Abstract

This paper proposes a novel detection technique for wavelength-division multiplexing (WDM) signals that uses the ultrafast field sampling approach. The proposed technique simultaneously samples the total field of the WDM signal with no wavelength-demultiplexing; its electrical post-processing provides a filtering function in the digital domain. As a result, the individual fields of the WDM channels, including mutual phase relationship, can be jointly reconstructed. As a preliminary demonstration, the simultaneous monitoring of a WDM signal composed of two channels with independent polarization states, is successfully performed using a dual-channel field sampling system with polarization diversity. This demonstration can be expanded to the detection of a WDM signal with N channels by using an N-channel field sampling system. It is also experimentally-verified that the reconstructed fields preserve the mutual phase relationship of the original fields. This ‘field sensitive’ WDM detection may open new possibilities for advanced WDM monitoring systems and even the electrical compensation of linear and/or non-linear inter-channel cross-talk in digital coherent detection systems.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Dou, A. Bébarre, J. L. Le Gouet, I. Lorgeré, and P. Tchénio, "Field cross correlator for analysis of ultrafast signals," Appl. Opt. 33, 7980-7986 (1994).
    [CrossRef] [PubMed]
  2. M. G. Raymer, J. Cooper, H. J. Carmichael, M. Beck, and D. T. Smithey, "Ultrafast measurement of optical-field statistics by dc-balanced homodyne detection," J. Opt. Soc. Am. B 12, 1801-1812 (1995).
    [CrossRef]
  3. F. Ito, "Single-shot high-speed signal detection by multiple-angle spectral interferometry," J. Quantum Electron. 32, 519-524 (1996).
    [CrossRef]
  4. D. F. Mc Alister and M. G. Raymer, "Ultrafast photon-number correlations from dual-pulse, phase-averaged homodyne detection," Phys. Rev. A 55, 1609-1612 (1997).
    [CrossRef]
  5. F. Ito, "Demultiplexed detection of ultrafast optical signal using interferometric cross-correlation technique," J. Lightwave Technol. 15, 930-937 (1997).
    [CrossRef]
  6. C. Dorrer, C. R. Doerr, I. Kang, R. Ryf, J. Leuthold, and P. J. Winzer, "Measurement of Eye Diagrams and Constellation Diagrams of Optical Sources Using Linear Optics and Waveguide Technology," J. Lightwave Technol. 23, 178-186 (2005).
    [CrossRef]
  7. K. Okamoto and F. Ito, "Relatively Delayed Dual-channel Interferometric Sampling for Observing Ultrafast Amplitude and Phase Modulation," in European Conference on Optical Communications (ECOC2006), Cannes, France, Paper Th2. 4. 4 (2006).
  8. K. Okamoto and F. Ito, "Simultaneous WDM Signal Detection Realized by Ultrafast Field Sampling," in European Conference on Optical Communications (ECOC2008), Brussels, Belgium, Paper We.1.D.4 (2008).
  9. M. Shtaif, M. Eiselt, and L. D. Garret, "Cross-phase modulation distortion measurements in multispan WDM systems," IEEE Photon. Technol. Lett. 12, 88-90 (2000).
    [CrossRef]
  10. A. D. Ellis and F. C. G. Gunning, "Spectral density enhancement using coherent WDM," IEEE Photon. Technol. Lett. 17, 504-506 (2005).
    [CrossRef]
  11. E. Yamazaki, F. Inuzuka, A. Takada, K. Yonenaga, and T. Morioka, "Inter-channel crosstalk cancellation by encoding with adjacent channels in coherent WDM," in Optical Fiber Communication Conference (OFC2006), Anaheim, USA, Paper JThB6 (2006).
  12. E. Yamazaki, F. Inuzuka, K. Yonenaga, A. Takada, and M. Koga, "Compensation of interchannel crosstalk induced by optical fiber nonlinearity in carrier phase-locked WDM system," IEEE Photon. Technol. Lett. 19, 9-11 (2007).
    [CrossRef]
  13. F. Inuzuka, E. Yamazaki, K. Yonenaga, and A. Takada, "Nonlinear Inter-channel compensation using electronic pre-distortion in Carrier Phase Locked WDM," in Optical Fiber Communication Conference (OFC2008), San diego, USA, Paper OTuO5 (2008).
  14. M. G. Taylor, "Coherent detection method using DSP for demodulation of signal Demodulation of Signal and Subsequent Equalization of Propagation Impairments," IEEE Photon. Technol. Lett. 16, 674-676 (2004).
    [CrossRef]
  15. K. Kikuchi, "Phase-Diversity Homodyne Detection of Multilevel Optical Modulation With Digital Carrier Phase Estimation," J. Sel. Top. Quantum Electron. 12, 563-570 (2006).
    [CrossRef]

2007 (1)

E. Yamazaki, F. Inuzuka, K. Yonenaga, A. Takada, and M. Koga, "Compensation of interchannel crosstalk induced by optical fiber nonlinearity in carrier phase-locked WDM system," IEEE Photon. Technol. Lett. 19, 9-11 (2007).
[CrossRef]

2006 (1)

K. Kikuchi, "Phase-Diversity Homodyne Detection of Multilevel Optical Modulation With Digital Carrier Phase Estimation," J. Sel. Top. Quantum Electron. 12, 563-570 (2006).
[CrossRef]

2005 (2)

2004 (1)

M. G. Taylor, "Coherent detection method using DSP for demodulation of signal Demodulation of Signal and Subsequent Equalization of Propagation Impairments," IEEE Photon. Technol. Lett. 16, 674-676 (2004).
[CrossRef]

2000 (1)

M. Shtaif, M. Eiselt, and L. D. Garret, "Cross-phase modulation distortion measurements in multispan WDM systems," IEEE Photon. Technol. Lett. 12, 88-90 (2000).
[CrossRef]

1997 (2)

D. F. Mc Alister and M. G. Raymer, "Ultrafast photon-number correlations from dual-pulse, phase-averaged homodyne detection," Phys. Rev. A 55, 1609-1612 (1997).
[CrossRef]

F. Ito, "Demultiplexed detection of ultrafast optical signal using interferometric cross-correlation technique," J. Lightwave Technol. 15, 930-937 (1997).
[CrossRef]

1996 (1)

F. Ito, "Single-shot high-speed signal detection by multiple-angle spectral interferometry," J. Quantum Electron. 32, 519-524 (1996).
[CrossRef]

1995 (1)

1994 (1)

Bébarre, A.

Beck, M.

Carmichael, H. J.

Cooper, J.

Doerr, C. R.

Dorrer, C.

Dou, K.

Eiselt, M.

M. Shtaif, M. Eiselt, and L. D. Garret, "Cross-phase modulation distortion measurements in multispan WDM systems," IEEE Photon. Technol. Lett. 12, 88-90 (2000).
[CrossRef]

Ellis, A. D.

A. D. Ellis and F. C. G. Gunning, "Spectral density enhancement using coherent WDM," IEEE Photon. Technol. Lett. 17, 504-506 (2005).
[CrossRef]

Garret, L. D.

M. Shtaif, M. Eiselt, and L. D. Garret, "Cross-phase modulation distortion measurements in multispan WDM systems," IEEE Photon. Technol. Lett. 12, 88-90 (2000).
[CrossRef]

Gunning, F. C. G.

A. D. Ellis and F. C. G. Gunning, "Spectral density enhancement using coherent WDM," IEEE Photon. Technol. Lett. 17, 504-506 (2005).
[CrossRef]

Inuzuka, F.

E. Yamazaki, F. Inuzuka, K. Yonenaga, A. Takada, and M. Koga, "Compensation of interchannel crosstalk induced by optical fiber nonlinearity in carrier phase-locked WDM system," IEEE Photon. Technol. Lett. 19, 9-11 (2007).
[CrossRef]

Ito, F.

F. Ito, "Demultiplexed detection of ultrafast optical signal using interferometric cross-correlation technique," J. Lightwave Technol. 15, 930-937 (1997).
[CrossRef]

F. Ito, "Single-shot high-speed signal detection by multiple-angle spectral interferometry," J. Quantum Electron. 32, 519-524 (1996).
[CrossRef]

Kang, I.

Kikuchi, K.

K. Kikuchi, "Phase-Diversity Homodyne Detection of Multilevel Optical Modulation With Digital Carrier Phase Estimation," J. Sel. Top. Quantum Electron. 12, 563-570 (2006).
[CrossRef]

Koga, M.

E. Yamazaki, F. Inuzuka, K. Yonenaga, A. Takada, and M. Koga, "Compensation of interchannel crosstalk induced by optical fiber nonlinearity in carrier phase-locked WDM system," IEEE Photon. Technol. Lett. 19, 9-11 (2007).
[CrossRef]

Le Gouet, J. L.

Leuthold, J.

Lorgeré, I.

Mc Alister, D. F.

D. F. Mc Alister and M. G. Raymer, "Ultrafast photon-number correlations from dual-pulse, phase-averaged homodyne detection," Phys. Rev. A 55, 1609-1612 (1997).
[CrossRef]

Raymer, M. G.

D. F. Mc Alister and M. G. Raymer, "Ultrafast photon-number correlations from dual-pulse, phase-averaged homodyne detection," Phys. Rev. A 55, 1609-1612 (1997).
[CrossRef]

M. G. Raymer, J. Cooper, H. J. Carmichael, M. Beck, and D. T. Smithey, "Ultrafast measurement of optical-field statistics by dc-balanced homodyne detection," J. Opt. Soc. Am. B 12, 1801-1812 (1995).
[CrossRef]

Ryf, R.

Shtaif, M.

M. Shtaif, M. Eiselt, and L. D. Garret, "Cross-phase modulation distortion measurements in multispan WDM systems," IEEE Photon. Technol. Lett. 12, 88-90 (2000).
[CrossRef]

Smithey, D. T.

Takada, A.

E. Yamazaki, F. Inuzuka, K. Yonenaga, A. Takada, and M. Koga, "Compensation of interchannel crosstalk induced by optical fiber nonlinearity in carrier phase-locked WDM system," IEEE Photon. Technol. Lett. 19, 9-11 (2007).
[CrossRef]

Taylor, M. G.

M. G. Taylor, "Coherent detection method using DSP for demodulation of signal Demodulation of Signal and Subsequent Equalization of Propagation Impairments," IEEE Photon. Technol. Lett. 16, 674-676 (2004).
[CrossRef]

Tchénio, P.

Winzer, P. J.

Yamazaki, E.

E. Yamazaki, F. Inuzuka, K. Yonenaga, A. Takada, and M. Koga, "Compensation of interchannel crosstalk induced by optical fiber nonlinearity in carrier phase-locked WDM system," IEEE Photon. Technol. Lett. 19, 9-11 (2007).
[CrossRef]

Yonenaga, K.

E. Yamazaki, F. Inuzuka, K. Yonenaga, A. Takada, and M. Koga, "Compensation of interchannel crosstalk induced by optical fiber nonlinearity in carrier phase-locked WDM system," IEEE Photon. Technol. Lett. 19, 9-11 (2007).
[CrossRef]

Appl. Opt. (1)

IEEE Photon. Technol. Lett. (4)

M. Shtaif, M. Eiselt, and L. D. Garret, "Cross-phase modulation distortion measurements in multispan WDM systems," IEEE Photon. Technol. Lett. 12, 88-90 (2000).
[CrossRef]

A. D. Ellis and F. C. G. Gunning, "Spectral density enhancement using coherent WDM," IEEE Photon. Technol. Lett. 17, 504-506 (2005).
[CrossRef]

E. Yamazaki, F. Inuzuka, K. Yonenaga, A. Takada, and M. Koga, "Compensation of interchannel crosstalk induced by optical fiber nonlinearity in carrier phase-locked WDM system," IEEE Photon. Technol. Lett. 19, 9-11 (2007).
[CrossRef]

M. G. Taylor, "Coherent detection method using DSP for demodulation of signal Demodulation of Signal and Subsequent Equalization of Propagation Impairments," IEEE Photon. Technol. Lett. 16, 674-676 (2004).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (1)

J. Quantum Electron. (1)

F. Ito, "Single-shot high-speed signal detection by multiple-angle spectral interferometry," J. Quantum Electron. 32, 519-524 (1996).
[CrossRef]

J. Sel. Top. Quantum Electron. (1)

K. Kikuchi, "Phase-Diversity Homodyne Detection of Multilevel Optical Modulation With Digital Carrier Phase Estimation," J. Sel. Top. Quantum Electron. 12, 563-570 (2006).
[CrossRef]

Phys. Rev. A (1)

D. F. Mc Alister and M. G. Raymer, "Ultrafast photon-number correlations from dual-pulse, phase-averaged homodyne detection," Phys. Rev. A 55, 1609-1612 (1997).
[CrossRef]

Other (4)

K. Okamoto and F. Ito, "Relatively Delayed Dual-channel Interferometric Sampling for Observing Ultrafast Amplitude and Phase Modulation," in European Conference on Optical Communications (ECOC2006), Cannes, France, Paper Th2. 4. 4 (2006).

K. Okamoto and F. Ito, "Simultaneous WDM Signal Detection Realized by Ultrafast Field Sampling," in European Conference on Optical Communications (ECOC2008), Brussels, Belgium, Paper We.1.D.4 (2008).

F. Inuzuka, E. Yamazaki, K. Yonenaga, and A. Takada, "Nonlinear Inter-channel compensation using electronic pre-distortion in Carrier Phase Locked WDM," in Optical Fiber Communication Conference (OFC2008), San diego, USA, Paper OTuO5 (2008).

E. Yamazaki, F. Inuzuka, A. Takada, K. Yonenaga, and T. Morioka, "Inter-channel crosstalk cancellation by encoding with adjacent channels in coherent WDM," in Optical Fiber Communication Conference (OFC2006), Anaheim, USA, Paper JThB6 (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic diagram of ultrafast field sampling system incorporating polarization diversity for detecting WDM signals with N channels. The above shows the x-channel configuration for detecting the x-polarization component; the same configuration (y-channel) is employed for the y-polarization. T: the relative time delay set to be the inverse of FSR shown in Fig.2. PBS: polarization beam splitter. BPD: balanced photodetector. A/D: analogue-to-digital conversion. DSP: digital signal processing.

Fig. 2.
Fig. 2.

Representation of the spectra of the WDM signal with carrier frequencies from f1 to fN (continuous curves) and the sampling pulse (dashed curve). N: the number of WDM channels. ∆f: frequency interval. FSR: free spectral range and the relation is FSR=N·∆f· ∆fsignal : signal bandwidth per channel.

Fig. 3.
Fig. 3.

Experimental setup. The inset shows the spectra of the WDM signals and the sampling pulses. LD: laser diode. IM: LiNbO3 intensity modulation. PPG: Pulse pattern generator. PMFL: passively mode-locked fiber laser. OBF: optical bandpass filter. Pol.: polarizer. PBS: polarization beam splitter. 90°-H: optical 90-degree hybrid. λ/2, λ/4: λ/2 and λ/4 wavelength plate. HM: half mirror. BPD: balanced photodetector. DAQ: data acquisition unit.

Fig. 4.
Fig. 4.

Sampled intensity (a) and relative phase difference (b) of total field of WDM signals. These are obtained by calculating |J1 |2 and arg(J1 )- arg(J2 ).

Fig. 5.
Fig. 5.

Reconstructed intensity waveforms of WDM signals. The left and right panels correspond to the signals with wavelengths of λ 1 and λ 2, respectively. (a) and (b) are x-polarization |a1x (0)|2 and |a2x (0)|2, respectively. (c) and (d) are y-polarization |a1y (0)|2 and |a2y (0)|2, respectively. (e) and (f) are the total intensity waveforms |E1 |2 and |E2 |2, summation of x- and y-components, respectively. The insets in (e) and (f) show the intensity waveform measured independently before multiplexing.

Fig. 6.
Fig. 6.

Relative phase difference between the reconstructed 2-channel WDM signals.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

[ E ix E iy ] = [ a ix ( t ) a iy ( t ) e j δ i ] exp j 2 π f i t
b ( t ) = i = 1 N a ix ( t ) exp j 2 π f i t
E S ( t ) = δ ( t ) exp j ( 2 π f s t + ϕ s ) ,
J N = i = 1 N a ix [ ( N 1 ) T ] exp { j [ 2 π ( f i f s ) · ( N 1 ) T ϕ s ] } .
a ix ( 0 ) = m = 1 N J m exp { j [ 2 π ( f i f s ) · ( N 1 ) T ϕ s ] } .
E i 2 = E ix 2 + E iy 2 = [ a ix ( 0 ) ] 2 + [ a iy ( 0 ) ] 2 .

Metrics