Abstract

A novel configuration of dielectric multilayer wavelength filters for enabling sharp cut-off characteristics is proposed. By applying perturbations to the multilayer structures such as corrugation or lateral film isolation, deep optical stopbands can be created as a result of the coupling between the obliquely and horizontally propagating light waves. Numerical simulation by FDTD revealed that the proposed structure had approximately two to three times larger decay constants than that of unmodulated flat multilayer.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Born and E. Wolf, "Interference and Interferometers," in Principle of Optics (Oxford, New York, 1980).
  2. H. A. Macleod, "5.2 Multilayer dielectric coatings," in Thin-Film Optical Filters (3rd ed.), (Institute of Physics Publishing, London, 2001).
    [CrossRef]
  3. E. Yablonovitch, "Photonic band-gap structures," J. Opt. Soc. Am. B 10, 283-295 (1993).
    [CrossRef]
  4. T. Kawashima, Y. Sasaki, K. Miura, N. Hashimoto, A. Baba, H. Ohkubo, Y. Ohtera, T. Sato, W. Ishikawa, T. Aoyama, and S. Kawakami, "Development of autocloned photonic crystal devices," IEICE Trans. Electron. E 87-C, 283-290 (2004).
  5. Y. Ohtera, T. Onuki, Y. Inoue, and S. Kawakami, "Multi-channel photonic crystal wavelength filter array for near-infrared wavelengths," J. Lightwave Technol. 25, 499-503 (2007).
    [CrossRef]
  6. Y. Ohtera, K. Miura, and T. Kawashima, "Ge/SiO2 photonic crystal multi-channel wavelength filters for short wave infrared wavelengths," Jpn. J. Appl. Phys. 46, 1511-1515 (2007).
    [CrossRef]
  7. T. Suzuki and P. K. L. Yu, "Tunneling in photonic band structures," J. Opt. Soc. Am. B 12, 804-820 (1995).
    [CrossRef]
  8. S. Boutami, B. Ben Bakir, H. Hattori, X. Letartre, J.-L. Leclercq, P. Rojo-Romeo, M. Garrigues, C. Seassal, and P. Viktorovitch, "Broadband and compact 2-D photonic crystal reflectors with controllable polarization dependence," IEEE Photon. Technol. Lett. 18, 835-837 (2006).
    [CrossRef]
  9. C. T. Chan, Q. L. Yu, and K. M. Ho, "Order-N spectral method for electromagnetic waves," Phys. Rev. B 51, 16635 (1995).
    [CrossRef]
  10. Y. Ohtera, "Calculating the complex photonic band structure by the Finite-Difference Time-Domain based method," Jpn. J.Appl. Phys. 47, 4827-4834 (2008).
    [CrossRef]
  11. K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media," IEEE Trans. Antennas Propagat. AP-14, 302-307 (1966).
    [CrossRef]
  12. P. Yeh and A. Yariv, "6. Electromagnetic propagation in periodic media," in Optical Waves in Crystals (John Wiley and Sons, NY, 1984).
  13. Y. Ohtera and T. Kawashima, "Extremely low optical transmittance in the stopbands of photonic crystals," Photonics and Nanostructures - Fundamentals and Applications (2009),?doi:10.1016/j.photonics.2008.12.003 (to be published).
  14. H. Ohkubo, Y. Ohtera, and S. Kawakami, "Transmission wavelength shift of +36nm observed with Ta2O5/SiO2 multi-channel wavelength filters consisting of three-dimensional photonic crystals," IEEE Photon. Technol. Lett. 16, 1322-1324 (2004).
    [CrossRef]
  15. S. Kawakami, T. Sato, K. Miura, Y. Ohtera, T. Kawashima, and H. Ohkubo, "3D Photonic Crystal Heterostructures: Fabrication and In-Line Resonator," IEEE Photon. Technol. Lett. 15, 816-818 (2003).
    [CrossRef]
  16. S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, "Large omnidirectional band gaps in metallodielectric photonic crystals," Phys. Rev. B 54, 11245-11251 (1996).
    [CrossRef]
  17. S. -Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurts, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
    [CrossRef]
  18. J. G. Fleming and S. -Y. Lin, "Three-dimensional photonic crystal with a stop band from 1.35 to 1.95 ?m," Opt. Lett. 24, 49-51 (1999).
    [CrossRef]

2008 (1)

Y. Ohtera, "Calculating the complex photonic band structure by the Finite-Difference Time-Domain based method," Jpn. J.Appl. Phys. 47, 4827-4834 (2008).
[CrossRef]

2007 (2)

Y. Ohtera, K. Miura, and T. Kawashima, "Ge/SiO2 photonic crystal multi-channel wavelength filters for short wave infrared wavelengths," Jpn. J. Appl. Phys. 46, 1511-1515 (2007).
[CrossRef]

Y. Ohtera, T. Onuki, Y. Inoue, and S. Kawakami, "Multi-channel photonic crystal wavelength filter array for near-infrared wavelengths," J. Lightwave Technol. 25, 499-503 (2007).
[CrossRef]

2006 (1)

S. Boutami, B. Ben Bakir, H. Hattori, X. Letartre, J.-L. Leclercq, P. Rojo-Romeo, M. Garrigues, C. Seassal, and P. Viktorovitch, "Broadband and compact 2-D photonic crystal reflectors with controllable polarization dependence," IEEE Photon. Technol. Lett. 18, 835-837 (2006).
[CrossRef]

2004 (2)

H. Ohkubo, Y. Ohtera, and S. Kawakami, "Transmission wavelength shift of +36nm observed with Ta2O5/SiO2 multi-channel wavelength filters consisting of three-dimensional photonic crystals," IEEE Photon. Technol. Lett. 16, 1322-1324 (2004).
[CrossRef]

T. Kawashima, Y. Sasaki, K. Miura, N. Hashimoto, A. Baba, H. Ohkubo, Y. Ohtera, T. Sato, W. Ishikawa, T. Aoyama, and S. Kawakami, "Development of autocloned photonic crystal devices," IEICE Trans. Electron. E 87-C, 283-290 (2004).

2003 (1)

S. Kawakami, T. Sato, K. Miura, Y. Ohtera, T. Kawashima, and H. Ohkubo, "3D Photonic Crystal Heterostructures: Fabrication and In-Line Resonator," IEEE Photon. Technol. Lett. 15, 816-818 (2003).
[CrossRef]

1999 (1)

1998 (1)

S. -Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurts, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
[CrossRef]

1996 (1)

S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, "Large omnidirectional band gaps in metallodielectric photonic crystals," Phys. Rev. B 54, 11245-11251 (1996).
[CrossRef]

1995 (2)

C. T. Chan, Q. L. Yu, and K. M. Ho, "Order-N spectral method for electromagnetic waves," Phys. Rev. B 51, 16635 (1995).
[CrossRef]

T. Suzuki and P. K. L. Yu, "Tunneling in photonic band structures," J. Opt. Soc. Am. B 12, 804-820 (1995).
[CrossRef]

1993 (1)

1966 (1)

K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media," IEEE Trans. Antennas Propagat. AP-14, 302-307 (1966).
[CrossRef]

Aoyama, T.

T. Kawashima, Y. Sasaki, K. Miura, N. Hashimoto, A. Baba, H. Ohkubo, Y. Ohtera, T. Sato, W. Ishikawa, T. Aoyama, and S. Kawakami, "Development of autocloned photonic crystal devices," IEICE Trans. Electron. E 87-C, 283-290 (2004).

Baba, A.

T. Kawashima, Y. Sasaki, K. Miura, N. Hashimoto, A. Baba, H. Ohkubo, Y. Ohtera, T. Sato, W. Ishikawa, T. Aoyama, and S. Kawakami, "Development of autocloned photonic crystal devices," IEICE Trans. Electron. E 87-C, 283-290 (2004).

Ben Bakir, B.

S. Boutami, B. Ben Bakir, H. Hattori, X. Letartre, J.-L. Leclercq, P. Rojo-Romeo, M. Garrigues, C. Seassal, and P. Viktorovitch, "Broadband and compact 2-D photonic crystal reflectors with controllable polarization dependence," IEEE Photon. Technol. Lett. 18, 835-837 (2006).
[CrossRef]

Biswas, R.

S. -Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurts, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
[CrossRef]

Boutami, S.

S. Boutami, B. Ben Bakir, H. Hattori, X. Letartre, J.-L. Leclercq, P. Rojo-Romeo, M. Garrigues, C. Seassal, and P. Viktorovitch, "Broadband and compact 2-D photonic crystal reflectors with controllable polarization dependence," IEEE Photon. Technol. Lett. 18, 835-837 (2006).
[CrossRef]

Bur, J.

S. -Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurts, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
[CrossRef]

Chan, C. T.

C. T. Chan, Q. L. Yu, and K. M. Ho, "Order-N spectral method for electromagnetic waves," Phys. Rev. B 51, 16635 (1995).
[CrossRef]

Fan, S.

S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, "Large omnidirectional band gaps in metallodielectric photonic crystals," Phys. Rev. B 54, 11245-11251 (1996).
[CrossRef]

Fleming, J. G.

J. G. Fleming and S. -Y. Lin, "Three-dimensional photonic crystal with a stop band from 1.35 to 1.95 ?m," Opt. Lett. 24, 49-51 (1999).
[CrossRef]

S. -Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurts, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
[CrossRef]

Garrigues, M.

S. Boutami, B. Ben Bakir, H. Hattori, X. Letartre, J.-L. Leclercq, P. Rojo-Romeo, M. Garrigues, C. Seassal, and P. Viktorovitch, "Broadband and compact 2-D photonic crystal reflectors with controllable polarization dependence," IEEE Photon. Technol. Lett. 18, 835-837 (2006).
[CrossRef]

Hashimoto, N.

T. Kawashima, Y. Sasaki, K. Miura, N. Hashimoto, A. Baba, H. Ohkubo, Y. Ohtera, T. Sato, W. Ishikawa, T. Aoyama, and S. Kawakami, "Development of autocloned photonic crystal devices," IEICE Trans. Electron. E 87-C, 283-290 (2004).

Hattori, H.

S. Boutami, B. Ben Bakir, H. Hattori, X. Letartre, J.-L. Leclercq, P. Rojo-Romeo, M. Garrigues, C. Seassal, and P. Viktorovitch, "Broadband and compact 2-D photonic crystal reflectors with controllable polarization dependence," IEEE Photon. Technol. Lett. 18, 835-837 (2006).
[CrossRef]

Hetherington, D. L.

S. -Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurts, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
[CrossRef]

Ho, K. M.

S. -Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurts, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
[CrossRef]

C. T. Chan, Q. L. Yu, and K. M. Ho, "Order-N spectral method for electromagnetic waves," Phys. Rev. B 51, 16635 (1995).
[CrossRef]

Inoue, Y.

Ishikawa, W.

T. Kawashima, Y. Sasaki, K. Miura, N. Hashimoto, A. Baba, H. Ohkubo, Y. Ohtera, T. Sato, W. Ishikawa, T. Aoyama, and S. Kawakami, "Development of autocloned photonic crystal devices," IEICE Trans. Electron. E 87-C, 283-290 (2004).

Joannopoulos, J. D.

S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, "Large omnidirectional band gaps in metallodielectric photonic crystals," Phys. Rev. B 54, 11245-11251 (1996).
[CrossRef]

Kawakami, S.

Y. Ohtera, T. Onuki, Y. Inoue, and S. Kawakami, "Multi-channel photonic crystal wavelength filter array for near-infrared wavelengths," J. Lightwave Technol. 25, 499-503 (2007).
[CrossRef]

T. Kawashima, Y. Sasaki, K. Miura, N. Hashimoto, A. Baba, H. Ohkubo, Y. Ohtera, T. Sato, W. Ishikawa, T. Aoyama, and S. Kawakami, "Development of autocloned photonic crystal devices," IEICE Trans. Electron. E 87-C, 283-290 (2004).

H. Ohkubo, Y. Ohtera, and S. Kawakami, "Transmission wavelength shift of +36nm observed with Ta2O5/SiO2 multi-channel wavelength filters consisting of three-dimensional photonic crystals," IEEE Photon. Technol. Lett. 16, 1322-1324 (2004).
[CrossRef]

S. Kawakami, T. Sato, K. Miura, Y. Ohtera, T. Kawashima, and H. Ohkubo, "3D Photonic Crystal Heterostructures: Fabrication and In-Line Resonator," IEEE Photon. Technol. Lett. 15, 816-818 (2003).
[CrossRef]

Kawashima, T.

Y. Ohtera, K. Miura, and T. Kawashima, "Ge/SiO2 photonic crystal multi-channel wavelength filters for short wave infrared wavelengths," Jpn. J. Appl. Phys. 46, 1511-1515 (2007).
[CrossRef]

T. Kawashima, Y. Sasaki, K. Miura, N. Hashimoto, A. Baba, H. Ohkubo, Y. Ohtera, T. Sato, W. Ishikawa, T. Aoyama, and S. Kawakami, "Development of autocloned photonic crystal devices," IEICE Trans. Electron. E 87-C, 283-290 (2004).

S. Kawakami, T. Sato, K. Miura, Y. Ohtera, T. Kawashima, and H. Ohkubo, "3D Photonic Crystal Heterostructures: Fabrication and In-Line Resonator," IEEE Photon. Technol. Lett. 15, 816-818 (2003).
[CrossRef]

Kurts, S. R.

S. -Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurts, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
[CrossRef]

Leclercq, J.-L.

S. Boutami, B. Ben Bakir, H. Hattori, X. Letartre, J.-L. Leclercq, P. Rojo-Romeo, M. Garrigues, C. Seassal, and P. Viktorovitch, "Broadband and compact 2-D photonic crystal reflectors with controllable polarization dependence," IEEE Photon. Technol. Lett. 18, 835-837 (2006).
[CrossRef]

Letartre, X.

S. Boutami, B. Ben Bakir, H. Hattori, X. Letartre, J.-L. Leclercq, P. Rojo-Romeo, M. Garrigues, C. Seassal, and P. Viktorovitch, "Broadband and compact 2-D photonic crystal reflectors with controllable polarization dependence," IEEE Photon. Technol. Lett. 18, 835-837 (2006).
[CrossRef]

Lin, S. -Y.

J. G. Fleming and S. -Y. Lin, "Three-dimensional photonic crystal with a stop band from 1.35 to 1.95 ?m," Opt. Lett. 24, 49-51 (1999).
[CrossRef]

S. -Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurts, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
[CrossRef]

Miura, K.

Y. Ohtera, K. Miura, and T. Kawashima, "Ge/SiO2 photonic crystal multi-channel wavelength filters for short wave infrared wavelengths," Jpn. J. Appl. Phys. 46, 1511-1515 (2007).
[CrossRef]

T. Kawashima, Y. Sasaki, K. Miura, N. Hashimoto, A. Baba, H. Ohkubo, Y. Ohtera, T. Sato, W. Ishikawa, T. Aoyama, and S. Kawakami, "Development of autocloned photonic crystal devices," IEICE Trans. Electron. E 87-C, 283-290 (2004).

S. Kawakami, T. Sato, K. Miura, Y. Ohtera, T. Kawashima, and H. Ohkubo, "3D Photonic Crystal Heterostructures: Fabrication and In-Line Resonator," IEEE Photon. Technol. Lett. 15, 816-818 (2003).
[CrossRef]

Ohkubo, H.

T. Kawashima, Y. Sasaki, K. Miura, N. Hashimoto, A. Baba, H. Ohkubo, Y. Ohtera, T. Sato, W. Ishikawa, T. Aoyama, and S. Kawakami, "Development of autocloned photonic crystal devices," IEICE Trans. Electron. E 87-C, 283-290 (2004).

H. Ohkubo, Y. Ohtera, and S. Kawakami, "Transmission wavelength shift of +36nm observed with Ta2O5/SiO2 multi-channel wavelength filters consisting of three-dimensional photonic crystals," IEEE Photon. Technol. Lett. 16, 1322-1324 (2004).
[CrossRef]

S. Kawakami, T. Sato, K. Miura, Y. Ohtera, T. Kawashima, and H. Ohkubo, "3D Photonic Crystal Heterostructures: Fabrication and In-Line Resonator," IEEE Photon. Technol. Lett. 15, 816-818 (2003).
[CrossRef]

Ohtera, Y.

Y. Ohtera, "Calculating the complex photonic band structure by the Finite-Difference Time-Domain based method," Jpn. J.Appl. Phys. 47, 4827-4834 (2008).
[CrossRef]

Y. Ohtera, K. Miura, and T. Kawashima, "Ge/SiO2 photonic crystal multi-channel wavelength filters for short wave infrared wavelengths," Jpn. J. Appl. Phys. 46, 1511-1515 (2007).
[CrossRef]

Y. Ohtera, T. Onuki, Y. Inoue, and S. Kawakami, "Multi-channel photonic crystal wavelength filter array for near-infrared wavelengths," J. Lightwave Technol. 25, 499-503 (2007).
[CrossRef]

H. Ohkubo, Y. Ohtera, and S. Kawakami, "Transmission wavelength shift of +36nm observed with Ta2O5/SiO2 multi-channel wavelength filters consisting of three-dimensional photonic crystals," IEEE Photon. Technol. Lett. 16, 1322-1324 (2004).
[CrossRef]

T. Kawashima, Y. Sasaki, K. Miura, N. Hashimoto, A. Baba, H. Ohkubo, Y. Ohtera, T. Sato, W. Ishikawa, T. Aoyama, and S. Kawakami, "Development of autocloned photonic crystal devices," IEICE Trans. Electron. E 87-C, 283-290 (2004).

S. Kawakami, T. Sato, K. Miura, Y. Ohtera, T. Kawashima, and H. Ohkubo, "3D Photonic Crystal Heterostructures: Fabrication and In-Line Resonator," IEEE Photon. Technol. Lett. 15, 816-818 (2003).
[CrossRef]

Onuki, T.

Rojo-Romeo, P.

S. Boutami, B. Ben Bakir, H. Hattori, X. Letartre, J.-L. Leclercq, P. Rojo-Romeo, M. Garrigues, C. Seassal, and P. Viktorovitch, "Broadband and compact 2-D photonic crystal reflectors with controllable polarization dependence," IEEE Photon. Technol. Lett. 18, 835-837 (2006).
[CrossRef]

Sasaki, Y.

T. Kawashima, Y. Sasaki, K. Miura, N. Hashimoto, A. Baba, H. Ohkubo, Y. Ohtera, T. Sato, W. Ishikawa, T. Aoyama, and S. Kawakami, "Development of autocloned photonic crystal devices," IEICE Trans. Electron. E 87-C, 283-290 (2004).

Sato, T.

T. Kawashima, Y. Sasaki, K. Miura, N. Hashimoto, A. Baba, H. Ohkubo, Y. Ohtera, T. Sato, W. Ishikawa, T. Aoyama, and S. Kawakami, "Development of autocloned photonic crystal devices," IEICE Trans. Electron. E 87-C, 283-290 (2004).

S. Kawakami, T. Sato, K. Miura, Y. Ohtera, T. Kawashima, and H. Ohkubo, "3D Photonic Crystal Heterostructures: Fabrication and In-Line Resonator," IEEE Photon. Technol. Lett. 15, 816-818 (2003).
[CrossRef]

Seassal, C.

S. Boutami, B. Ben Bakir, H. Hattori, X. Letartre, J.-L. Leclercq, P. Rojo-Romeo, M. Garrigues, C. Seassal, and P. Viktorovitch, "Broadband and compact 2-D photonic crystal reflectors with controllable polarization dependence," IEEE Photon. Technol. Lett. 18, 835-837 (2006).
[CrossRef]

Sigalas, M. M.

S. -Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurts, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
[CrossRef]

Smith, B. K.

S. -Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurts, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
[CrossRef]

Suzuki, T.

Viktorovitch, P.

S. Boutami, B. Ben Bakir, H. Hattori, X. Letartre, J.-L. Leclercq, P. Rojo-Romeo, M. Garrigues, C. Seassal, and P. Viktorovitch, "Broadband and compact 2-D photonic crystal reflectors with controllable polarization dependence," IEEE Photon. Technol. Lett. 18, 835-837 (2006).
[CrossRef]

Villeneuve, P. R.

S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, "Large omnidirectional band gaps in metallodielectric photonic crystals," Phys. Rev. B 54, 11245-11251 (1996).
[CrossRef]

Yablonovitch, E.

Yee, K. S.

K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media," IEEE Trans. Antennas Propagat. AP-14, 302-307 (1966).
[CrossRef]

Yu, P. K. L.

Yu, Q. L.

C. T. Chan, Q. L. Yu, and K. M. Ho, "Order-N spectral method for electromagnetic waves," Phys. Rev. B 51, 16635 (1995).
[CrossRef]

Zubrzycki, W.

S. -Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurts, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
[CrossRef]

E (1)

T. Kawashima, Y. Sasaki, K. Miura, N. Hashimoto, A. Baba, H. Ohkubo, Y. Ohtera, T. Sato, W. Ishikawa, T. Aoyama, and S. Kawakami, "Development of autocloned photonic crystal devices," IEICE Trans. Electron. E 87-C, 283-290 (2004).

IEEE Photon. Technol. Lett. (3)

S. Boutami, B. Ben Bakir, H. Hattori, X. Letartre, J.-L. Leclercq, P. Rojo-Romeo, M. Garrigues, C. Seassal, and P. Viktorovitch, "Broadband and compact 2-D photonic crystal reflectors with controllable polarization dependence," IEEE Photon. Technol. Lett. 18, 835-837 (2006).
[CrossRef]

H. Ohkubo, Y. Ohtera, and S. Kawakami, "Transmission wavelength shift of +36nm observed with Ta2O5/SiO2 multi-channel wavelength filters consisting of three-dimensional photonic crystals," IEEE Photon. Technol. Lett. 16, 1322-1324 (2004).
[CrossRef]

S. Kawakami, T. Sato, K. Miura, Y. Ohtera, T. Kawashima, and H. Ohkubo, "3D Photonic Crystal Heterostructures: Fabrication and In-Line Resonator," IEEE Photon. Technol. Lett. 15, 816-818 (2003).
[CrossRef]

IEEE Trans. Antennas Propagat. (1)

K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media," IEEE Trans. Antennas Propagat. AP-14, 302-307 (1966).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (2)

Jpn. J. Appl. Phys (1)

Y. Ohtera, K. Miura, and T. Kawashima, "Ge/SiO2 photonic crystal multi-channel wavelength filters for short wave infrared wavelengths," Jpn. J. Appl. Phys. 46, 1511-1515 (2007).
[CrossRef]

Jpn. J.Appl. Phys. (1)

Y. Ohtera, "Calculating the complex photonic band structure by the Finite-Difference Time-Domain based method," Jpn. J.Appl. Phys. 47, 4827-4834 (2008).
[CrossRef]

Nature (1)

S. -Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurts, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. B (2)

S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, "Large omnidirectional band gaps in metallodielectric photonic crystals," Phys. Rev. B 54, 11245-11251 (1996).
[CrossRef]

C. T. Chan, Q. L. Yu, and K. M. Ho, "Order-N spectral method for electromagnetic waves," Phys. Rev. B 51, 16635 (1995).
[CrossRef]

Other (4)

P. Yeh and A. Yariv, "6. Electromagnetic propagation in periodic media," in Optical Waves in Crystals (John Wiley and Sons, NY, 1984).

Y. Ohtera and T. Kawashima, "Extremely low optical transmittance in the stopbands of photonic crystals," Photonics and Nanostructures - Fundamentals and Applications (2009),?doi:10.1016/j.photonics.2008.12.003 (to be published).

M. Born and E. Wolf, "Interference and Interferometers," in Principle of Optics (Oxford, New York, 1980).

H. A. Macleod, "5.2 Multilayer dielectric coatings," in Thin-Film Optical Filters (3rd ed.), (Institute of Physics Publishing, London, 2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Example structures of dielectric multilayer filters. (a) Conventional flat layer structure. Refractive index modulation exists only into the z direction. (b) Proposed structure. This kind of wavy multilayer can be fabricated by the Autocloning method. (c) Another example of proposed structures. An array of rods is embedded in a background material.

Fig. 2.
Fig. 2.

Dispersion relation of light in an empty lattice. (a) One-dimensional lattice. (b) Two-dimensional lattice with the aspect ratio of ax /az =1.1. Black and purple lines indicate the dispersion of the vertically (“V”, field profile is constant along x) and the obliquely propagating modes (“H”, fields have sinusoidal variation along x), respectively. “D” indicates the evanescent modes.

Fig. 3.
Fig. 3.

Complex photonic band diagram of the multilayer for E-polarization (E parallel to y). Consistuent film materials are Nb2O5 (n1=2.28) and SiO2 (n2=1.47). Film thicknesses satisfy n1d1 =n2d2 . (a) Flat multilayer. “N” denotes the stopbands (PBG of Normal layers). (b) Wavy multilayer (“M” denotes the PBG of modified layers). Aspect ratio is ax /az =1.05. (c) Magnified view of the “M2” stopband of (b). αmax represents the maximum decay constant. F3dB and F5dB refer to the normalized frequency at which the intensity of the field decays at a rate of 3dB/lattice and 5dB/lattice, respectively. Fc is the low-frequency edge of the stopband.

Fig. 4.
Fig. 4.

Calculated performances of the filters as a function of the aspect ratio of the unit cell. (a) Maximum decay constant (αmax) in the “M2” PBG. The dashed line denotes the decay constant of the “N1” PBG in the flat layer. (b) Bandwidth of the passband-stopband transition. For the definition of Δ, see Eq. (2) and Eq. (3).

Fig. 5.
Fig. 5.

Calculated transmission spectra (red lines). The number of layers is 20 (10 periods). (a) Flat multilayer. The stopband corresponds to the “N1” PBG in Fig.3(a). Blue line shows expected transmittance, obtained by multiplying the decay constant (Im(k) of the complex dispersion relation) by the number of periods. (b) Wavy structure of ax /az =1.03 (maximum decay configuration). The stopband corresponds to “M2” in Fig. 3(b). Blue lines indicate the expected intensity suppression obtained by the decay constant (Im(k) of all the decaying modes) in the complex dispersion relation. (c) Wavy structure of ax /az =1 .25 (steepest cut-off). The stopband corresponds to “M2” in Fig. 3(b). Blue line indicates the expected intensity suppression obtained by the decay constant (Im(k) of all the decaying modes) in the complex dispersion relation.

Fig. 6.
Fig. 6.

Calculated complex dispersion diagram of the embedded-rod type PhC, for various degrees of horizontal refractive index modification. (a) Flat multilayer consisting of silicon(n=3.5) and silica(n=1.47). No horizontal index modulation exists. “v” and “h” indicate the vertically and obliquely propagating modes with respect to the layers. As a virtual lateral periodicity is assumed, oblique modes are allowed to appear in this presentation of dispersion diagram. M1,M3 and M4 denote the decay constants of decaying modes. (b) Structure with a slight index modulation. Half of the silicon layer is replaced by another material with n=2.8. Dispersion diagram is for the even symmetric E-polarized modes. Dashed circles in the diagram denote the anti-crossings caused as a result of the coupling of the “v” and “h” modes. (c) Proposed embedded-rods type PhC. Half of the silicon layers are completely replaced by silica. The decaying mode indicated by a thick arrow is useful for the sharp cut-off filtering function.

Fig. 7.
Fig. 7.

Calculated transmission spectra for E-polarization of the silicon rods/silica background structure (red line). The total number of layers is 16 (8 periods). Structural parameters are the same as Fig. 6. Dashed line represents the transmittance of a quarter wave stack of silicon/silica flat layers.

Fig. 8.
Fig. 8.

Calculated performances of the filters as a function of the aspect ratio (ax /az ) of the unit cell. Solid line: maximum decay constant (αmax ) in the “M2” PBG. Dashed line: maximum decay constant in the first PBG of a quarter-wave stack of a Si/SiO2 flat multilayer. Dotted line: bandwidth of the passband-stopband transition. Δ3dB is defined by Eq. (2).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

a x a z λ / n g
Δ 3 dB , 5 dB = λ 3 dB , 5 dB λ c λ c × 100 [ % ]
λ 3 dB , 5 dB , c = a z F 3 dB , 5 dB , c

Metrics