Abstract

In this study, the optical properties of a plasmonic multilayer structure, consisting of tw6o longitudinally cascaded gratings with a half pitch off-set, are investigated. The proposed structure, which is a system mixing extended and localized surface plasmon, forms transversely cascaded metal/insulator/metal cavities. The angle dependent reflection spectrum of the proposed structure displays a resonance peak at a specific angle. The full-width at half maximum (FWHM) of the resonant peak is smaller than 3°. The angular dispersion of the cascading plamonic gratings is about dθ/dλ, =0.15 °/nm. The cascading plasmonic gratings can be used as a spatial filter to improve the spatial coherence of a light source.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, S. C. Lee, and D. P. Tsai, "Angular independent infrared filter assisted by localized surface plasmon polariton," Photon. Technol. Lett. 20, 1103-1105 (2008).
    [CrossRef]
  2. C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, S. C. Lee, and D. P. Tsai, "Reflection and emission properties of an infrared emitter," Opt. Express,  15, 14673-14678 (2007).
    [CrossRef] [PubMed]
  3. S. A. Darmanyan and A. V. Zayats, "Light tunneling via resonant surface plasmon polariton states and the enhanced transmission of periodically nanostructured metal films: An analytical study," Phys. Rev. B 67, 035424-1-7 (2003).
    [CrossRef]
  4. L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays," Phys. Rev. Lett. 86, 1114-1117 (2001).
    [CrossRef] [PubMed]
  5. A. Christ, T. Zentgraf, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, "Controlling the interaction between localized and delocalized surface plasmon modes: Experiment and numerical calculations," Phys. Rev. B. 74, 155435 (2006).
    [CrossRef]
  6. H. T. Miyazaki and Y. Kurokawa, "Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity," Phys. Rev. Lett. 96, 097401 (2006).
    [CrossRef] [PubMed]
  7. Y. Kurokawa and H. T. Miyazaki, "Metal-insulator-metal plasmon nanocavities: Analysis of optical properties," Phys. Rev. B 75, 035411 (2007).
    [CrossRef]
  8. J. Chen, G. A. Smolyakov, S. R. J. Brueck, and K. J. Malloy, "Surface plasmon modes of finite, planar, metal-insulator-metal plasmonic waveguides," Opt. Express 16, 14902-14909 (2008).
    [CrossRef] [PubMed]
  9. G. Dolling, C. Enkrich, M. Wegener, J. F. Zhou, C. M. Soukoulis, and S. Linden, "Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials," Opt. Lett. 30, 3198-3200. (2005).
    [CrossRef] [PubMed]
  10. S. Zhang, W. Fan, K. J. Malloy, S. R. J. Brueck, N. C. Panoiu, and R. M. Osgood, "Near-infrared double negative metamaterials," Opt. Express,  13, 4922-4930. (2005).
    [CrossRef] [PubMed]
  11. S. Linden, M. Decker, and M. Wegener, "Model System for a One-Dimensional Magnetic Photonic Crystal," Phys. Rev. Lett. 97, 083902 (2006).
    [CrossRef] [PubMed]
  12. A. Christ, O. J. F. Martin, Y. Ekinci, N. A. Gippius, and S. G. Tikhodeev??, "Symmetry Breaking in a Plasmonic Metamaterial at Optical Wavelength," Nano. Lett. 8, 2171-2175 (2008).
    [CrossRef] [PubMed]
  13. Y. Wang, ‘‘Wavelength selection with coupled surface plasmon waves,’’ Appl. Phys. Lett. 82, 4385-4387 (2003).
    [CrossRef]
  14. J. S. Q. Liu and M. L. Brongersma, "Omnidirectional light emission via surface plasmon polaritons," Appl. Phys. Lett,  90, 091116 (2007).
    [CrossRef]
  15. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, Boston, 1985).
  16. M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, "Stable implementation of the rigorous coupled-wave analysis of surface-relief gratings: enhance transmittance matrix approach," J. Opt. Soc. Am. A 12, 1077-1086 (1995).
    [CrossRef]

2008

C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, S. C. Lee, and D. P. Tsai, "Angular independent infrared filter assisted by localized surface plasmon polariton," Photon. Technol. Lett. 20, 1103-1105 (2008).
[CrossRef]

A. Christ, O. J. F. Martin, Y. Ekinci, N. A. Gippius, and S. G. Tikhodeev??, "Symmetry Breaking in a Plasmonic Metamaterial at Optical Wavelength," Nano. Lett. 8, 2171-2175 (2008).
[CrossRef] [PubMed]

J. Chen, G. A. Smolyakov, S. R. J. Brueck, and K. J. Malloy, "Surface plasmon modes of finite, planar, metal-insulator-metal plasmonic waveguides," Opt. Express 16, 14902-14909 (2008).
[CrossRef] [PubMed]

2007

C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, S. C. Lee, and D. P. Tsai, "Reflection and emission properties of an infrared emitter," Opt. Express,  15, 14673-14678 (2007).
[CrossRef] [PubMed]

J. S. Q. Liu and M. L. Brongersma, "Omnidirectional light emission via surface plasmon polaritons," Appl. Phys. Lett,  90, 091116 (2007).
[CrossRef]

Y. Kurokawa and H. T. Miyazaki, "Metal-insulator-metal plasmon nanocavities: Analysis of optical properties," Phys. Rev. B 75, 035411 (2007).
[CrossRef]

2006

A. Christ, T. Zentgraf, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, "Controlling the interaction between localized and delocalized surface plasmon modes: Experiment and numerical calculations," Phys. Rev. B. 74, 155435 (2006).
[CrossRef]

H. T. Miyazaki and Y. Kurokawa, "Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity," Phys. Rev. Lett. 96, 097401 (2006).
[CrossRef] [PubMed]

S. Linden, M. Decker, and M. Wegener, "Model System for a One-Dimensional Magnetic Photonic Crystal," Phys. Rev. Lett. 97, 083902 (2006).
[CrossRef] [PubMed]

2005

2003

Y. Wang, ‘‘Wavelength selection with coupled surface plasmon waves,’’ Appl. Phys. Lett. 82, 4385-4387 (2003).
[CrossRef]

2001

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays," Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

1995

Brongersma, M. L.

J. S. Q. Liu and M. L. Brongersma, "Omnidirectional light emission via surface plasmon polaritons," Appl. Phys. Lett,  90, 091116 (2007).
[CrossRef]

Brueck, S. R. J.

Chang, Y. C.

C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, S. C. Lee, and D. P. Tsai, "Angular independent infrared filter assisted by localized surface plasmon polariton," Photon. Technol. Lett. 20, 1103-1105 (2008).
[CrossRef]

C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, S. C. Lee, and D. P. Tsai, "Reflection and emission properties of an infrared emitter," Opt. Express,  15, 14673-14678 (2007).
[CrossRef] [PubMed]

Chen, C. Y.

C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, S. C. Lee, and D. P. Tsai, "Angular independent infrared filter assisted by localized surface plasmon polariton," Photon. Technol. Lett. 20, 1103-1105 (2008).
[CrossRef]

C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, S. C. Lee, and D. P. Tsai, "Reflection and emission properties of an infrared emitter," Opt. Express,  15, 14673-14678 (2007).
[CrossRef] [PubMed]

Chen, J.

Christ, A.

A. Christ, O. J. F. Martin, Y. Ekinci, N. A. Gippius, and S. G. Tikhodeev??, "Symmetry Breaking in a Plasmonic Metamaterial at Optical Wavelength," Nano. Lett. 8, 2171-2175 (2008).
[CrossRef] [PubMed]

A. Christ, T. Zentgraf, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, "Controlling the interaction between localized and delocalized surface plasmon modes: Experiment and numerical calculations," Phys. Rev. B. 74, 155435 (2006).
[CrossRef]

Decker, M.

S. Linden, M. Decker, and M. Wegener, "Model System for a One-Dimensional Magnetic Photonic Crystal," Phys. Rev. Lett. 97, 083902 (2006).
[CrossRef] [PubMed]

Dolling, G.

Ebbesen, T. W.

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays," Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

Ekinci, Y.

A. Christ, O. J. F. Martin, Y. Ekinci, N. A. Gippius, and S. G. Tikhodeev??, "Symmetry Breaking in a Plasmonic Metamaterial at Optical Wavelength," Nano. Lett. 8, 2171-2175 (2008).
[CrossRef] [PubMed]

Enkrich, C.

Fan, W.

Garcia-Vidal, F. J.

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays," Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

Gaylord, T. K.

Giessen, H.

A. Christ, T. Zentgraf, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, "Controlling the interaction between localized and delocalized surface plasmon modes: Experiment and numerical calculations," Phys. Rev. B. 74, 155435 (2006).
[CrossRef]

Gippius, N. A.

A. Christ, O. J. F. Martin, Y. Ekinci, N. A. Gippius, and S. G. Tikhodeev??, "Symmetry Breaking in a Plasmonic Metamaterial at Optical Wavelength," Nano. Lett. 8, 2171-2175 (2008).
[CrossRef] [PubMed]

A. Christ, T. Zentgraf, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, "Controlling the interaction between localized and delocalized surface plasmon modes: Experiment and numerical calculations," Phys. Rev. B. 74, 155435 (2006).
[CrossRef]

Grann, E. B.

Jiang, Y. W.

C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, S. C. Lee, and D. P. Tsai, "Angular independent infrared filter assisted by localized surface plasmon polariton," Photon. Technol. Lett. 20, 1103-1105 (2008).
[CrossRef]

C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, S. C. Lee, and D. P. Tsai, "Reflection and emission properties of an infrared emitter," Opt. Express,  15, 14673-14678 (2007).
[CrossRef] [PubMed]

Kuhl, J.

A. Christ, T. Zentgraf, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, "Controlling the interaction between localized and delocalized surface plasmon modes: Experiment and numerical calculations," Phys. Rev. B. 74, 155435 (2006).
[CrossRef]

Kurokawa, Y.

Y. Kurokawa and H. T. Miyazaki, "Metal-insulator-metal plasmon nanocavities: Analysis of optical properties," Phys. Rev. B 75, 035411 (2007).
[CrossRef]

H. T. Miyazaki and Y. Kurokawa, "Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity," Phys. Rev. Lett. 96, 097401 (2006).
[CrossRef] [PubMed]

Lee, S. C.

C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, S. C. Lee, and D. P. Tsai, "Angular independent infrared filter assisted by localized surface plasmon polariton," Photon. Technol. Lett. 20, 1103-1105 (2008).
[CrossRef]

C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, S. C. Lee, and D. P. Tsai, "Reflection and emission properties of an infrared emitter," Opt. Express,  15, 14673-14678 (2007).
[CrossRef] [PubMed]

Lezec, H. J.

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays," Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

Linden, S.

Liu, J. S. Q.

J. S. Q. Liu and M. L. Brongersma, "Omnidirectional light emission via surface plasmon polaritons," Appl. Phys. Lett,  90, 091116 (2007).
[CrossRef]

Malloy, K. J.

Martin, O. J. F.

A. Christ, O. J. F. Martin, Y. Ekinci, N. A. Gippius, and S. G. Tikhodeev??, "Symmetry Breaking in a Plasmonic Metamaterial at Optical Wavelength," Nano. Lett. 8, 2171-2175 (2008).
[CrossRef] [PubMed]

Martin-Moreno, L.

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays," Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

Miyazaki, H. T.

Y. Kurokawa and H. T. Miyazaki, "Metal-insulator-metal plasmon nanocavities: Analysis of optical properties," Phys. Rev. B 75, 035411 (2007).
[CrossRef]

H. T. Miyazaki and Y. Kurokawa, "Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity," Phys. Rev. Lett. 96, 097401 (2006).
[CrossRef] [PubMed]

Moharam, M. G.

Osgood, R. M.

Panoiu, N. C.

Pellerin, K. M.

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays," Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

Pendry, J. B.

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays," Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

Pommet, D. A.

Smolyakov, G. A.

Soukoulis, C. M.

Thio, T.

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays," Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

Tikhodeev, S. G.

A. Christ, O. J. F. Martin, Y. Ekinci, N. A. Gippius, and S. G. Tikhodeev??, "Symmetry Breaking in a Plasmonic Metamaterial at Optical Wavelength," Nano. Lett. 8, 2171-2175 (2008).
[CrossRef] [PubMed]

A. Christ, T. Zentgraf, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, "Controlling the interaction between localized and delocalized surface plasmon modes: Experiment and numerical calculations," Phys. Rev. B. 74, 155435 (2006).
[CrossRef]

Tsai, D. P.

C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, S. C. Lee, and D. P. Tsai, "Angular independent infrared filter assisted by localized surface plasmon polariton," Photon. Technol. Lett. 20, 1103-1105 (2008).
[CrossRef]

C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, S. C. Lee, and D. P. Tsai, "Reflection and emission properties of an infrared emitter," Opt. Express,  15, 14673-14678 (2007).
[CrossRef] [PubMed]

Tsai, M. W.

C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, S. C. Lee, and D. P. Tsai, "Angular independent infrared filter assisted by localized surface plasmon polariton," Photon. Technol. Lett. 20, 1103-1105 (2008).
[CrossRef]

C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, S. C. Lee, and D. P. Tsai, "Reflection and emission properties of an infrared emitter," Opt. Express,  15, 14673-14678 (2007).
[CrossRef] [PubMed]

Wang, C. M.

C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, S. C. Lee, and D. P. Tsai, "Angular independent infrared filter assisted by localized surface plasmon polariton," Photon. Technol. Lett. 20, 1103-1105 (2008).
[CrossRef]

C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, S. C. Lee, and D. P. Tsai, "Reflection and emission properties of an infrared emitter," Opt. Express,  15, 14673-14678 (2007).
[CrossRef] [PubMed]

Wang, Y.

Y. Wang, ‘‘Wavelength selection with coupled surface plasmon waves,’’ Appl. Phys. Lett. 82, 4385-4387 (2003).
[CrossRef]

Wegener, M.

Ye, Y. H.

C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, S. C. Lee, and D. P. Tsai, "Angular independent infrared filter assisted by localized surface plasmon polariton," Photon. Technol. Lett. 20, 1103-1105 (2008).
[CrossRef]

C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, S. C. Lee, and D. P. Tsai, "Reflection and emission properties of an infrared emitter," Opt. Express,  15, 14673-14678 (2007).
[CrossRef] [PubMed]

Zentgraf, T.

A. Christ, T. Zentgraf, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, "Controlling the interaction between localized and delocalized surface plasmon modes: Experiment and numerical calculations," Phys. Rev. B. 74, 155435 (2006).
[CrossRef]

Zhang, S.

Zhou, J. F.

Appl. Phys. Lett

J. S. Q. Liu and M. L. Brongersma, "Omnidirectional light emission via surface plasmon polaritons," Appl. Phys. Lett,  90, 091116 (2007).
[CrossRef]

Appl. Phys. Lett.

Y. Wang, ‘‘Wavelength selection with coupled surface plasmon waves,’’ Appl. Phys. Lett. 82, 4385-4387 (2003).
[CrossRef]

J. Opt. Soc. Am. A

Nano. Lett.

A. Christ, O. J. F. Martin, Y. Ekinci, N. A. Gippius, and S. G. Tikhodeev??, "Symmetry Breaking in a Plasmonic Metamaterial at Optical Wavelength," Nano. Lett. 8, 2171-2175 (2008).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Photon. Technol. Lett.

C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, S. C. Lee, and D. P. Tsai, "Angular independent infrared filter assisted by localized surface plasmon polariton," Photon. Technol. Lett. 20, 1103-1105 (2008).
[CrossRef]

Phys. Rev. B

Y. Kurokawa and H. T. Miyazaki, "Metal-insulator-metal plasmon nanocavities: Analysis of optical properties," Phys. Rev. B 75, 035411 (2007).
[CrossRef]

Phys. Rev. B.

A. Christ, T. Zentgraf, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, "Controlling the interaction between localized and delocalized surface plasmon modes: Experiment and numerical calculations," Phys. Rev. B. 74, 155435 (2006).
[CrossRef]

Phys. Rev. Lett.

H. T. Miyazaki and Y. Kurokawa, "Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity," Phys. Rev. Lett. 96, 097401 (2006).
[CrossRef] [PubMed]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays," Phys. Rev. Lett. 86, 1114-1117 (2001).
[CrossRef] [PubMed]

S. Linden, M. Decker, and M. Wegener, "Model System for a One-Dimensional Magnetic Photonic Crystal," Phys. Rev. Lett. 97, 083902 (2006).
[CrossRef] [PubMed]

Other

S. A. Darmanyan and A. V. Zayats, "Light tunneling via resonant surface plasmon polariton states and the enhanced transmission of periodically nanostructured metal films: An analytical study," Phys. Rev. B 67, 035424-1-7 (2003).
[CrossRef]

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, Boston, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Basic geometry of the investigated spatial filter consisting of two plasmonic gratings cascading with a separation of tg .

Fig. 2.
Fig. 2.

(a) Polar plot of the specular reflection spectrum of the cascading plasmonic gratings. Five wavelengths from, 785nm to 865nm in step of 20nm, are simulated. (b) Hy 2 distribution within one pitch of the periodic structure at 825nm for θi =30° and (c) Hy 2 distribution within one pitch of the periodic structure at 825nm for θi =40°.

Fig. 3
Fig. 3

Color-scale images showing the zeroth-order far-field reflectance as a function of the photon energy and of the in-plane wavevector kx . The black line corresponds to the SP dispersion (on a flat surface) bent by the grating with G=-2π/Λ.

Fig. 4
Fig. 4

(a) Colour-scale images showing the zeroth-order far-field reflectance as a function of the photon energy and of the in-plane wavevector kx . (b) Hy 2 distribution within one pitch of the periodic structure at 825nm for θi =30°.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

k S P = k x + G

Metrics