Abstract

Chiral media interact preferentially with either left- or right-circularly polarized electromagnetic waves, leading to effects including circular dichroism, optical rotation and circular preferential scattering. In this experiment, we revisit Lindman’s famous 1920 experiment linking artificial chiral materials to optical activity and we record the first time-domain measurements of a single-cycle THz pulse transmitted through randomly oriented metallic helices. Time-resolved measurements of co-and cross-polarized components of the transmitted electric field allow the electric field trajectory to be reconstructed and time dynamics of the two circular components to be investigated. For the first time, we show that time dynamics reveal two distinct effects that are separated in time: local preferential circular scattering and collective coupling. These findings are important on furthering our understanding on the analogy between optical activity arising from light interaction with large chiral molecules and that from macroscopic artificial chiral media.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. F. Arago, "Mémoire sur une modification remarquable qu`éprouvent les rayons lumineux dans leur passage a` travers certains corps diaphanes, et sue quelques autres nouveaux phénoménes d`optique," Mém. Sci. Math. Phys. Inst. 1, 93-134 (1811).
  2. J. B. Biot, "Mémoire sur un nouveau genre d`oscillation que les molécules de la lumiére éprouvent en traversant certains cristaux" Mém. Sci. Math. Phys. Inst. 1, 1-372 (1812).
  3. L. Pasteur, "Sur les relations qui peuvent exister entre la forme cristalline, la composition chimique et le sens de la polarisation rotatoire," Ann. Chimie et Physique. 24, 442-459 (1848).
  4. J. C. Bose, "On the rotation of plane of polarisation of electric waves by a twisted structure," Proc. R Soc. Lond. A 63, 146-152, (1898).
    [CrossRef]
  5. K. F. Lindman, "Über eine durch ein isotropes System von spiralförmigen Resonatoren erzeugte Rotationspolarization der elektromagnetische Wellen," Annalen der Physik 63, 621-644 (1920).
    [CrossRef]
  6. M. H. Winkler, "An experimental investigation of some models for optical activity," J. Phys. Chem. 60, 1656-1659 (1956).
    [CrossRef]
  7. I. Tinoco Jr. and M. P. Freeman, "The optical activity of oriented copper helices. I. Experimental," J. Phys. Chem. 61, 1196-1200 (1957).
    [CrossRef]
  8. S. F. Mason, "Optical Activity and Molecular Dissymmetry" Contemp. Phys. 9, 239-256, (1968).
    [CrossRef]
  9. L. D. Barron, Molecular Light Scattering and Optical Activity (Cambridge Univ. Press, Cambridge 1982).
  10. J. H. Brewster, "Helix models for optical activity" in Topics in Stereochemistry, vol. 2, 1-72, N. L. Allinger and E. L. Eliel, ed. (John Wiley & Sons, Inc., 1967).
  11. F. Dufey, "Optical activity in the Drude helix" Chem. Phys. 330, 326-332 (2006).
    [CrossRef]
  12. S. F. Mason, Molecular Optical Activity and the Chiral Discriminations (Cambridge University Press, Cambridge, 1982).
  13. I. Tinoco Jr. and A. L. Williams Jr., "Differential absorption and differential scattering of circularly polarized light: applications to biological molecules," Annu. Rev. Phys. Chem. 35, 329-355 (1984).
    [CrossRef]
  14. I. Tinoco Jr., C. C. Bustamante, and M. F. Maestre, "The optical activity of nucleic acids and their aggregates," Annu. Rev. Biophys. Bioeng. 9, 107-141 (1980).
    [CrossRef] [PubMed]
  15. G. D. Fasman, Circular dichroism and the conformational analysis of biomolecules (Oxford University Press, Oxford, 1997).
  16. I. TinocoJr. and A. L. WilliamsJr., "Differential absorption and differential scattering of circularly polarized light," Annu. Rev. Phys. Chem. 35, 329-355 (1984).
    [CrossRef]
  17. K. J. Chau, M. C. Quong, and A. Y. Elezzbi, "Terahertz time-domain investigation of axial optical activity from a sub-wavelength helix," Opt. Express 15, 3557-3567 (2007).
    [CrossRef] [PubMed]
  18. M. H. Umari, V. V. Varadan, and V. K. Vardan, "Rotation and dichroism associated with microwave propagation in chiral composite samples," Radio Sci. 26, 1327-1334 (1991).
    [CrossRef]
  19. R. Ro, V. V. Varadan, and V. K. Vardan, "Electromagnetic activity and absorption in microwave chiral composites," IEEE Proc. H 139, 441-448 (1992).
  20. V. V. Varadan, R. Ro, and V. K. Varadan, "Measurement of the electromagnetic properties of chiral composite materials in the 8-40 GHz range," Radio Sci. 29, 9-22 (1994).
    [CrossRef]
  21. J. H. Cloete, M. Bingle, and D. B. Davidson, "The role of chirality and resonance in synthetic microwave absorbers," Int. J. Electron. Commun. 55, 233-239 (2001).
    [CrossRef]
  22. S. Motojima, Y. Noda, S. Hoshiya, and Y. Hishikawa, "Electromagnetic wave absorption property of carbon microcoils in 12-110 GHz region" J. Appl. Phys. 94, 2325-2330 (2003).
    [CrossRef]
  23. F. Guerin, P. Bannelier, and M. Labeyrie, "Scattering of electromagnetic waves by helices and application of the modelling of chiral composites. I: simple effective-medium theories," J. Phys. D 28, 623-642 (1995).
    [CrossRef]
  24. F. Guerin, P. Bannelier, M. Labeyrie, J.-P. Ganne, and P. Guillon, "Scattering of electromagnetic waves by helices and applications to the modelling of chiral composites. II. Maxwell Garnett treatment," J. Phys. D 28, 643-656 (1995).
    [CrossRef]
  25. F. C. F. Bohren, R. Luebbers, H. S. Langdon, and F. Hunsberger, "Microwave-absorbing chiral composites: is chirality essential or accidental," Appl. Opt. 31, 6403-6407 (1992).
    [CrossRef] [PubMed]
  26. I. V. Lindell, A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-Isotropic Media. (Artech House, Boston 1994).
  27. J. F. Holzman, F. E. Vermeulen, S. E. Irvine, and A. Y. Elezzabi, "Free-space detection of terahertz radiation using crystalline and polycrystalline ZnSe electro-optic sensors," APL.  81, 2294 (2002).
  28. M. Johansson, "The Hilbert transform" Master Thesis, Mathematics, Växjö University (1999).
  29. E. U. Condon, "Theories of optical rotary power" Rev. Mod. Phys. 9, 432-457 (1937)
    [CrossRef]
  30. D. Moore and I. Tinoco Jr., "The circular dichroism of large helices. A free particle on a helix" J. Chem. Phys. 72, 3396-3700 (1980).
    [CrossRef]
  31. I. Tinoco Jr. and R. Woody, "Optical rotation of oriented helices. IV a free electron on a helix," J. Chem. Phys. 40, 160-165 (1964).
    [CrossRef]
  32. K. M. Flood and D. L. Jaggard, "Effective charge densities and current densities in isotropic chiral media," J. Opt. Soc. Am. A 12, 177-183 (1995).
    [CrossRef]
  33. C. Bustamante, M. F. Maestre, and I. Tinoco Jr., "Circular intensity differential scattering of light by helical structures. I. Theory," J. Chem. Phys. 73, 4273-4281 (1980).
    [CrossRef]
  34. C. Bustamante, M. F. Maestre, and I. TinocoJr., "Circular intensity differential scattering of light by helical structures. II. Applications," J. Chem. Phys. 73, 6046-6055 (1980).
    [CrossRef]
  35. C. Bustamante, I. TinocoJr., and M. F. Maestre, "Circular intensity differential scattering of light by helical structures. III. A general polarizability tensor and anomalous scattering," J. Chem. Phys. 74,4839-4850 (1981).
    [CrossRef]
  36. C. Bustamante, I. Tinoco Jr., and M. F. Maestre, "Circular intensity differential scattering of light. IV. Randomly oriented species," J. Chem. Phys. 76, 3440-3446 (1982).
    [CrossRef]
  37. C. Bustamante, I. Tinoco Jr., and M. F. Maestre, "Circular differential scattering can be an important part of the circular dichroism of macromolecules," Proc. Natl. Acad. Sci. 80, 3568-3572 (1983).
    [CrossRef] [PubMed]
  38. M. F. Maestre, C. Bustamante, T. L. Hayes, J. A. Subirana, and I. TinocoJr., " Differential scattering of circularly polarized light by the helical sperm head the octopus Eledone cirrhosa," Nature 298, 773-774 (1982).
    [CrossRef] [PubMed]

2007 (1)

2006 (1)

F. Dufey, "Optical activity in the Drude helix" Chem. Phys. 330, 326-332 (2006).
[CrossRef]

2003 (1)

S. Motojima, Y. Noda, S. Hoshiya, and Y. Hishikawa, "Electromagnetic wave absorption property of carbon microcoils in 12-110 GHz region" J. Appl. Phys. 94, 2325-2330 (2003).
[CrossRef]

2002 (1)

J. F. Holzman, F. E. Vermeulen, S. E. Irvine, and A. Y. Elezzabi, "Free-space detection of terahertz radiation using crystalline and polycrystalline ZnSe electro-optic sensors," APL.  81, 2294 (2002).

2001 (1)

J. H. Cloete, M. Bingle, and D. B. Davidson, "The role of chirality and resonance in synthetic microwave absorbers," Int. J. Electron. Commun. 55, 233-239 (2001).
[CrossRef]

1995 (3)

F. Guerin, P. Bannelier, and M. Labeyrie, "Scattering of electromagnetic waves by helices and application of the modelling of chiral composites. I: simple effective-medium theories," J. Phys. D 28, 623-642 (1995).
[CrossRef]

F. Guerin, P. Bannelier, M. Labeyrie, J.-P. Ganne, and P. Guillon, "Scattering of electromagnetic waves by helices and applications to the modelling of chiral composites. II. Maxwell Garnett treatment," J. Phys. D 28, 643-656 (1995).
[CrossRef]

K. M. Flood and D. L. Jaggard, "Effective charge densities and current densities in isotropic chiral media," J. Opt. Soc. Am. A 12, 177-183 (1995).
[CrossRef]

1994 (1)

V. V. Varadan, R. Ro, and V. K. Varadan, "Measurement of the electromagnetic properties of chiral composite materials in the 8-40 GHz range," Radio Sci. 29, 9-22 (1994).
[CrossRef]

1992 (2)

R. Ro, V. V. Varadan, and V. K. Vardan, "Electromagnetic activity and absorption in microwave chiral composites," IEEE Proc. H 139, 441-448 (1992).

F. C. F. Bohren, R. Luebbers, H. S. Langdon, and F. Hunsberger, "Microwave-absorbing chiral composites: is chirality essential or accidental," Appl. Opt. 31, 6403-6407 (1992).
[CrossRef] [PubMed]

1991 (1)

M. H. Umari, V. V. Varadan, and V. K. Vardan, "Rotation and dichroism associated with microwave propagation in chiral composite samples," Radio Sci. 26, 1327-1334 (1991).
[CrossRef]

1984 (2)

I. Tinoco Jr. and A. L. Williams Jr., "Differential absorption and differential scattering of circularly polarized light: applications to biological molecules," Annu. Rev. Phys. Chem. 35, 329-355 (1984).
[CrossRef]

I. TinocoJr. and A. L. WilliamsJr., "Differential absorption and differential scattering of circularly polarized light," Annu. Rev. Phys. Chem. 35, 329-355 (1984).
[CrossRef]

1983 (1)

C. Bustamante, I. Tinoco Jr., and M. F. Maestre, "Circular differential scattering can be an important part of the circular dichroism of macromolecules," Proc. Natl. Acad. Sci. 80, 3568-3572 (1983).
[CrossRef] [PubMed]

1982 (2)

M. F. Maestre, C. Bustamante, T. L. Hayes, J. A. Subirana, and I. TinocoJr., " Differential scattering of circularly polarized light by the helical sperm head the octopus Eledone cirrhosa," Nature 298, 773-774 (1982).
[CrossRef] [PubMed]

C. Bustamante, I. Tinoco Jr., and M. F. Maestre, "Circular intensity differential scattering of light. IV. Randomly oriented species," J. Chem. Phys. 76, 3440-3446 (1982).
[CrossRef]

1981 (1)

C. Bustamante, I. TinocoJr., and M. F. Maestre, "Circular intensity differential scattering of light by helical structures. III. A general polarizability tensor and anomalous scattering," J. Chem. Phys. 74,4839-4850 (1981).
[CrossRef]

1980 (4)

C. Bustamante, M. F. Maestre, and I. Tinoco Jr., "Circular intensity differential scattering of light by helical structures. I. Theory," J. Chem. Phys. 73, 4273-4281 (1980).
[CrossRef]

C. Bustamante, M. F. Maestre, and I. TinocoJr., "Circular intensity differential scattering of light by helical structures. II. Applications," J. Chem. Phys. 73, 6046-6055 (1980).
[CrossRef]

D. Moore and I. Tinoco Jr., "The circular dichroism of large helices. A free particle on a helix" J. Chem. Phys. 72, 3396-3700 (1980).
[CrossRef]

I. Tinoco Jr., C. C. Bustamante, and M. F. Maestre, "The optical activity of nucleic acids and their aggregates," Annu. Rev. Biophys. Bioeng. 9, 107-141 (1980).
[CrossRef] [PubMed]

1968 (1)

S. F. Mason, "Optical Activity and Molecular Dissymmetry" Contemp. Phys. 9, 239-256, (1968).
[CrossRef]

1964 (1)

I. Tinoco Jr. and R. Woody, "Optical rotation of oriented helices. IV a free electron on a helix," J. Chem. Phys. 40, 160-165 (1964).
[CrossRef]

1957 (1)

I. Tinoco Jr. and M. P. Freeman, "The optical activity of oriented copper helices. I. Experimental," J. Phys. Chem. 61, 1196-1200 (1957).
[CrossRef]

1956 (1)

M. H. Winkler, "An experimental investigation of some models for optical activity," J. Phys. Chem. 60, 1656-1659 (1956).
[CrossRef]

1937 (1)

E. U. Condon, "Theories of optical rotary power" Rev. Mod. Phys. 9, 432-457 (1937)
[CrossRef]

1920 (1)

K. F. Lindman, "Über eine durch ein isotropes System von spiralförmigen Resonatoren erzeugte Rotationspolarization der elektromagnetische Wellen," Annalen der Physik 63, 621-644 (1920).
[CrossRef]

1898 (1)

J. C. Bose, "On the rotation of plane of polarisation of electric waves by a twisted structure," Proc. R Soc. Lond. A 63, 146-152, (1898).
[CrossRef]

1848 (1)

L. Pasteur, "Sur les relations qui peuvent exister entre la forme cristalline, la composition chimique et le sens de la polarisation rotatoire," Ann. Chimie et Physique. 24, 442-459 (1848).

1812 (1)

J. B. Biot, "Mémoire sur un nouveau genre d`oscillation que les molécules de la lumiére éprouvent en traversant certains cristaux" Mém. Sci. Math. Phys. Inst. 1, 1-372 (1812).

1811 (1)

D. F. Arago, "Mémoire sur une modification remarquable qu`éprouvent les rayons lumineux dans leur passage a` travers certains corps diaphanes, et sue quelques autres nouveaux phénoménes d`optique," Mém. Sci. Math. Phys. Inst. 1, 93-134 (1811).

Arago, D. F.

D. F. Arago, "Mémoire sur une modification remarquable qu`éprouvent les rayons lumineux dans leur passage a` travers certains corps diaphanes, et sue quelques autres nouveaux phénoménes d`optique," Mém. Sci. Math. Phys. Inst. 1, 93-134 (1811).

Bannelier, P.

F. Guerin, P. Bannelier, and M. Labeyrie, "Scattering of electromagnetic waves by helices and application of the modelling of chiral composites. I: simple effective-medium theories," J. Phys. D 28, 623-642 (1995).
[CrossRef]

F. Guerin, P. Bannelier, M. Labeyrie, J.-P. Ganne, and P. Guillon, "Scattering of electromagnetic waves by helices and applications to the modelling of chiral composites. II. Maxwell Garnett treatment," J. Phys. D 28, 643-656 (1995).
[CrossRef]

Bingle, M.

J. H. Cloete, M. Bingle, and D. B. Davidson, "The role of chirality and resonance in synthetic microwave absorbers," Int. J. Electron. Commun. 55, 233-239 (2001).
[CrossRef]

Biot, J. B.

J. B. Biot, "Mémoire sur un nouveau genre d`oscillation que les molécules de la lumiére éprouvent en traversant certains cristaux" Mém. Sci. Math. Phys. Inst. 1, 1-372 (1812).

Bohren, F. C. F.

Bose, J. C.

J. C. Bose, "On the rotation of plane of polarisation of electric waves by a twisted structure," Proc. R Soc. Lond. A 63, 146-152, (1898).
[CrossRef]

Bustamante, C.

C. Bustamante, I. Tinoco Jr., and M. F. Maestre, "Circular differential scattering can be an important part of the circular dichroism of macromolecules," Proc. Natl. Acad. Sci. 80, 3568-3572 (1983).
[CrossRef] [PubMed]

C. Bustamante, I. Tinoco Jr., and M. F. Maestre, "Circular intensity differential scattering of light. IV. Randomly oriented species," J. Chem. Phys. 76, 3440-3446 (1982).
[CrossRef]

M. F. Maestre, C. Bustamante, T. L. Hayes, J. A. Subirana, and I. TinocoJr., " Differential scattering of circularly polarized light by the helical sperm head the octopus Eledone cirrhosa," Nature 298, 773-774 (1982).
[CrossRef] [PubMed]

C. Bustamante, I. TinocoJr., and M. F. Maestre, "Circular intensity differential scattering of light by helical structures. III. A general polarizability tensor and anomalous scattering," J. Chem. Phys. 74,4839-4850 (1981).
[CrossRef]

C. Bustamante, M. F. Maestre, and I. Tinoco Jr., "Circular intensity differential scattering of light by helical structures. I. Theory," J. Chem. Phys. 73, 4273-4281 (1980).
[CrossRef]

C. Bustamante, M. F. Maestre, and I. TinocoJr., "Circular intensity differential scattering of light by helical structures. II. Applications," J. Chem. Phys. 73, 6046-6055 (1980).
[CrossRef]

Bustamante, C. C.

I. Tinoco Jr., C. C. Bustamante, and M. F. Maestre, "The optical activity of nucleic acids and their aggregates," Annu. Rev. Biophys. Bioeng. 9, 107-141 (1980).
[CrossRef] [PubMed]

Chau, K. J.

Cloete, J. H.

J. H. Cloete, M. Bingle, and D. B. Davidson, "The role of chirality and resonance in synthetic microwave absorbers," Int. J. Electron. Commun. 55, 233-239 (2001).
[CrossRef]

Condon, E. U.

E. U. Condon, "Theories of optical rotary power" Rev. Mod. Phys. 9, 432-457 (1937)
[CrossRef]

Davidson, D. B.

J. H. Cloete, M. Bingle, and D. B. Davidson, "The role of chirality and resonance in synthetic microwave absorbers," Int. J. Electron. Commun. 55, 233-239 (2001).
[CrossRef]

Dufey, F.

F. Dufey, "Optical activity in the Drude helix" Chem. Phys. 330, 326-332 (2006).
[CrossRef]

Elezzabi, A. Y.

J. F. Holzman, F. E. Vermeulen, S. E. Irvine, and A. Y. Elezzabi, "Free-space detection of terahertz radiation using crystalline and polycrystalline ZnSe electro-optic sensors," APL.  81, 2294 (2002).

Elezzbi, A. Y.

Flood, K. M.

Freeman, M. P.

I. Tinoco Jr. and M. P. Freeman, "The optical activity of oriented copper helices. I. Experimental," J. Phys. Chem. 61, 1196-1200 (1957).
[CrossRef]

Ganne, J.-P.

F. Guerin, P. Bannelier, M. Labeyrie, J.-P. Ganne, and P. Guillon, "Scattering of electromagnetic waves by helices and applications to the modelling of chiral composites. II. Maxwell Garnett treatment," J. Phys. D 28, 643-656 (1995).
[CrossRef]

Guerin, F.

F. Guerin, P. Bannelier, and M. Labeyrie, "Scattering of electromagnetic waves by helices and application of the modelling of chiral composites. I: simple effective-medium theories," J. Phys. D 28, 623-642 (1995).
[CrossRef]

F. Guerin, P. Bannelier, M. Labeyrie, J.-P. Ganne, and P. Guillon, "Scattering of electromagnetic waves by helices and applications to the modelling of chiral composites. II. Maxwell Garnett treatment," J. Phys. D 28, 643-656 (1995).
[CrossRef]

Guillon, P.

F. Guerin, P. Bannelier, M. Labeyrie, J.-P. Ganne, and P. Guillon, "Scattering of electromagnetic waves by helices and applications to the modelling of chiral composites. II. Maxwell Garnett treatment," J. Phys. D 28, 643-656 (1995).
[CrossRef]

Hayes, T. L.

M. F. Maestre, C. Bustamante, T. L. Hayes, J. A. Subirana, and I. TinocoJr., " Differential scattering of circularly polarized light by the helical sperm head the octopus Eledone cirrhosa," Nature 298, 773-774 (1982).
[CrossRef] [PubMed]

Hishikawa, Y.

S. Motojima, Y. Noda, S. Hoshiya, and Y. Hishikawa, "Electromagnetic wave absorption property of carbon microcoils in 12-110 GHz region" J. Appl. Phys. 94, 2325-2330 (2003).
[CrossRef]

Holzman, J. F.

J. F. Holzman, F. E. Vermeulen, S. E. Irvine, and A. Y. Elezzabi, "Free-space detection of terahertz radiation using crystalline and polycrystalline ZnSe electro-optic sensors," APL.  81, 2294 (2002).

Hoshiya, S.

S. Motojima, Y. Noda, S. Hoshiya, and Y. Hishikawa, "Electromagnetic wave absorption property of carbon microcoils in 12-110 GHz region" J. Appl. Phys. 94, 2325-2330 (2003).
[CrossRef]

Hunsberger, F.

Irvine, S. E.

J. F. Holzman, F. E. Vermeulen, S. E. Irvine, and A. Y. Elezzabi, "Free-space detection of terahertz radiation using crystalline and polycrystalline ZnSe electro-optic sensors," APL.  81, 2294 (2002).

Jaggard, D. L.

Labeyrie, M.

F. Guerin, P. Bannelier, M. Labeyrie, J.-P. Ganne, and P. Guillon, "Scattering of electromagnetic waves by helices and applications to the modelling of chiral composites. II. Maxwell Garnett treatment," J. Phys. D 28, 643-656 (1995).
[CrossRef]

F. Guerin, P. Bannelier, and M. Labeyrie, "Scattering of electromagnetic waves by helices and application of the modelling of chiral composites. I: simple effective-medium theories," J. Phys. D 28, 623-642 (1995).
[CrossRef]

Langdon, H. S.

Lindman, K. F.

K. F. Lindman, "Über eine durch ein isotropes System von spiralförmigen Resonatoren erzeugte Rotationspolarization der elektromagnetische Wellen," Annalen der Physik 63, 621-644 (1920).
[CrossRef]

Luebbers, R.

Maestre, M. F.

C. Bustamante, I. Tinoco Jr., and M. F. Maestre, "Circular differential scattering can be an important part of the circular dichroism of macromolecules," Proc. Natl. Acad. Sci. 80, 3568-3572 (1983).
[CrossRef] [PubMed]

M. F. Maestre, C. Bustamante, T. L. Hayes, J. A. Subirana, and I. TinocoJr., " Differential scattering of circularly polarized light by the helical sperm head the octopus Eledone cirrhosa," Nature 298, 773-774 (1982).
[CrossRef] [PubMed]

C. Bustamante, I. Tinoco Jr., and M. F. Maestre, "Circular intensity differential scattering of light. IV. Randomly oriented species," J. Chem. Phys. 76, 3440-3446 (1982).
[CrossRef]

C. Bustamante, I. TinocoJr., and M. F. Maestre, "Circular intensity differential scattering of light by helical structures. III. A general polarizability tensor and anomalous scattering," J. Chem. Phys. 74,4839-4850 (1981).
[CrossRef]

C. Bustamante, M. F. Maestre, and I. TinocoJr., "Circular intensity differential scattering of light by helical structures. II. Applications," J. Chem. Phys. 73, 6046-6055 (1980).
[CrossRef]

C. Bustamante, M. F. Maestre, and I. Tinoco Jr., "Circular intensity differential scattering of light by helical structures. I. Theory," J. Chem. Phys. 73, 4273-4281 (1980).
[CrossRef]

I. Tinoco Jr., C. C. Bustamante, and M. F. Maestre, "The optical activity of nucleic acids and their aggregates," Annu. Rev. Biophys. Bioeng. 9, 107-141 (1980).
[CrossRef] [PubMed]

Mason, S. F.

S. F. Mason, "Optical Activity and Molecular Dissymmetry" Contemp. Phys. 9, 239-256, (1968).
[CrossRef]

Moore, D.

D. Moore and I. Tinoco Jr., "The circular dichroism of large helices. A free particle on a helix" J. Chem. Phys. 72, 3396-3700 (1980).
[CrossRef]

Motojima, S.

S. Motojima, Y. Noda, S. Hoshiya, and Y. Hishikawa, "Electromagnetic wave absorption property of carbon microcoils in 12-110 GHz region" J. Appl. Phys. 94, 2325-2330 (2003).
[CrossRef]

Noda, Y.

S. Motojima, Y. Noda, S. Hoshiya, and Y. Hishikawa, "Electromagnetic wave absorption property of carbon microcoils in 12-110 GHz region" J. Appl. Phys. 94, 2325-2330 (2003).
[CrossRef]

Pasteur, L.

L. Pasteur, "Sur les relations qui peuvent exister entre la forme cristalline, la composition chimique et le sens de la polarisation rotatoire," Ann. Chimie et Physique. 24, 442-459 (1848).

Quong, M. C.

Ro, R.

V. V. Varadan, R. Ro, and V. K. Varadan, "Measurement of the electromagnetic properties of chiral composite materials in the 8-40 GHz range," Radio Sci. 29, 9-22 (1994).
[CrossRef]

R. Ro, V. V. Varadan, and V. K. Vardan, "Electromagnetic activity and absorption in microwave chiral composites," IEEE Proc. H 139, 441-448 (1992).

Subirana, J. A.

M. F. Maestre, C. Bustamante, T. L. Hayes, J. A. Subirana, and I. TinocoJr., " Differential scattering of circularly polarized light by the helical sperm head the octopus Eledone cirrhosa," Nature 298, 773-774 (1982).
[CrossRef] [PubMed]

Tinoco, I.

I. Tinoco Jr. and A. L. Williams Jr., "Differential absorption and differential scattering of circularly polarized light: applications to biological molecules," Annu. Rev. Phys. Chem. 35, 329-355 (1984).
[CrossRef]

I. TinocoJr. and A. L. WilliamsJr., "Differential absorption and differential scattering of circularly polarized light," Annu. Rev. Phys. Chem. 35, 329-355 (1984).
[CrossRef]

C. Bustamante, I. Tinoco Jr., and M. F. Maestre, "Circular differential scattering can be an important part of the circular dichroism of macromolecules," Proc. Natl. Acad. Sci. 80, 3568-3572 (1983).
[CrossRef] [PubMed]

C. Bustamante, I. Tinoco Jr., and M. F. Maestre, "Circular intensity differential scattering of light. IV. Randomly oriented species," J. Chem. Phys. 76, 3440-3446 (1982).
[CrossRef]

M. F. Maestre, C. Bustamante, T. L. Hayes, J. A. Subirana, and I. TinocoJr., " Differential scattering of circularly polarized light by the helical sperm head the octopus Eledone cirrhosa," Nature 298, 773-774 (1982).
[CrossRef] [PubMed]

C. Bustamante, I. TinocoJr., and M. F. Maestre, "Circular intensity differential scattering of light by helical structures. III. A general polarizability tensor and anomalous scattering," J. Chem. Phys. 74,4839-4850 (1981).
[CrossRef]

C. Bustamante, M. F. Maestre, and I. Tinoco Jr., "Circular intensity differential scattering of light by helical structures. I. Theory," J. Chem. Phys. 73, 4273-4281 (1980).
[CrossRef]

C. Bustamante, M. F. Maestre, and I. TinocoJr., "Circular intensity differential scattering of light by helical structures. II. Applications," J. Chem. Phys. 73, 6046-6055 (1980).
[CrossRef]

D. Moore and I. Tinoco Jr., "The circular dichroism of large helices. A free particle on a helix" J. Chem. Phys. 72, 3396-3700 (1980).
[CrossRef]

I. Tinoco Jr., C. C. Bustamante, and M. F. Maestre, "The optical activity of nucleic acids and their aggregates," Annu. Rev. Biophys. Bioeng. 9, 107-141 (1980).
[CrossRef] [PubMed]

I. Tinoco Jr. and R. Woody, "Optical rotation of oriented helices. IV a free electron on a helix," J. Chem. Phys. 40, 160-165 (1964).
[CrossRef]

I. Tinoco Jr. and M. P. Freeman, "The optical activity of oriented copper helices. I. Experimental," J. Phys. Chem. 61, 1196-1200 (1957).
[CrossRef]

Umari, M. H.

M. H. Umari, V. V. Varadan, and V. K. Vardan, "Rotation and dichroism associated with microwave propagation in chiral composite samples," Radio Sci. 26, 1327-1334 (1991).
[CrossRef]

Varadan, V. K.

V. V. Varadan, R. Ro, and V. K. Varadan, "Measurement of the electromagnetic properties of chiral composite materials in the 8-40 GHz range," Radio Sci. 29, 9-22 (1994).
[CrossRef]

Varadan, V. V.

V. V. Varadan, R. Ro, and V. K. Varadan, "Measurement of the electromagnetic properties of chiral composite materials in the 8-40 GHz range," Radio Sci. 29, 9-22 (1994).
[CrossRef]

R. Ro, V. V. Varadan, and V. K. Vardan, "Electromagnetic activity and absorption in microwave chiral composites," IEEE Proc. H 139, 441-448 (1992).

M. H. Umari, V. V. Varadan, and V. K. Vardan, "Rotation and dichroism associated with microwave propagation in chiral composite samples," Radio Sci. 26, 1327-1334 (1991).
[CrossRef]

Vardan, V. K.

R. Ro, V. V. Varadan, and V. K. Vardan, "Electromagnetic activity and absorption in microwave chiral composites," IEEE Proc. H 139, 441-448 (1992).

M. H. Umari, V. V. Varadan, and V. K. Vardan, "Rotation and dichroism associated with microwave propagation in chiral composite samples," Radio Sci. 26, 1327-1334 (1991).
[CrossRef]

Vermeulen, F. E.

J. F. Holzman, F. E. Vermeulen, S. E. Irvine, and A. Y. Elezzabi, "Free-space detection of terahertz radiation using crystalline and polycrystalline ZnSe electro-optic sensors," APL.  81, 2294 (2002).

Williams, A. L.

I. TinocoJr. and A. L. WilliamsJr., "Differential absorption and differential scattering of circularly polarized light," Annu. Rev. Phys. Chem. 35, 329-355 (1984).
[CrossRef]

I. Tinoco Jr. and A. L. Williams Jr., "Differential absorption and differential scattering of circularly polarized light: applications to biological molecules," Annu. Rev. Phys. Chem. 35, 329-355 (1984).
[CrossRef]

Winkler, M. H.

M. H. Winkler, "An experimental investigation of some models for optical activity," J. Phys. Chem. 60, 1656-1659 (1956).
[CrossRef]

Woody, R.

I. Tinoco Jr. and R. Woody, "Optical rotation of oriented helices. IV a free electron on a helix," J. Chem. Phys. 40, 160-165 (1964).
[CrossRef]

Ann. Chimie et Physique. (1)

L. Pasteur, "Sur les relations qui peuvent exister entre la forme cristalline, la composition chimique et le sens de la polarisation rotatoire," Ann. Chimie et Physique. 24, 442-459 (1848).

Annalen der Physik (1)

K. F. Lindman, "Über eine durch ein isotropes System von spiralförmigen Resonatoren erzeugte Rotationspolarization der elektromagnetische Wellen," Annalen der Physik 63, 621-644 (1920).
[CrossRef]

Annu. Rev. Biophys. Bioeng. (1)

I. Tinoco Jr., C. C. Bustamante, and M. F. Maestre, "The optical activity of nucleic acids and their aggregates," Annu. Rev. Biophys. Bioeng. 9, 107-141 (1980).
[CrossRef] [PubMed]

Annu. Rev. Phys. Chem. (2)

I. TinocoJr. and A. L. WilliamsJr., "Differential absorption and differential scattering of circularly polarized light," Annu. Rev. Phys. Chem. 35, 329-355 (1984).
[CrossRef]

I. Tinoco Jr. and A. L. Williams Jr., "Differential absorption and differential scattering of circularly polarized light: applications to biological molecules," Annu. Rev. Phys. Chem. 35, 329-355 (1984).
[CrossRef]

APL (1)

J. F. Holzman, F. E. Vermeulen, S. E. Irvine, and A. Y. Elezzabi, "Free-space detection of terahertz radiation using crystalline and polycrystalline ZnSe electro-optic sensors," APL.  81, 2294 (2002).

Appl. Opt. (1)

Chem. Phys. (1)

F. Dufey, "Optical activity in the Drude helix" Chem. Phys. 330, 326-332 (2006).
[CrossRef]

Contemp. Phys. (1)

S. F. Mason, "Optical Activity and Molecular Dissymmetry" Contemp. Phys. 9, 239-256, (1968).
[CrossRef]

IEEE Proc. H (1)

R. Ro, V. V. Varadan, and V. K. Vardan, "Electromagnetic activity and absorption in microwave chiral composites," IEEE Proc. H 139, 441-448 (1992).

Int. J. Electron. Commun. (1)

J. H. Cloete, M. Bingle, and D. B. Davidson, "The role of chirality and resonance in synthetic microwave absorbers," Int. J. Electron. Commun. 55, 233-239 (2001).
[CrossRef]

J. Appl. Phys. (1)

S. Motojima, Y. Noda, S. Hoshiya, and Y. Hishikawa, "Electromagnetic wave absorption property of carbon microcoils in 12-110 GHz region" J. Appl. Phys. 94, 2325-2330 (2003).
[CrossRef]

J. Chem. Phys. (6)

D. Moore and I. Tinoco Jr., "The circular dichroism of large helices. A free particle on a helix" J. Chem. Phys. 72, 3396-3700 (1980).
[CrossRef]

I. Tinoco Jr. and R. Woody, "Optical rotation of oriented helices. IV a free electron on a helix," J. Chem. Phys. 40, 160-165 (1964).
[CrossRef]

C. Bustamante, M. F. Maestre, and I. Tinoco Jr., "Circular intensity differential scattering of light by helical structures. I. Theory," J. Chem. Phys. 73, 4273-4281 (1980).
[CrossRef]

C. Bustamante, M. F. Maestre, and I. TinocoJr., "Circular intensity differential scattering of light by helical structures. II. Applications," J. Chem. Phys. 73, 6046-6055 (1980).
[CrossRef]

C. Bustamante, I. TinocoJr., and M. F. Maestre, "Circular intensity differential scattering of light by helical structures. III. A general polarizability tensor and anomalous scattering," J. Chem. Phys. 74,4839-4850 (1981).
[CrossRef]

C. Bustamante, I. Tinoco Jr., and M. F. Maestre, "Circular intensity differential scattering of light. IV. Randomly oriented species," J. Chem. Phys. 76, 3440-3446 (1982).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Phys. Chem. (2)

M. H. Winkler, "An experimental investigation of some models for optical activity," J. Phys. Chem. 60, 1656-1659 (1956).
[CrossRef]

I. Tinoco Jr. and M. P. Freeman, "The optical activity of oriented copper helices. I. Experimental," J. Phys. Chem. 61, 1196-1200 (1957).
[CrossRef]

J. Phys. D (2)

F. Guerin, P. Bannelier, and M. Labeyrie, "Scattering of electromagnetic waves by helices and application of the modelling of chiral composites. I: simple effective-medium theories," J. Phys. D 28, 623-642 (1995).
[CrossRef]

F. Guerin, P. Bannelier, M. Labeyrie, J.-P. Ganne, and P. Guillon, "Scattering of electromagnetic waves by helices and applications to the modelling of chiral composites. II. Maxwell Garnett treatment," J. Phys. D 28, 643-656 (1995).
[CrossRef]

Mém. Sci. Math. Phys. Inst. (2)

D. F. Arago, "Mémoire sur une modification remarquable qu`éprouvent les rayons lumineux dans leur passage a` travers certains corps diaphanes, et sue quelques autres nouveaux phénoménes d`optique," Mém. Sci. Math. Phys. Inst. 1, 93-134 (1811).

J. B. Biot, "Mémoire sur un nouveau genre d`oscillation que les molécules de la lumiére éprouvent en traversant certains cristaux" Mém. Sci. Math. Phys. Inst. 1, 1-372 (1812).

Nature (1)

M. F. Maestre, C. Bustamante, T. L. Hayes, J. A. Subirana, and I. TinocoJr., " Differential scattering of circularly polarized light by the helical sperm head the octopus Eledone cirrhosa," Nature 298, 773-774 (1982).
[CrossRef] [PubMed]

Opt. Express (1)

Proc. Natl. Acad. Sci. (1)

C. Bustamante, I. Tinoco Jr., and M. F. Maestre, "Circular differential scattering can be an important part of the circular dichroism of macromolecules," Proc. Natl. Acad. Sci. 80, 3568-3572 (1983).
[CrossRef] [PubMed]

Proc. R Soc. Lond. A (1)

J. C. Bose, "On the rotation of plane of polarisation of electric waves by a twisted structure," Proc. R Soc. Lond. A 63, 146-152, (1898).
[CrossRef]

Radio Sci. (2)

M. H. Umari, V. V. Varadan, and V. K. Vardan, "Rotation and dichroism associated with microwave propagation in chiral composite samples," Radio Sci. 26, 1327-1334 (1991).
[CrossRef]

V. V. Varadan, R. Ro, and V. K. Varadan, "Measurement of the electromagnetic properties of chiral composite materials in the 8-40 GHz range," Radio Sci. 29, 9-22 (1994).
[CrossRef]

Rev. Mod. Phys. (1)

E. U. Condon, "Theories of optical rotary power" Rev. Mod. Phys. 9, 432-457 (1937)
[CrossRef]

Other (6)

I. V. Lindell, A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-Isotropic Media. (Artech House, Boston 1994).

M. Johansson, "The Hilbert transform" Master Thesis, Mathematics, Växjö University (1999).

S. F. Mason, Molecular Optical Activity and the Chiral Discriminations (Cambridge University Press, Cambridge, 1982).

G. D. Fasman, Circular dichroism and the conformational analysis of biomolecules (Oxford University Press, Oxford, 1997).

L. D. Barron, Molecular Light Scattering and Optical Activity (Cambridge Univ. Press, Cambridge 1982).

J. H. Brewster, "Helix models for optical activity" in Topics in Stereochemistry, vol. 2, 1-72, N. L. Allinger and E. L. Eliel, ed. (John Wiley & Sons, Inc., 1967).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of the THz time-domain spectroscopy setup (WP: Wollaston prism, QWP: quarter wave-plate). To access the cross-polarization states (parallel and perpendicular) of the THz electric field, the <111>-ZnSe electro-optic crystal is reoriented by 90° depending on which component is to be measured. Note that the photograph of the helices does not depict the random nature of the ensemble. The helices are piled-up for illustrative purposes only.

Fig. 2.
Fig. 2.

(a) Time-resolved parallel E (t) (black) and perpendicular E (t) (green)electric field pulse waveforms averaged over nine positions. (b)-(j) Time-resolved right circular Er (t) (blue) and left circular El (t) (red) electric field pulse waveforms transmitted through the random ensemble of right-handed metallic helices. Each of the panels represents a sampling of a position in the chiral medium. (k) Time-resolved right circular Er (t) (blue) and left circular El (t) (red) electric field pulse waveforms averaged over the nine positions.

Fig. 3.
Fig. 3.

The time-dependent phase difference between the LCP and RCP electric field pulse components transmitted through a 2mm thick random ensemble of right-handed metallic helices.

Fig. 4.
Fig. 4.

Time-dependent trajectory of the tip of the electric field vector transmitted through a 2mm thick random ensemble of right-handed metallic helices. The locations a,b,c,d, and e denote the trajectory at different times.

Fig. 5.
Fig. 5.

Frequency-time maps of (a) LCP electric field component, (b) RCP electric field component, and (c) RCP-LCP electric field.

Metrics