Abstract

The energy level, transition configuration and mathematical model of Ni2+-doped glass-ceramics amplifiers are presented for the first time, to the best of one’s knowledge. A quasi-three-level system is employed to model the gain and noise characteristics of the doped system, and the rate and power propagation equations of the mathematical model are solved to analyze the effect of the active ion concentration, fiber length, pump power as well as thermal-quenching on the gain spectra. It is shown that our model is in agreement with experimental result, and when excited at longer wavelength, the center of gain spectra of the amplifier red shifts, the ultra-broad band room-temperature gain spectra can cover 1.25–1.65μm range for amplification of signal in the low-loss windows of the all-wave fiber without absorption peak caused by OH group.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Yu.  Sharonov, A. B.  Bykov, S.  Owen, V.  Pertricevic, R. R.  Alfano, G. H.  Beall, and N.  Borrelli, "Spectroscopic study of transparent forsterite nanocrystalline glass-ceramics doped with chromium," J. Opt. Soc. Am. B  21, 2046-2052 (2004).
    [CrossRef]
  2. T. Suzuki and Y. Ohishi, "Broadband 1400 nm emission from Ni2+ in zinc-alumino-silicate glass," Appl. Phys Lett,  84, 3804-3806 (2004).
    [CrossRef]
  3. T.  Suzuki, G. S.  Murugan, and Y.  Ohishi, "Optical properties of transparent Li2O-Ga2O3-SiO2 glass-ceramics embedding Ni-doped nanocrystals," Appl. Phys. Lett.  86, 131903 (2005).
    [CrossRef]
  4. S.  García-Revilla, P. G.erner, H. U. Güdel, and R. Valiente, "Yb3+-sensitized visible Ni2+ photon upconversion in codoped CsCdBr3 and CsMgBr3," Phys. Rev. B  72, 125111 (2005).
    [CrossRef]
  5. B. Wu, S. Zhou, J. Ruan, Y. Qiao, D. Chen, C. Zhu, and J. Qiu, "Energy transfer between Cr3+ and Ni2+ in transparent silicate glass ceramics containing Cr3+/Ni2+ co-doped ZnAl2O4 nanocrystals," Opt. Express 16, 2508-2513 (2008).
    [CrossRef] [PubMed]
  6. S. Zhou, G. Feng, B. Wu, S. Xu, and J. Qiu, "Transparent Ni2+-doped lithium- alumino-silicate glass-ceramics for broadband near-infrared light source," J. Phys. D: Appl. Phys. 40, 2472-2475 (2007).
    [CrossRef]
  7. S. Zhou, H. Dong, G. Feng, B. Wu, H. Zeng, and J. Qiu, "Broadband optical amplification in silicate glass-ceramic containing ß-Ga2O3:Ni2+ nanocrystals," Opt. Express 15, 5477-5481 (2007).
    [CrossRef] [PubMed]
  8. B.  Wu, S.  Zhou, J.  Ren, D.  Chen, X.  Jiang, C.  Zhu, and J.  Qiu, "Broadband infrared luminescence from transparent glass-ceramics containing Ni2+-doped ?-Ga2O3 nano-crystals," Appl. Phys. B  87, 697-699 (2007).
    [CrossRef]
  9. T.  Suzuki, K.  Horibuchi, and Y.  Ohishi, "Structural and optical properties of ZnO-Al2O3-SiO2 system glass-ceramics Containing Ni2+-doped nanocrystals," J. Non-Cryst.Solids 351, 2304 -2309 (2005).
    [CrossRef]
  10. B. Wu, N. Jiang, S. Zhou, D. Chen, C. Zhu, and J. Qiu, "Transparent Ni2+-doped silicate glass ceramics for broadband near-infrared emission," Opt.Mater. 30, 1900-1904 (2008).
    [CrossRef]
  11. B. Wu, J. Qiu, M. Peng, J. Ren, X. Jiang, and C. Zhu, "Transparent Ni2+-doped ZnO-Al2O3-SiO2 system glass-ceramics with broadband infrared luminescence," Mater. Res. Bull. 42, 762-768 (2007).
    [CrossRef]
  12. G. Feng, S. Zhou, J. Bao, X. Wang, S. Xu, and J. Qiu, "Transparent Ni2+-doped lithium aluminosilicate glass-ceramics with broadband infrared luminescence," J. Alloys Compd. 457, 506-509 (2008).
    [CrossRef]
  13. S. Xu, D. Deng, R. Bao, H. Ju, S. Zhao, H. Wang, and B. Wang, "Ni2+-doped new silicate glass-ceramics for super broadband optical amplification," J. Opt. Soc. Am. B 25, 1548- 1552(2008).
    [CrossRef]
  14. R. Moncorge and T. Benyattou, "Excited absorption of Ni2+ in MgF2 and MgO," Phys. Rev. B. 37, 9186 (1988).
    [CrossRef]
  15. N. V. Kuleshov,V. G.  Shcherbitsky, V. P. Mikhailov, S. Kuck, J. Koetke, K. Petermann, and G. Huber, "Spectroscopy and excited absorption of Ni2+ in MgAl2O4," J. Lumin. 71, 265 (1997).
    [CrossRef]
  16. P. F. Moulton, Laser Handbook, (Elsevier, 1985), Vol. 5, p. 203.
  17. C. R. Giles and E. Desuvire, "Modeling erbium- doped fiber amplifiers," J. Lightwave Technol. 9, 271-283 (1991).
    [CrossRef]
  18. M. J. F. Digonnet, Rare-Earth-Doped Fiber Lasers and Amplifiers, Second Edition, Revised and Expanded. (Marcei Dekker Inc., New York, USA, 2001), 2nd Chapter.
    [CrossRef]

2008

B. Wu, N. Jiang, S. Zhou, D. Chen, C. Zhu, and J. Qiu, "Transparent Ni2+-doped silicate glass ceramics for broadband near-infrared emission," Opt.Mater. 30, 1900-1904 (2008).
[CrossRef]

G. Feng, S. Zhou, J. Bao, X. Wang, S. Xu, and J. Qiu, "Transparent Ni2+-doped lithium aluminosilicate glass-ceramics with broadband infrared luminescence," J. Alloys Compd. 457, 506-509 (2008).
[CrossRef]

B. Wu, S. Zhou, J. Ruan, Y. Qiao, D. Chen, C. Zhu, and J. Qiu, "Energy transfer between Cr3+ and Ni2+ in transparent silicate glass ceramics containing Cr3+/Ni2+ co-doped ZnAl2O4 nanocrystals," Opt. Express 16, 2508-2513 (2008).
[CrossRef] [PubMed]

S. Xu, D. Deng, R. Bao, H. Ju, S. Zhao, H. Wang, and B. Wang, "Ni2+-doped new silicate glass-ceramics for super broadband optical amplification," J. Opt. Soc. Am. B 25, 1548- 1552(2008).
[CrossRef]

2007

B. Wu, J. Qiu, M. Peng, J. Ren, X. Jiang, and C. Zhu, "Transparent Ni2+-doped ZnO-Al2O3-SiO2 system glass-ceramics with broadband infrared luminescence," Mater. Res. Bull. 42, 762-768 (2007).
[CrossRef]

S. Zhou, G. Feng, B. Wu, S. Xu, and J. Qiu, "Transparent Ni2+-doped lithium- alumino-silicate glass-ceramics for broadband near-infrared light source," J. Phys. D: Appl. Phys. 40, 2472-2475 (2007).
[CrossRef]

B.  Wu, S.  Zhou, J.  Ren, D.  Chen, X.  Jiang, C.  Zhu, and J.  Qiu, "Broadband infrared luminescence from transparent glass-ceramics containing Ni2+-doped ?-Ga2O3 nano-crystals," Appl. Phys. B  87, 697-699 (2007).
[CrossRef]

2005

T.  Suzuki, K.  Horibuchi, and Y.  Ohishi, "Structural and optical properties of ZnO-Al2O3-SiO2 system glass-ceramics Containing Ni2+-doped nanocrystals," J. Non-Cryst.Solids 351, 2304 -2309 (2005).
[CrossRef]

T.  Suzuki, G. S.  Murugan, and Y.  Ohishi, "Optical properties of transparent Li2O-Ga2O3-SiO2 glass-ceramics embedding Ni-doped nanocrystals," Appl. Phys. Lett.  86, 131903 (2005).
[CrossRef]

S.  García-Revilla, P. G.erner, H. U. Güdel, and R. Valiente, "Yb3+-sensitized visible Ni2+ photon upconversion in codoped CsCdBr3 and CsMgBr3," Phys. Rev. B  72, 125111 (2005).
[CrossRef]

2004

1997

N. V. Kuleshov,V. G.  Shcherbitsky, V. P. Mikhailov, S. Kuck, J. Koetke, K. Petermann, and G. Huber, "Spectroscopy and excited absorption of Ni2+ in MgAl2O4," J. Lumin. 71, 265 (1997).
[CrossRef]

1991

C. R. Giles and E. Desuvire, "Modeling erbium- doped fiber amplifiers," J. Lightwave Technol. 9, 271-283 (1991).
[CrossRef]

1988

R. Moncorge and T. Benyattou, "Excited absorption of Ni2+ in MgF2 and MgO," Phys. Rev. B. 37, 9186 (1988).
[CrossRef]

Alfano, R. R.

Bao, J.

G. Feng, S. Zhou, J. Bao, X. Wang, S. Xu, and J. Qiu, "Transparent Ni2+-doped lithium aluminosilicate glass-ceramics with broadband infrared luminescence," J. Alloys Compd. 457, 506-509 (2008).
[CrossRef]

Bao, R.

Beall, G. H.

Benyattou, T.

R. Moncorge and T. Benyattou, "Excited absorption of Ni2+ in MgF2 and MgO," Phys. Rev. B. 37, 9186 (1988).
[CrossRef]

Borrelli, N.

Bykov, A. B.

Chen, D.

B. Wu, S. Zhou, J. Ruan, Y. Qiao, D. Chen, C. Zhu, and J. Qiu, "Energy transfer between Cr3+ and Ni2+ in transparent silicate glass ceramics containing Cr3+/Ni2+ co-doped ZnAl2O4 nanocrystals," Opt. Express 16, 2508-2513 (2008).
[CrossRef] [PubMed]

B. Wu, N. Jiang, S. Zhou, D. Chen, C. Zhu, and J. Qiu, "Transparent Ni2+-doped silicate glass ceramics for broadband near-infrared emission," Opt.Mater. 30, 1900-1904 (2008).
[CrossRef]

B.  Wu, S.  Zhou, J.  Ren, D.  Chen, X.  Jiang, C.  Zhu, and J.  Qiu, "Broadband infrared luminescence from transparent glass-ceramics containing Ni2+-doped ?-Ga2O3 nano-crystals," Appl. Phys. B  87, 697-699 (2007).
[CrossRef]

Deng, D.

Desuvire, E.

C. R. Giles and E. Desuvire, "Modeling erbium- doped fiber amplifiers," J. Lightwave Technol. 9, 271-283 (1991).
[CrossRef]

Feng, G.

G. Feng, S. Zhou, J. Bao, X. Wang, S. Xu, and J. Qiu, "Transparent Ni2+-doped lithium aluminosilicate glass-ceramics with broadband infrared luminescence," J. Alloys Compd. 457, 506-509 (2008).
[CrossRef]

S. Zhou, G. Feng, B. Wu, S. Xu, and J. Qiu, "Transparent Ni2+-doped lithium- alumino-silicate glass-ceramics for broadband near-infrared light source," J. Phys. D: Appl. Phys. 40, 2472-2475 (2007).
[CrossRef]

García-Revilla, S.

S.  García-Revilla, P. G.erner, H. U. Güdel, and R. Valiente, "Yb3+-sensitized visible Ni2+ photon upconversion in codoped CsCdBr3 and CsMgBr3," Phys. Rev. B  72, 125111 (2005).
[CrossRef]

Giles, C. R.

C. R. Giles and E. Desuvire, "Modeling erbium- doped fiber amplifiers," J. Lightwave Technol. 9, 271-283 (1991).
[CrossRef]

Horibuchi, K.

T.  Suzuki, K.  Horibuchi, and Y.  Ohishi, "Structural and optical properties of ZnO-Al2O3-SiO2 system glass-ceramics Containing Ni2+-doped nanocrystals," J. Non-Cryst.Solids 351, 2304 -2309 (2005).
[CrossRef]

Huber, G.

N. V. Kuleshov,V. G.  Shcherbitsky, V. P. Mikhailov, S. Kuck, J. Koetke, K. Petermann, and G. Huber, "Spectroscopy and excited absorption of Ni2+ in MgAl2O4," J. Lumin. 71, 265 (1997).
[CrossRef]

Jiang, N.

B. Wu, N. Jiang, S. Zhou, D. Chen, C. Zhu, and J. Qiu, "Transparent Ni2+-doped silicate glass ceramics for broadband near-infrared emission," Opt.Mater. 30, 1900-1904 (2008).
[CrossRef]

Jiang, X.

B.  Wu, S.  Zhou, J.  Ren, D.  Chen, X.  Jiang, C.  Zhu, and J.  Qiu, "Broadband infrared luminescence from transparent glass-ceramics containing Ni2+-doped ?-Ga2O3 nano-crystals," Appl. Phys. B  87, 697-699 (2007).
[CrossRef]

B. Wu, J. Qiu, M. Peng, J. Ren, X. Jiang, and C. Zhu, "Transparent Ni2+-doped ZnO-Al2O3-SiO2 system glass-ceramics with broadband infrared luminescence," Mater. Res. Bull. 42, 762-768 (2007).
[CrossRef]

Ju, H.

Koetke, J.

N. V. Kuleshov,V. G.  Shcherbitsky, V. P. Mikhailov, S. Kuck, J. Koetke, K. Petermann, and G. Huber, "Spectroscopy and excited absorption of Ni2+ in MgAl2O4," J. Lumin. 71, 265 (1997).
[CrossRef]

Kuck, S.

N. V. Kuleshov,V. G.  Shcherbitsky, V. P. Mikhailov, S. Kuck, J. Koetke, K. Petermann, and G. Huber, "Spectroscopy and excited absorption of Ni2+ in MgAl2O4," J. Lumin. 71, 265 (1997).
[CrossRef]

Kuleshov, N. V.

N. V. Kuleshov,V. G.  Shcherbitsky, V. P. Mikhailov, S. Kuck, J. Koetke, K. Petermann, and G. Huber, "Spectroscopy and excited absorption of Ni2+ in MgAl2O4," J. Lumin. 71, 265 (1997).
[CrossRef]

Mikhailov, V. P.

N. V. Kuleshov,V. G.  Shcherbitsky, V. P. Mikhailov, S. Kuck, J. Koetke, K. Petermann, and G. Huber, "Spectroscopy and excited absorption of Ni2+ in MgAl2O4," J. Lumin. 71, 265 (1997).
[CrossRef]

Moncorge, R.

R. Moncorge and T. Benyattou, "Excited absorption of Ni2+ in MgF2 and MgO," Phys. Rev. B. 37, 9186 (1988).
[CrossRef]

Murugan, G. S.

T.  Suzuki, G. S.  Murugan, and Y.  Ohishi, "Optical properties of transparent Li2O-Ga2O3-SiO2 glass-ceramics embedding Ni-doped nanocrystals," Appl. Phys. Lett.  86, 131903 (2005).
[CrossRef]

Ohishi, Y.

T.  Suzuki, G. S.  Murugan, and Y.  Ohishi, "Optical properties of transparent Li2O-Ga2O3-SiO2 glass-ceramics embedding Ni-doped nanocrystals," Appl. Phys. Lett.  86, 131903 (2005).
[CrossRef]

T.  Suzuki, K.  Horibuchi, and Y.  Ohishi, "Structural and optical properties of ZnO-Al2O3-SiO2 system glass-ceramics Containing Ni2+-doped nanocrystals," J. Non-Cryst.Solids 351, 2304 -2309 (2005).
[CrossRef]

T. Suzuki and Y. Ohishi, "Broadband 1400 nm emission from Ni2+ in zinc-alumino-silicate glass," Appl. Phys Lett,  84, 3804-3806 (2004).
[CrossRef]

Owen, S.

Peng, M.

B. Wu, J. Qiu, M. Peng, J. Ren, X. Jiang, and C. Zhu, "Transparent Ni2+-doped ZnO-Al2O3-SiO2 system glass-ceramics with broadband infrared luminescence," Mater. Res. Bull. 42, 762-768 (2007).
[CrossRef]

Pertricevic, V.

Petermann, K.

N. V. Kuleshov,V. G.  Shcherbitsky, V. P. Mikhailov, S. Kuck, J. Koetke, K. Petermann, and G. Huber, "Spectroscopy and excited absorption of Ni2+ in MgAl2O4," J. Lumin. 71, 265 (1997).
[CrossRef]

Qiao, Y.

Qiu, J.

B. Wu, S. Zhou, J. Ruan, Y. Qiao, D. Chen, C. Zhu, and J. Qiu, "Energy transfer between Cr3+ and Ni2+ in transparent silicate glass ceramics containing Cr3+/Ni2+ co-doped ZnAl2O4 nanocrystals," Opt. Express 16, 2508-2513 (2008).
[CrossRef] [PubMed]

B. Wu, N. Jiang, S. Zhou, D. Chen, C. Zhu, and J. Qiu, "Transparent Ni2+-doped silicate glass ceramics for broadband near-infrared emission," Opt.Mater. 30, 1900-1904 (2008).
[CrossRef]

G. Feng, S. Zhou, J. Bao, X. Wang, S. Xu, and J. Qiu, "Transparent Ni2+-doped lithium aluminosilicate glass-ceramics with broadband infrared luminescence," J. Alloys Compd. 457, 506-509 (2008).
[CrossRef]

B.  Wu, S.  Zhou, J.  Ren, D.  Chen, X.  Jiang, C.  Zhu, and J.  Qiu, "Broadband infrared luminescence from transparent glass-ceramics containing Ni2+-doped ?-Ga2O3 nano-crystals," Appl. Phys. B  87, 697-699 (2007).
[CrossRef]

S. Zhou, G. Feng, B. Wu, S. Xu, and J. Qiu, "Transparent Ni2+-doped lithium- alumino-silicate glass-ceramics for broadband near-infrared light source," J. Phys. D: Appl. Phys. 40, 2472-2475 (2007).
[CrossRef]

B. Wu, J. Qiu, M. Peng, J. Ren, X. Jiang, and C. Zhu, "Transparent Ni2+-doped ZnO-Al2O3-SiO2 system glass-ceramics with broadband infrared luminescence," Mater. Res. Bull. 42, 762-768 (2007).
[CrossRef]

Ren, J.

B.  Wu, S.  Zhou, J.  Ren, D.  Chen, X.  Jiang, C.  Zhu, and J.  Qiu, "Broadband infrared luminescence from transparent glass-ceramics containing Ni2+-doped ?-Ga2O3 nano-crystals," Appl. Phys. B  87, 697-699 (2007).
[CrossRef]

B. Wu, J. Qiu, M. Peng, J. Ren, X. Jiang, and C. Zhu, "Transparent Ni2+-doped ZnO-Al2O3-SiO2 system glass-ceramics with broadband infrared luminescence," Mater. Res. Bull. 42, 762-768 (2007).
[CrossRef]

Ruan, J.

Sharonov, M. Yu.

Shcherbitsky, V. G.

N. V. Kuleshov,V. G.  Shcherbitsky, V. P. Mikhailov, S. Kuck, J. Koetke, K. Petermann, and G. Huber, "Spectroscopy and excited absorption of Ni2+ in MgAl2O4," J. Lumin. 71, 265 (1997).
[CrossRef]

Suzuki, T.

T.  Suzuki, G. S.  Murugan, and Y.  Ohishi, "Optical properties of transparent Li2O-Ga2O3-SiO2 glass-ceramics embedding Ni-doped nanocrystals," Appl. Phys. Lett.  86, 131903 (2005).
[CrossRef]

T.  Suzuki, K.  Horibuchi, and Y.  Ohishi, "Structural and optical properties of ZnO-Al2O3-SiO2 system glass-ceramics Containing Ni2+-doped nanocrystals," J. Non-Cryst.Solids 351, 2304 -2309 (2005).
[CrossRef]

T. Suzuki and Y. Ohishi, "Broadband 1400 nm emission from Ni2+ in zinc-alumino-silicate glass," Appl. Phys Lett,  84, 3804-3806 (2004).
[CrossRef]

Wang, B.

Wang, H.

Wang, X.

G. Feng, S. Zhou, J. Bao, X. Wang, S. Xu, and J. Qiu, "Transparent Ni2+-doped lithium aluminosilicate glass-ceramics with broadband infrared luminescence," J. Alloys Compd. 457, 506-509 (2008).
[CrossRef]

Wu, B.

B. Wu, N. Jiang, S. Zhou, D. Chen, C. Zhu, and J. Qiu, "Transparent Ni2+-doped silicate glass ceramics for broadband near-infrared emission," Opt.Mater. 30, 1900-1904 (2008).
[CrossRef]

B. Wu, S. Zhou, J. Ruan, Y. Qiao, D. Chen, C. Zhu, and J. Qiu, "Energy transfer between Cr3+ and Ni2+ in transparent silicate glass ceramics containing Cr3+/Ni2+ co-doped ZnAl2O4 nanocrystals," Opt. Express 16, 2508-2513 (2008).
[CrossRef] [PubMed]

B.  Wu, S.  Zhou, J.  Ren, D.  Chen, X.  Jiang, C.  Zhu, and J.  Qiu, "Broadband infrared luminescence from transparent glass-ceramics containing Ni2+-doped ?-Ga2O3 nano-crystals," Appl. Phys. B  87, 697-699 (2007).
[CrossRef]

S. Zhou, G. Feng, B. Wu, S. Xu, and J. Qiu, "Transparent Ni2+-doped lithium- alumino-silicate glass-ceramics for broadband near-infrared light source," J. Phys. D: Appl. Phys. 40, 2472-2475 (2007).
[CrossRef]

B. Wu, J. Qiu, M. Peng, J. Ren, X. Jiang, and C. Zhu, "Transparent Ni2+-doped ZnO-Al2O3-SiO2 system glass-ceramics with broadband infrared luminescence," Mater. Res. Bull. 42, 762-768 (2007).
[CrossRef]

Xu, S.

G. Feng, S. Zhou, J. Bao, X. Wang, S. Xu, and J. Qiu, "Transparent Ni2+-doped lithium aluminosilicate glass-ceramics with broadband infrared luminescence," J. Alloys Compd. 457, 506-509 (2008).
[CrossRef]

S. Xu, D. Deng, R. Bao, H. Ju, S. Zhao, H. Wang, and B. Wang, "Ni2+-doped new silicate glass-ceramics for super broadband optical amplification," J. Opt. Soc. Am. B 25, 1548- 1552(2008).
[CrossRef]

S. Zhou, G. Feng, B. Wu, S. Xu, and J. Qiu, "Transparent Ni2+-doped lithium- alumino-silicate glass-ceramics for broadband near-infrared light source," J. Phys. D: Appl. Phys. 40, 2472-2475 (2007).
[CrossRef]

Zhao, S.

Zhou, S.

B. Wu, S. Zhou, J. Ruan, Y. Qiao, D. Chen, C. Zhu, and J. Qiu, "Energy transfer between Cr3+ and Ni2+ in transparent silicate glass ceramics containing Cr3+/Ni2+ co-doped ZnAl2O4 nanocrystals," Opt. Express 16, 2508-2513 (2008).
[CrossRef] [PubMed]

B. Wu, N. Jiang, S. Zhou, D. Chen, C. Zhu, and J. Qiu, "Transparent Ni2+-doped silicate glass ceramics for broadband near-infrared emission," Opt.Mater. 30, 1900-1904 (2008).
[CrossRef]

G. Feng, S. Zhou, J. Bao, X. Wang, S. Xu, and J. Qiu, "Transparent Ni2+-doped lithium aluminosilicate glass-ceramics with broadband infrared luminescence," J. Alloys Compd. 457, 506-509 (2008).
[CrossRef]

B.  Wu, S.  Zhou, J.  Ren, D.  Chen, X.  Jiang, C.  Zhu, and J.  Qiu, "Broadband infrared luminescence from transparent glass-ceramics containing Ni2+-doped ?-Ga2O3 nano-crystals," Appl. Phys. B  87, 697-699 (2007).
[CrossRef]

S. Zhou, G. Feng, B. Wu, S. Xu, and J. Qiu, "Transparent Ni2+-doped lithium- alumino-silicate glass-ceramics for broadband near-infrared light source," J. Phys. D: Appl. Phys. 40, 2472-2475 (2007).
[CrossRef]

Zhu, C.

B. Wu, N. Jiang, S. Zhou, D. Chen, C. Zhu, and J. Qiu, "Transparent Ni2+-doped silicate glass ceramics for broadband near-infrared emission," Opt.Mater. 30, 1900-1904 (2008).
[CrossRef]

B. Wu, S. Zhou, J. Ruan, Y. Qiao, D. Chen, C. Zhu, and J. Qiu, "Energy transfer between Cr3+ and Ni2+ in transparent silicate glass ceramics containing Cr3+/Ni2+ co-doped ZnAl2O4 nanocrystals," Opt. Express 16, 2508-2513 (2008).
[CrossRef] [PubMed]

B.  Wu, S.  Zhou, J.  Ren, D.  Chen, X.  Jiang, C.  Zhu, and J.  Qiu, "Broadband infrared luminescence from transparent glass-ceramics containing Ni2+-doped ?-Ga2O3 nano-crystals," Appl. Phys. B  87, 697-699 (2007).
[CrossRef]

B. Wu, J. Qiu, M. Peng, J. Ren, X. Jiang, and C. Zhu, "Transparent Ni2+-doped ZnO-Al2O3-SiO2 system glass-ceramics with broadband infrared luminescence," Mater. Res. Bull. 42, 762-768 (2007).
[CrossRef]

Appl. Phys Lett

T. Suzuki and Y. Ohishi, "Broadband 1400 nm emission from Ni2+ in zinc-alumino-silicate glass," Appl. Phys Lett,  84, 3804-3806 (2004).
[CrossRef]

Appl. Phys. B

B.  Wu, S.  Zhou, J.  Ren, D.  Chen, X.  Jiang, C.  Zhu, and J.  Qiu, "Broadband infrared luminescence from transparent glass-ceramics containing Ni2+-doped ?-Ga2O3 nano-crystals," Appl. Phys. B  87, 697-699 (2007).
[CrossRef]

Appl. Phys. Lett.

T.  Suzuki, G. S.  Murugan, and Y.  Ohishi, "Optical properties of transparent Li2O-Ga2O3-SiO2 glass-ceramics embedding Ni-doped nanocrystals," Appl. Phys. Lett.  86, 131903 (2005).
[CrossRef]

J. Alloys Compd.

G. Feng, S. Zhou, J. Bao, X. Wang, S. Xu, and J. Qiu, "Transparent Ni2+-doped lithium aluminosilicate glass-ceramics with broadband infrared luminescence," J. Alloys Compd. 457, 506-509 (2008).
[CrossRef]

J. Lightwave Technol.

C. R. Giles and E. Desuvire, "Modeling erbium- doped fiber amplifiers," J. Lightwave Technol. 9, 271-283 (1991).
[CrossRef]

J. Lumin.

N. V. Kuleshov,V. G.  Shcherbitsky, V. P. Mikhailov, S. Kuck, J. Koetke, K. Petermann, and G. Huber, "Spectroscopy and excited absorption of Ni2+ in MgAl2O4," J. Lumin. 71, 265 (1997).
[CrossRef]

J. Non-Cryst.Solids

T.  Suzuki, K.  Horibuchi, and Y.  Ohishi, "Structural and optical properties of ZnO-Al2O3-SiO2 system glass-ceramics Containing Ni2+-doped nanocrystals," J. Non-Cryst.Solids 351, 2304 -2309 (2005).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. D: Appl. Phys.

S. Zhou, G. Feng, B. Wu, S. Xu, and J. Qiu, "Transparent Ni2+-doped lithium- alumino-silicate glass-ceramics for broadband near-infrared light source," J. Phys. D: Appl. Phys. 40, 2472-2475 (2007).
[CrossRef]

Mater. Res. Bull.

B. Wu, J. Qiu, M. Peng, J. Ren, X. Jiang, and C. Zhu, "Transparent Ni2+-doped ZnO-Al2O3-SiO2 system glass-ceramics with broadband infrared luminescence," Mater. Res. Bull. 42, 762-768 (2007).
[CrossRef]

Opt. Express

Opt.Mater.

B. Wu, N. Jiang, S. Zhou, D. Chen, C. Zhu, and J. Qiu, "Transparent Ni2+-doped silicate glass ceramics for broadband near-infrared emission," Opt.Mater. 30, 1900-1904 (2008).
[CrossRef]

Phys. Rev. B

S.  García-Revilla, P. G.erner, H. U. Güdel, and R. Valiente, "Yb3+-sensitized visible Ni2+ photon upconversion in codoped CsCdBr3 and CsMgBr3," Phys. Rev. B  72, 125111 (2005).
[CrossRef]

Phys. Rev. B.

R. Moncorge and T. Benyattou, "Excited absorption of Ni2+ in MgF2 and MgO," Phys. Rev. B. 37, 9186 (1988).
[CrossRef]

Other

S. Zhou, H. Dong, G. Feng, B. Wu, H. Zeng, and J. Qiu, "Broadband optical amplification in silicate glass-ceramic containing ß-Ga2O3:Ni2+ nanocrystals," Opt. Express 15, 5477-5481 (2007).
[CrossRef] [PubMed]

M. J. F. Digonnet, Rare-Earth-Doped Fiber Lasers and Amplifiers, Second Edition, Revised and Expanded. (Marcei Dekker Inc., New York, USA, 2001), 2nd Chapter.
[CrossRef]

P. F. Moulton, Laser Handbook, (Elsevier, 1985), Vol. 5, p. 203.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Schematic of quasi-three-level system presented using configuration coordinate with electro-phonon coupling

Fig. 2.
Fig. 2.

Calculated absorption and emission cross sections as functions of wavelength from absorption and emission spectra [6, 7, 9].

Fig. 3.
Fig. 3.

Comparison of calculated normalized gain of Ni2+-doped glass-ceramics with normalized measured gain, the measured results from reference [7]

Fig. 4.
Fig. 4.

Variation of gain spectra with fiber length, where active ion concentration N=7×1024 ions/m3, pump power P=200mW and input signal power Ps=10-3mW.

Fig. 5.
Fig. 5.

Effect of active ion concentration on gain spectra, where fiber length L= 4m, pump power P=200mW and input signal power Ps=10-3mW.

Fig. 6.
Fig. 6.

Effect of pump power on gain spectra, where active ion concentration N=1.8×1025 ions/m3, fiber length L=4m and input signal power Ps=10-3mW.

Fig. 7.
Fig. 7.

Noise figure as a function of signal wavelength, where active ion concentration N=1.8×1025 ions/m3, pump power P=500mW, fiber length L=4m and input signal power Ps=10-3mW.

Fig. 8.
Fig. 8.

Temperature dependence of gain spectra, where active ion concentration N=1.8×1025 ions/m3, pump power=500mW, fiber length L=4m and input signal power Ps=10-3mW.

Fig. 9.
Fig. 9.

Gain spectra of SAM and SAZ glass systems, where active ion concentration N=1.8×1025 ions/m3, pump wavelength/power=1100nm/500mW, fiber length L=4m and input signal power Ps=10-3mW.

Fig. 10.
Fig. 10.

Gain spectra of SAZ glass system, where active ion concentration N=1.8×1025 ions/m3, pump wavelength/power=1200nm/500mW, fiber length L=4m and input signal power Ps=10-3mW.

Fig. 11.
Fig. 11.

Effect of pump power on room-temperature gain spectra and noise figure spectra, where active ion concentration N=1.8×1025 ions/m3, fiber length L=4m and input signal power Ps=10-3mW.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

N 1 t = ( W 12 pa + W 12 sa + W 12 ase a ) + N 1 + ( A 21 + W 21 se + W 12 ase e ) N 2 a + W 21 pe N 2 b + A 31 N 3 + A 41 N 4
N 2 a t = ( W 12 sa + W 12 as e a ) N 1 A 21 N 2 a ( W 21 se + W 12 ase e ) N 2 a W esa 23 N 2 a W esa 24 N 2 a
N 2 b t = W 12 pa N 1 W 21 pe N 2 b
N 3 t = W esa 23 N 2 a A 31 N 3
N 4 t = W esa 24 N 2 a A 41 N 4
N = N 1 + N 2 a + N 2 b + N 3 + N 4
d P p ( z , t ) dz = P p Γ p ( σ pa N 1 σ pe N 2 b ) α p P p
d P s ( z , t ) dz = P s Γ s ( σ se N 2 a σ sa N 1 σ sa 23 N 2 b σ sa 24 N 2 a ) α s P s
d P a ( z , t ) dz = P a Γ s ( σ se N 2 a σ sa N 1 ) + 2 σ se N 2 a Γ s h v s Δ v α s P a
σ ( λ ) = λ 2 g ( λ ) η 8 π n 2 τ
σ = λ 0 2 η 4 π n 2 τ ( ln 2 π ) 1 2 1 Δ v 1 / 2
NF = ( 1 / G + P ase / Ghv )
W nr = C [ n ( T ) + 1 ] p e ( αΔ E )
n ( T ) = 1 / [ exp ( ħ ω / kT ) 1 ]

Metrics