Abstract

Significantly enhanced superbroadband near infrared emission has been realized in bismuth/aluminum doped high-silica zeolite derived nanoparticles. The emission intensity can be easily tailored by the introduction of aluminum. The luminescence lifetime can reach up to 695 μs. The results reveal that the existence of charge imbalance environment caused by [A104/2]- units in host materials is requisite to the formation of infrared-active Bi+. The finding presents a feasible route to design high-efficient bismuth activated infrared luminescent nanoparticles. These bismuth doped nanoparticles may find applications as superbroadband near infrared nano optical sources.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Fujimoto and M. Nakatsuka, "Optical amplification in bismuth-doped silica glass," Appl. Phys. Lett. 82, 3325-3326 (2003).
    [CrossRef]
  2. X. Meng, J. Qiu, M. Peng, D. Chen, Q. Zhao, X. Jiang, and C. Zhu, "Infrared broadband emission of bismuth-doped barium-aluminum-borate glasses," Opt. Express 13, 1635-1642 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-5-1635.
    [CrossRef] [PubMed]
  3. V. V. Dvoyrin, V. M. Mashinsky, L. I. Bulatov, I. A. Bufetov, A. V. Shubin, M. A. Melkumov, E. F. Kustov, E. M. Dianov, A. A. Umnikov, V. F. Khopin, M. V. Yashkov, and A. N. Guryanov, "Bismuth-doped-glass optical fibers-a new active medium for lasers and amplifiers," Opt. Lett. 31, 2966-2968 (2006).
    [CrossRef] [PubMed]
  4. Y. Arai, T. Suzuki, Y. Ohishi, S. Morimoto, and S. Khonthon, "Ultrabroadband near-infrared emission from a colorless bismuth-doped glass," Appl. Phys. Lett. 90, 261110-1-3 (2007).
    [CrossRef]
  5. V. O. Sokolov, V. G. Plotnichenko, and E. M. Dianov, "Origin of broadband near-infrared luminescence in bismuth-doped glasses," Opt. Lett. 33, 1488-1490 (2008).
    [CrossRef] [PubMed]
  6. Q. Qian, Q. Y. Zhang, G. F. Yang, Z. M. Yang, and Z. H. Jiang, "Enhanced broadband near-infrared emission from Bi-doped glasses by codoping with metal oxides," J. Appl. Phys. 104, 043518-1-3 (2008).
    [CrossRef]
  7. Okhrimchuk, L. Butvina, E. Dianov, N. Lichkova, V. Zagorodnev, and K. Boldyrev, "Near-infrared luminescence of RbPb2Cl5 : Bi crystals," Opt. Lett. 33, 2182-2184 (2008).
    [CrossRef] [PubMed]
  8. P. Li, X. H. Sun, N. B. Wong, C. S. Lee, S. T. Lee, and B. Teo, "Ultrafine and uniform silicon nanowires grown with zeolites," Chem. Phys. Lett. 365, 22-26 (2002).
    [CrossRef]
  9. M. Ryo, Y. Wada, T. Okubo, T. Nakazawa, Y. Hasegawa, and S. Yanagida, "Spectroscopic study on strongly luminescent Nd(III) exchanged zeolite: TMA+-containing FAU type zeolite as a suitable host for ship-in-bottle synthesis," J. Mater. Chem. 12, 1748-1753 (2002).
    [CrossRef]
  10. H. Sun, Y. Miwa, F. Shimaoka, M. Fujii, A. Hosokawa, M. Mizuhata, S. Hayashi, and S. Deki, "Superbroadband near infrared nano optical source based on bismuth doped high-silica nanocrystalline zeolites," Opt. Lett.in press.
    [PubMed]
  11. S. Sen and R. E. Youngman, "High-Resolution Multinuclear NMR Structural Study of Binary Aluminosilicate and Other Related Glasses," J. Phys. Chem. B 108, 7557-7564 (2004).
    [CrossRef]

2008 (2)

2006 (1)

2005 (1)

2004 (1)

S. Sen and R. E. Youngman, "High-Resolution Multinuclear NMR Structural Study of Binary Aluminosilicate and Other Related Glasses," J. Phys. Chem. B 108, 7557-7564 (2004).
[CrossRef]

2003 (1)

Y. Fujimoto and M. Nakatsuka, "Optical amplification in bismuth-doped silica glass," Appl. Phys. Lett. 82, 3325-3326 (2003).
[CrossRef]

2002 (2)

P. Li, X. H. Sun, N. B. Wong, C. S. Lee, S. T. Lee, and B. Teo, "Ultrafine and uniform silicon nanowires grown with zeolites," Chem. Phys. Lett. 365, 22-26 (2002).
[CrossRef]

M. Ryo, Y. Wada, T. Okubo, T. Nakazawa, Y. Hasegawa, and S. Yanagida, "Spectroscopic study on strongly luminescent Nd(III) exchanged zeolite: TMA+-containing FAU type zeolite as a suitable host for ship-in-bottle synthesis," J. Mater. Chem. 12, 1748-1753 (2002).
[CrossRef]

Bufetov, I. A.

Bulatov, L. I.

Chen, D.

Deki, S.

H. Sun, Y. Miwa, F. Shimaoka, M. Fujii, A. Hosokawa, M. Mizuhata, S. Hayashi, and S. Deki, "Superbroadband near infrared nano optical source based on bismuth doped high-silica nanocrystalline zeolites," Opt. Lett.in press.
[PubMed]

Dianov, E. M.

Dvoyrin, V. V.

Fujii, M.

H. Sun, Y. Miwa, F. Shimaoka, M. Fujii, A. Hosokawa, M. Mizuhata, S. Hayashi, and S. Deki, "Superbroadband near infrared nano optical source based on bismuth doped high-silica nanocrystalline zeolites," Opt. Lett.in press.
[PubMed]

Fujimoto, Y.

Y. Fujimoto and M. Nakatsuka, "Optical amplification in bismuth-doped silica glass," Appl. Phys. Lett. 82, 3325-3326 (2003).
[CrossRef]

Guryanov, A. N.

Hasegawa, Y.

M. Ryo, Y. Wada, T. Okubo, T. Nakazawa, Y. Hasegawa, and S. Yanagida, "Spectroscopic study on strongly luminescent Nd(III) exchanged zeolite: TMA+-containing FAU type zeolite as a suitable host for ship-in-bottle synthesis," J. Mater. Chem. 12, 1748-1753 (2002).
[CrossRef]

Hayashi, S.

H. Sun, Y. Miwa, F. Shimaoka, M. Fujii, A. Hosokawa, M. Mizuhata, S. Hayashi, and S. Deki, "Superbroadband near infrared nano optical source based on bismuth doped high-silica nanocrystalline zeolites," Opt. Lett.in press.
[PubMed]

Hosokawa, A.

H. Sun, Y. Miwa, F. Shimaoka, M. Fujii, A. Hosokawa, M. Mizuhata, S. Hayashi, and S. Deki, "Superbroadband near infrared nano optical source based on bismuth doped high-silica nanocrystalline zeolites," Opt. Lett.in press.
[PubMed]

Jiang, X.

Khopin, V. F.

Kustov, E. F.

Lee, C. S.

P. Li, X. H. Sun, N. B. Wong, C. S. Lee, S. T. Lee, and B. Teo, "Ultrafine and uniform silicon nanowires grown with zeolites," Chem. Phys. Lett. 365, 22-26 (2002).
[CrossRef]

Lee, S. T.

P. Li, X. H. Sun, N. B. Wong, C. S. Lee, S. T. Lee, and B. Teo, "Ultrafine and uniform silicon nanowires grown with zeolites," Chem. Phys. Lett. 365, 22-26 (2002).
[CrossRef]

Li, P.

P. Li, X. H. Sun, N. B. Wong, C. S. Lee, S. T. Lee, and B. Teo, "Ultrafine and uniform silicon nanowires grown with zeolites," Chem. Phys. Lett. 365, 22-26 (2002).
[CrossRef]

Mashinsky, V. M.

Melkumov, M. A.

Meng, X.

Miwa, Y.

H. Sun, Y. Miwa, F. Shimaoka, M. Fujii, A. Hosokawa, M. Mizuhata, S. Hayashi, and S. Deki, "Superbroadband near infrared nano optical source based on bismuth doped high-silica nanocrystalline zeolites," Opt. Lett.in press.
[PubMed]

Mizuhata, M.

H. Sun, Y. Miwa, F. Shimaoka, M. Fujii, A. Hosokawa, M. Mizuhata, S. Hayashi, and S. Deki, "Superbroadband near infrared nano optical source based on bismuth doped high-silica nanocrystalline zeolites," Opt. Lett.in press.
[PubMed]

Nakatsuka, M.

Y. Fujimoto and M. Nakatsuka, "Optical amplification in bismuth-doped silica glass," Appl. Phys. Lett. 82, 3325-3326 (2003).
[CrossRef]

Nakazawa, T.

M. Ryo, Y. Wada, T. Okubo, T. Nakazawa, Y. Hasegawa, and S. Yanagida, "Spectroscopic study on strongly luminescent Nd(III) exchanged zeolite: TMA+-containing FAU type zeolite as a suitable host for ship-in-bottle synthesis," J. Mater. Chem. 12, 1748-1753 (2002).
[CrossRef]

Okhrimchuk,

Okubo, T.

M. Ryo, Y. Wada, T. Okubo, T. Nakazawa, Y. Hasegawa, and S. Yanagida, "Spectroscopic study on strongly luminescent Nd(III) exchanged zeolite: TMA+-containing FAU type zeolite as a suitable host for ship-in-bottle synthesis," J. Mater. Chem. 12, 1748-1753 (2002).
[CrossRef]

Peng, M.

Plotnichenko, V. G.

Qiu, J.

Ryo, M.

M. Ryo, Y. Wada, T. Okubo, T. Nakazawa, Y. Hasegawa, and S. Yanagida, "Spectroscopic study on strongly luminescent Nd(III) exchanged zeolite: TMA+-containing FAU type zeolite as a suitable host for ship-in-bottle synthesis," J. Mater. Chem. 12, 1748-1753 (2002).
[CrossRef]

Sen, S.

S. Sen and R. E. Youngman, "High-Resolution Multinuclear NMR Structural Study of Binary Aluminosilicate and Other Related Glasses," J. Phys. Chem. B 108, 7557-7564 (2004).
[CrossRef]

Shimaoka, F.

H. Sun, Y. Miwa, F. Shimaoka, M. Fujii, A. Hosokawa, M. Mizuhata, S. Hayashi, and S. Deki, "Superbroadband near infrared nano optical source based on bismuth doped high-silica nanocrystalline zeolites," Opt. Lett.in press.
[PubMed]

Shubin, A. V.

Sokolov, V. O.

Sun, H.

H. Sun, Y. Miwa, F. Shimaoka, M. Fujii, A. Hosokawa, M. Mizuhata, S. Hayashi, and S. Deki, "Superbroadband near infrared nano optical source based on bismuth doped high-silica nanocrystalline zeolites," Opt. Lett.in press.
[PubMed]

Sun, X. H.

P. Li, X. H. Sun, N. B. Wong, C. S. Lee, S. T. Lee, and B. Teo, "Ultrafine and uniform silicon nanowires grown with zeolites," Chem. Phys. Lett. 365, 22-26 (2002).
[CrossRef]

Teo, B.

P. Li, X. H. Sun, N. B. Wong, C. S. Lee, S. T. Lee, and B. Teo, "Ultrafine and uniform silicon nanowires grown with zeolites," Chem. Phys. Lett. 365, 22-26 (2002).
[CrossRef]

Umnikov, A. A.

Wada, Y.

M. Ryo, Y. Wada, T. Okubo, T. Nakazawa, Y. Hasegawa, and S. Yanagida, "Spectroscopic study on strongly luminescent Nd(III) exchanged zeolite: TMA+-containing FAU type zeolite as a suitable host for ship-in-bottle synthesis," J. Mater. Chem. 12, 1748-1753 (2002).
[CrossRef]

Wong, N. B.

P. Li, X. H. Sun, N. B. Wong, C. S. Lee, S. T. Lee, and B. Teo, "Ultrafine and uniform silicon nanowires grown with zeolites," Chem. Phys. Lett. 365, 22-26 (2002).
[CrossRef]

Yanagida, S.

M. Ryo, Y. Wada, T. Okubo, T. Nakazawa, Y. Hasegawa, and S. Yanagida, "Spectroscopic study on strongly luminescent Nd(III) exchanged zeolite: TMA+-containing FAU type zeolite as a suitable host for ship-in-bottle synthesis," J. Mater. Chem. 12, 1748-1753 (2002).
[CrossRef]

Yashkov, M. V.

Youngman, R. E.

S. Sen and R. E. Youngman, "High-Resolution Multinuclear NMR Structural Study of Binary Aluminosilicate and Other Related Glasses," J. Phys. Chem. B 108, 7557-7564 (2004).
[CrossRef]

Zhao, Q.

Zhu, C.

Appl. Phys. Lett. (1)

Y. Fujimoto and M. Nakatsuka, "Optical amplification in bismuth-doped silica glass," Appl. Phys. Lett. 82, 3325-3326 (2003).
[CrossRef]

Chem. Phys. Lett. (1)

P. Li, X. H. Sun, N. B. Wong, C. S. Lee, S. T. Lee, and B. Teo, "Ultrafine and uniform silicon nanowires grown with zeolites," Chem. Phys. Lett. 365, 22-26 (2002).
[CrossRef]

J. Mater. Chem. (1)

M. Ryo, Y. Wada, T. Okubo, T. Nakazawa, Y. Hasegawa, and S. Yanagida, "Spectroscopic study on strongly luminescent Nd(III) exchanged zeolite: TMA+-containing FAU type zeolite as a suitable host for ship-in-bottle synthesis," J. Mater. Chem. 12, 1748-1753 (2002).
[CrossRef]

J. Phys. Chem. B (1)

S. Sen and R. E. Youngman, "High-Resolution Multinuclear NMR Structural Study of Binary Aluminosilicate and Other Related Glasses," J. Phys. Chem. B 108, 7557-7564 (2004).
[CrossRef]

Opt. Express (1)

Opt. Lett. (4)

Other (2)

Q. Qian, Q. Y. Zhang, G. F. Yang, Z. M. Yang, and Z. H. Jiang, "Enhanced broadband near-infrared emission from Bi-doped glasses by codoping with metal oxides," J. Appl. Phys. 104, 043518-1-3 (2008).
[CrossRef]

Y. Arai, T. Suzuki, Y. Ohishi, S. Morimoto, and S. Khonthon, "Ultrabroadband near-infrared emission from a colorless bismuth-doped glass," Appl. Phys. Lett. 90, 261110-1-3 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

XRD spectra of Bi3+ and Bi3+/Al3+ doped samples. The peaks denoted by the asterisks are ascribed to the reflections of zeolite phase.

Fig. 2.
Fig. 2.

(a) FE-SEM image of sample 3. (b) EDS of the above sample.

Fig. 3.
Fig. 3.

PL spectra of the samples under the excitation of a 488 nm laser line. All samples were measured under the same condition.

Fig. 4.
Fig. 4.

Fluorescence decay curves of the samples. The detected wavelength is 1146 nm.

Fig. 5.
Fig. 5.

The calculated ratios of active Bi+ ions in these samples.

Tables (1)

Tables Icon

Table 1. Determined Bi and Al Ratios of the Samples

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

N i N 1 = I i × τ 1 I 1 × τ i

Metrics