2008).
[CrossRef]

Gresillon, S.

E. Fort and S. Gresillon, "Surface enhanced fluorescence," J. Phys. D. 41, 013001 (2008).
[CrossRef]

Guckenberger, R.

H. G. Frey, F. Keilmann, A. Kriele, and R. Guckenberger, "Enhancing the resolution of scanning near-field optical microscopy by a metal tip grown on an aperture probe," App. Phys. Lett. 81, 5030-5032 (2002).
[CrossRef]

Guerrini, L.

L. Guerrini, J. V. Garcia-Ramos, C. Domingo, and S. Sanchez-Cortes, "Building highly selective hot spots in Ag nanoparticles using bifunctional viologens: application to the SERS detection of PAHs," J. Phys. Chem. C 112, 7527-7530 (2008).
[CrossRef]

Haes, A. J.

A. J. Haes, S. Zou, J. Zhao, G. C. Schatz, and R. P. Van Duyne, "Localized surface plasmon resonance spectroscopy near molecular resonances," J. Am. Chem. Soc. 128, 10905-10914 (2006).
[CrossRef] [PubMed]

A. J. Haes, S. Zou, G. C. Schatz, and R. P. Van Duyne, "Nanoscale optical biosensor: short range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles," J. Phys. Chem. B 108, 6961-6968 (2004).
[CrossRef]

Han, L.

Hao, E.

E. Hao and G. C. Schatz, "Electromagnetic fields around silver nanoparticles and dimers," J. Chem. Phys. 120, 357-366 (2004).
[CrossRef] [PubMed]

Hwang, Y. K.

Y. K. Hwang et al., "Palladium and gold nanoparticle array films formed by using self-assembly of block copolymer," J. Nanosci. Nanotechnol. 6, 1850 (2006).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Kang, T.

G. L. Liu, Y.-T. Long, Y. Choi, T. Kang, and L. P. Lee, "Quantized plasmon quenching dips nanospectroscopy via plasmon resonance energy transfer," Nat. Methods 4, 1015-1017 (2007).
[CrossRef] [PubMed]

Keilmann, F.

H. G. Frey, F. Keilmann, A. Kriele, and R. Guckenberger, "Enhancing the resolution of scanning near-field optical microscopy by a metal tip grown on an aperture probe," App. Phys. Lett. 81, 5030-5032 (2002).
[CrossRef]

Kriele, A.

H. G. Frey, F. Keilmann, A. Kriele, and R. Guckenberger, "Enhancing the resolution of scanning near-field optical microscopy by a metal tip grown on an aperture probe," App. Phys. Lett. 81, 5030-5032 (2002).
[CrossRef]

Le Ru, E. C.

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, "An analytic model for the optical properties of gold," J. Chem. Phys. 125, 164705 (2006).
[CrossRef] [PubMed]

Lee, L. P.

B. M. Ross and L. P. Lee, "Plasmon tuning and local field enhancement maximization of the nanocrescent," Nanotechnology 19, 275201 (2008).
[CrossRef] [PubMed]

G. L. Liu, Y.-T. Long, Y. Choi, T. Kang, and L. P. Lee, "Quantized plasmon quenching dips nanospectroscopy via plasmon resonance energy transfer," Nat. Methods 4, 1015-1017 (2007).
[CrossRef] [PubMed]

Y. Lu, G. L. Liu, and L. P. Lee, "High-density silver nanoparticle film with temperature-controllable interparticle spacing for a tunable surface enhanced Raman scattering substrate," Nano. Lett. 5, 5-9 (2005).
[CrossRef] [PubMed]

Lereu, A. L.

A. L. Lereu, G. Sanchez-Mosteiro, P. Ghenuche, R. Quidant, and N. F. Van Hulst, "Individual gold dimmers investigated by far- and near-field imaging," J. Microsc. 229, 254-258 (2008).
[CrossRef] [PubMed]

Li, H.

Li, K. Y.

Li, L.

Li, M.

Liu, G. L.

G. L. Liu, Y.-T. Long, Y. Choi, T. Kang, and L. P. Lee, "Quantized plasmon quenching dips nanospectroscopy via plasmon resonance energy transfer," Nat. Methods 4, 1015-1017 (2007).
[CrossRef] [PubMed]

Y. Lu, G. L. Liu, and L. P. Lee, "High-density silver nanoparticle film with temperature-controllable interparticle spacing for a tunable surface enhanced Raman scattering substrate," Nano. Lett. 5, 5-9 (2005).
[CrossRef] [PubMed]

Liu, J.

V. Santhanam, J. Liu., R. Agarwal, and R. P. Andres, "Self-assembly of uniform monolayer arrays of nanoparticles," Langmuir 19, 7881 (2003).
[CrossRef]

Long, Y.-T.

G. L. Liu, Y.-T. Long, Y. Choi, T. Kang, and L. P. Lee, "Quantized plasmon quenching dips nanospectroscopy via plasmon resonance energy transfer," Nat. Methods 4, 1015-1017 (2007).
[CrossRef] [PubMed]

Lu, Y.

Y. Lu, G. L. Liu, and L. P. Lee, "High-density silver nanoparticle film with temperature-controllable interparticle spacing for a tunable surface enhanced Raman scattering substrate," Nano. Lett. 5, 5-9 (2005).
[CrossRef] [PubMed]

McFarland, A. D.

A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, "Wavelength-scanned surface-enhanced Raman excitation spectroscopy," J. Phys. Chem. B 109, 11279-11285 (2005).
[CrossRef]

Merlein, J.

J. Merlein et al., "Nanomechanical control of an optical antenna," Nature Photon. 2, 230-233 (2008).
[CrossRef]

Meyer, M.

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, "An analytic model for the optical properties of gold," J. Chem. Phys. 125, 164705 (2006).
[CrossRef] [PubMed]

Moerland, R. J.

T. H. Taminiau, F. B. Segerink, R. J. Moerland, L. (K.) Kuipers, and N. F. Van Hulst, "Near-field driving of a optical monopole antenna," J. Opt. A 9, S315-S321 (2007).
[CrossRef]

Moloney, J. V.

Murphy, C. J.

C. J. Orendorff, A. Gole, T. K. Sau, and C. J. Murphy, "Surface-enhanced Raman spectroscopy of self-assembled monolayers: sandwich architecture and nanoparticle shape dependence," Anal. Chem. 77, 3261-3266 (2009).
[CrossRef]

Orendorff, C. J.

C. J. Orendorff, A. Gole, T. K. Sau, and C. J. Murphy, "Surface-enhanced Raman spectroscopy of self-assembled monolayers: sandwich architecture and nanoparticle shape dependence," Anal. Chem. 77, 3261-3266 (2009).
[CrossRef]

Peyghambarian, N.

Pieczonka, N. P. W.

N. P. W. Pieczonka and R. F. Aroca, "Single molecule analysis by surfaced-enhanced Raman scattering," Chem. Soc. Rev. 37, 946-954 (2008).
[CrossRef] [PubMed]

Quidant, R.

A. L. Lereu, G. Sanchez-Mosteiro, P. Ghenuche, R. Quidant, and N. F. Van Hulst, "Individual gold dimmers investigated by far- and near-field imaging," J. Microsc. 229, 254-258 (2008).
[CrossRef] [PubMed]

Romero, I.

Ross, B. M.

B. M. Ross and L. P. Lee, "Plasmon tuning and local field enhancement maximization of the nanocrescent," Nanotechnology 19, 275201 (2008).
[CrossRef] [PubMed]

Sanchez-Cortes, S.

L. Guerrini, J. V. Garcia-Ramos, C. Domingo, and S. Sanchez-Cortes, "Building highly selective hot spots in Ag nanoparticles using bifunctional viologens: application to the SERS detection of PAHs," J. Phys. Chem. C 112, 7527-7530 (2008).
[CrossRef]

Sanchez-Mosteiro, G.

A. L. Lereu, G. Sanchez-Mosteiro, P. Ghenuche, R. Quidant, and N. F. Van Hulst, "Individual gold dimmers investigated by far- and near-field imaging," J. Microsc. 229, 254-258 (2008).
[CrossRef] [PubMed]

Santhanam, V.

V. Santhanam, J. Liu., R. Agarwal, and R. P. Andres, "Self-assembly of uniform monolayer arrays of nanoparticles," Langmuir 19, 7881 (2003).
[CrossRef]

Sau, T. K.

C. J. Orendorff, A. Gole, T. K. Sau, and C. J. Murphy, "Surface-enhanced Raman spectroscopy of self-assembled monolayers: sandwich architecture and nanoparticle shape dependence," Anal. Chem. 77, 3261-3266 (2009).
[CrossRef]

Schatz, G. C.

A. J. Haes, S. Zou, J. Zhao, G. C. Schatz, and R. P. Van Duyne, "Localized surface plasmon resonance spectroscopy near molecular resonances," J. Am. Chem. Soc. 128, 10905-10914 (2006).
[CrossRef] [PubMed]

A. J. Haes, S. Zou, G. C. Schatz, and R. P. Van Duyne, "Nanoscale optical biosensor: short range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles," J. Phys. Chem. B 108, 6961-6968 (2004).
[CrossRef]

E. Hao and G. C. Schatz, "Electromagnetic fields around silver nanoparticles and dimers," J. Chem. Phys. 120, 357-366 (2004).
[CrossRef] [PubMed]

Schulzgen, A.

Segerink, F. B.

T. H. Taminiau, F. B. Segerink, R. J. Moerland, L. (K.) Kuipers, and N. F. Van Hulst, "Near-field driving of a optical monopole antenna," J. Opt. A 9, S315-S321 (2007).
[CrossRef]

Stockman, M. I.

D. K. Gramotnev, M. W. Vogel, and M. I. Stockman, "Optimized nonadiabatic nanofocusing of plasmons by tapered metal rods," J. Appl. Phys. 104, 034311 (2008).
[CrossRef]

Su, K.-H.

K.-H. Su et al., "Raman enhancement factor of a single tunable nanoplasmonic resonator," J. Phys. Chem. B 110, 3964-3968 (2006).
[CrossRef] [PubMed]

Talley, C. E.

C. E. Talley et al., "Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimmer substrates," Nano. Lett. 5, 1569 (2005).
[CrossRef] [PubMed]

Taminiau, T. H.

T. H. Taminiau, F. B. Segerink, R. J. Moerland, L. (K.) Kuipers, and N. F. Van Hulst, "Near-field driving of a optical monopole antenna," J. Opt. A 9, S315-S321 (2007).
[CrossRef]

Van Duyne, R. P.

K. Willets and R. P. Van Duyne, "Localized surface plasmon resonance spectroscopy and sensing," Ann. Rev. Phys. Chem. 58, 267-297 (2006).
[CrossRef]

A. J. Haes, S. Zou, J. Zhao, G. C. Schatz, and R. P. Van Duyne, "Localized surface plasmon resonance spectroscopy near molecular resonances," J. Am. Chem. Soc. 128, 10905-10914 (2006).
[CrossRef] [PubMed]

A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, "Wavelength-scanned surface-enhanced Raman excitation spectroscopy," J. Phys. Chem. B 109, 11279-11285 (2005).
[CrossRef]

A. J. Haes, S. Zou, G. C. Schatz, and R. P. Van Duyne, "Nanoscale optical biosensor: short range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles," J. Phys. Chem. B 108, 6961-6968 (2004).
[CrossRef]

Van Hulst, N. F.

A. L. Lereu, G. Sanchez-Mosteiro, P. Ghenuche, R. Quidant, and N. F. Van Hulst, "Individual gold dimmers investigated by far- and near-field imaging," J. Microsc. 229, 254-258 (2008).
[CrossRef] [PubMed]

Vogel, M. W.

D. K. Gramotnev, M. W. Vogel, and M. I. Stockman, "Optimized nonadiabatic nanofocusing of plasmons by tapered metal rods," J. Appl. Phys. 104, 034311 (2008).
[CrossRef]

Willets, K.

K. Willets and R. P. Van Duyne, "Localized surface plasmon resonance spectroscopy and sensing," Ann. Rev. Phys. Chem. 58, 267-297 (2006).
[CrossRef]

Young, M. A.

A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, "Wavelength-scanned surface-enhanced Raman excitation spectroscopy," J. Phys. Chem. B 109, 11279-11285 (2005).
[CrossRef]

Yu, X. F.

Zhang, X.

Zhang, Z. S.

Zhao, J.

A. J. Haes, S. Zou, J. Zhao, G. C. Schatz, and R. P. Van Duyne, "Localized surface plasmon resonance spectroscopy near molecular resonances," J. Am. Chem. Soc. 128, 10905-10914 (2006).
[CrossRef] [PubMed]

Zou, S.

A. J. Haes, S. Zou, J. Zhao, G. C. Schatz, and R. P. Van Duyne, "Localized surface plasmon resonance spectroscopy near molecular resonances," J. Am. Chem. Soc. 128, 10905-10914 (2006).
[CrossRef] [PubMed]

A. J. Haes, S. Zou, G. C. Schatz, and R. P. Van Duyne, "Nanoscale optical biosensor: short range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles," J. Phys. Chem. B 108, 6961-6968 (2004).
[CrossRef]

Anal. Chem.

C. J. Orendorff, A. Gole, T. K. Sau, and C. J. Murphy, "Surface-enhanced Raman spectroscopy of self-assembled monolayers: sandwich architecture and nanoparticle shape dependence," Anal. Chem. 77, 3261-3266 (2009).
[CrossRef]

Ann. Rev. Phys. Chem.

K. Willets and R. P. Van Duyne, "Localized surface plasmon resonance spectroscopy and sensing," Ann. Rev. Phys. Chem. 58, 267-297 (2006).
[CrossRef]

App. Phys. Lett.

H. G. Frey, F. Keilmann, A. Kriele, and R. Guckenberger, "Enhancing the resolution of scanning near-field optical microscopy by a metal tip grown on an aperture probe," App. Phys. Lett. 81, 5030-5032 (2002).
[CrossRef]

Chem. Soc. Rev.

N. P. W. Pieczonka and R. F. Aroca, "Single molecule analysis by surfaced-enhanced Raman scattering," Chem. Soc. Rev. 37, 946-954 (2008).
[CrossRef] [PubMed]

J. Am. Chem. Soc.

A. J. Haes, S. Zou, J. Zhao, G. C. Schatz, and R. P. Van Duyne, "Localized surface plasmon resonance spectroscopy near molecular resonances," J. Am. Chem. Soc. 128, 10905-10914 (2006).
[CrossRef] [PubMed]

J. Appl. Phys.

D. K. Gramotnev, M. W. Vogel, and M. I. Stockman, "Optimized nonadiabatic nanofocusing of plasmons by tapered metal rods," J. Appl. Phys. 104, 034311 (2008).
[CrossRef]

J. Chem. Phys.

E. Hao and G. C. Schatz, "Electromagnetic fields around silver nanoparticles and dimers," J. Chem. Phys. 120, 357-366 (2004).
[CrossRef] [PubMed]

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, "An analytic model for the optical properties of gold," J. Chem. Phys. 125, 164705 (2006).
[CrossRef] [PubMed]

J. Microsc.

A. L. Lereu, G. Sanchez-Mosteiro, P. Ghenuche, R. Quidant, and N. F. Van Hulst, "Individual gold dimmers investigated by far- and near-field imaging," J. Microsc. 229, 254-258 (2008).
[CrossRef] [PubMed]

J. Nanosci. and Nanotechnol.

Y. K. Hwang et al., "Palladium and gold nanoparticle array films formed by using self-assembly of block copolymer," J. Nanosci. Nanotechnol. 6, 1850 (2006).
[CrossRef]

J. Opt. A

T. H. Taminiau, F. B. Segerink, R. J. Moerland, L. (K.) Kuipers, and N. F. Van Hulst, "Near-field driving of a optical monopole antenna," J. Opt. A 9, S315-S321 (2007).
[CrossRef]

J. Phys. Chem. B

J. K. Daniels and G. Chumanov, "Nanoparticle-mirror sandwich substrates for surface-enhanced Raman scattering," J. Phys. Chem. B 109, 17936-17942 (2005).
[CrossRef]

K.-H. Su et al., "Raman enhancement factor of a single tunable nanoplasmonic resonator," J. Phys. Chem. B 110, 3964-3968 (2006).
[CrossRef] [PubMed]

A. J. Haes, S. Zou, G. C. Schatz, and R. P. Van Duyne, "Nanoscale optical biosensor: short range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles," J. Phys. Chem. B 108, 6961-6968 (2004).
[CrossRef]

A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, "Wavelength-scanned surface-enhanced Raman excitation spectroscopy," J. Phys. Chem. B 109, 11279-11285 (2005).
[CrossRef]

J. Phys. Chem. C

L. Guerrini, J. V. Garcia-Ramos, C. Domingo, and S. Sanchez-Cortes, "Building highly selective hot spots in Ag nanoparticles using bifunctional viologens: application to the SERS detection of PAHs," J. Phys. Chem. C 112, 7527-7530 (2008).
[CrossRef]

J. Phys. D.

E. Fort and S. Gresillon, "Surface enhanced fluorescence," J. Phys. D. 41, 013001 (2008).
[CrossRef]

Langmuir

V. Santhanam, J. Liu., R. Agarwal, and R. P. Andres, "Self-assembly of uniform monolayer arrays of nanoparticles," Langmuir 19, 7881 (2003).
[CrossRef]

Nano. Lett.

R. M. Cole et al., "Understanding plasmons in nanoscale voids," Nano. Lett. 7, 2094-2100 (2007).
[CrossRef]

C. E. Talley et al., "Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimmer substrates," Nano. Lett. 5, 1569 (2005).
[CrossRef] [PubMed]

Y. Lu, G. L. Liu, and L. P. Lee, "High-density silver nanoparticle film with temperature-controllable interparticle spacing for a tunable surface enhanced Raman scattering substrate," Nano. Lett. 5, 5-9 (2005).
[CrossRef] [PubMed]

Nanotechnology

B. M. Ross and L. P. Lee, "Plasmon tuning and local field enhancement maximization of the nanocrescent," Nanotechnology 19, 275201 (2008).
[CrossRef] [PubMed]

Nat. Methods

G. L. Liu, Y.-T. Long, Y. Choi, T. Kang, and L. P. Lee, "Quantized plasmon quenching dips nanospectroscopy via plasmon resonance energy transfer," Nat. Methods 4, 1015-1017 (2007).
[CrossRef] [PubMed]

Nature Photon.

J. Merlein et al., "Nanomechanical control of an optical antenna," Nature Photon. 2, 230-233 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Other

J. D. Jackson, Classical Electrodynamics, 3rd Ed. (John Wiley and Sons, USA, 1999).

M. Born and E. Wolf, Principles of Optics, 4th Ed. (Permagon Press, Scotland, 1970).

K. Kneipp,M. Moskovits, and H. Kneipp (Eds.), Surface-Enhanced Raman Scattering: Physics and Applications (Springer, Germany, 2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

A schematic of (a) a single PEP–C antenna with relevant geometric parameters labeled, (b) PEP–C antennae in a self–assembled array, and (c) PEP–C arrays integrated into a microfluidic cell–culture device for biomolecular detection.

Fig. 2.
Fig. 2.

A comparison of PEP–C and particle dimer antennae. The computed local electric field amplitude distribution surrounding (a) the PEP–C antenna at resonance and (b) a gold particle dimer of the same nanoparticle size and gap distance at resonance.

Fig. 3.
Fig. 3.

The computed surface–average field enhancement surrounding the PEP–C nanopar–ticle as a function of wavelength for (a) varying particle–cavity radius r (d = 2nm, h = q = 0) and (b) varying spacer thickness d (r = 20nm, h = q = 0); (c) schematic of the (i) dipole (P = P 1), (ii) tripole (P = P 2), and (iii) quadrupole (P = P 3) plasmon resonances, where the values of P correspond to the peaks in part (a).

Fig. 4.
Fig. 4.

(a) Schematic of the PEP–C antenna as the height of the particle–cavity centerline is varied; (b) the computed surface–average field enhancement surrounding the nanoparticle as a function of wavelength for varying particle–cavity height h (r = 20nm, d = 2nm, θ = 0) and (c) varying incident angle θ (r = 20nm, d = 2nm, h = 0).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ε ( λ ) = ε 1 λ p 2 ( 1 / λ 2 + i / γ p λ ) + j = 1,2 A j λ j [ e i ϕ j ( 1 / λ j 1 / λ i / γ j ) + e i ϕ j ( 1 / λ j + 1 / λ + i / γ j ) ] ,
E S A = 1 4 π r 2 S E / E 0 d S ,

Metrics