Abstract

An electrooptical channel waveguide array was constructed in potassium lithium tantalate niobate substrate by the implantation of He+ ions at high energies. The array was fabricated by two successive implantation sessions at 1.6 MeV and 1.2 MeV through a comb-like stopping mask that limited the implanted ions to penetrate the substrate in 1 μm wide stripes periodically distributed at 3.5 μm intervals. This generated a grating of amorphized stripes with reduced refractive index. This was followed by a uniform implantation of He+ ions at 1.8 MeV which created a bottom cladding layer below the array. Wave propagation in the array was studied by focusing a light beam at 636 nm into the central channel, and observing the wavefront it created at the output plane of the array. It was found that applying an electric field across the array strongly affects the coupling between adjacent channels, and governs the width of the wavefront at the output plane.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Rimini, Ion Implantation: Basics to Device Fabrication (Kluwer Academic, Dordrecht, 1995), Chap. 3.
  2. A. Gumennik, A. J. Agranat, I. Shachar, and M. Hass, "Thermal stability of a slab waveguide implemented by particles implantation in potassium lithium tantalate niobate," Appl. Phys. Lett. 87, 251917 1-3 (2005).
    [CrossRef]
  3. H. Ilan, A. Gumennik, G. Perepelitsa, A. Israel, and A. J. Agranat, "Construction of an optical wire imprinted in potassium lithium tantalate niobate by He+ implantation," Appl. Phys. Lett. 92, 191101 1-3 (2008).
    [CrossRef]
  4. F. Chen, X.L. Wang, and K. M. Wang, "Development of ion-implanted optical waveguides in optical materials: A review," Opt. Mater. 29, 1523-1542 (2007).
    [CrossRef]
  5. D. Fluck, T. Pliska, P. Gunter, St. Bauer, L. Beckers, and Ch. Buchal, "Blue-light second-harmonic generation in ion-implanted KNbO3 channel waveguides of new design," Appl. Phys. Lett. 69, 4133-4135 (1996).
    [CrossRef]
  6. Y. Tan, F. Chen, L. Wang, X. L. Wang, K. M. Wang, and Q. M. Lu, "Optical Channel Waveguides in KTiOPO4 Crystal Produced by Proton Implantation," J. Lightwave. Technol. 26, 1304-1308 (2008).
  7. J.F. Ziegler, J.P. Biersack, U. Littmark, The stopping and range of ions in solids (Pergamon press, 1985), http://www.srim.org/.
  8. A. Gumennik, H. Ilan, R. Fathei, A. Israel, A. J. Agranat, I. Shachar, and M. Hass, "Design methodology of refractive index engineering by implantation of high-energy particles in electro-optic materials," Appl. Opt. 46, 4132-4137 (2007).
    [CrossRef] [PubMed]
  9. P. J. Chandler and F. L. Lama, "A new approach to determination of planar waveguide profiles by means of non stationary mode index calculation," Optica Acta 33, 127-143 (1986).
    [CrossRef]
  10. S. Somekh, E. Garmire, and A. Yariv, "Channel optical waveguide directional couplers," Appl. Phys. Lett. 22, 46-47 (1973).
    [CrossRef]
  11. E. A. J. Marcatili, "Dielectric rectangular waveguide and directional coupler for integrated optics," Bell. Syst. Tech. J. 48, 2909-2947 (1969).
  12. A. Bitman, N. Sapiens, L. Secundo, and A.J. Agranat, "Electroholographic tunable volume grating in the g44 configuration," Opt. Lett. 31, 2849-2851 (2006).
    [CrossRef] [PubMed]
  13. A. Guarino, G. Poberaj, D. Rezzonico, R. Degl'Innocenti, and P. Günter, "Electro-optically tunable microring resonators in lithium niobate," Nature Photon. 1, 407 - 410 (2007).
    [CrossRef]

2008

Y. Tan, F. Chen, L. Wang, X. L. Wang, K. M. Wang, and Q. M. Lu, "Optical Channel Waveguides in KTiOPO4 Crystal Produced by Proton Implantation," J. Lightwave. Technol. 26, 1304-1308 (2008).

2007

A. Gumennik, H. Ilan, R. Fathei, A. Israel, A. J. Agranat, I. Shachar, and M. Hass, "Design methodology of refractive index engineering by implantation of high-energy particles in electro-optic materials," Appl. Opt. 46, 4132-4137 (2007).
[CrossRef] [PubMed]

F. Chen, X.L. Wang, and K. M. Wang, "Development of ion-implanted optical waveguides in optical materials: A review," Opt. Mater. 29, 1523-1542 (2007).
[CrossRef]

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl'Innocenti, and P. Günter, "Electro-optically tunable microring resonators in lithium niobate," Nature Photon. 1, 407 - 410 (2007).
[CrossRef]

2006

1996

D. Fluck, T. Pliska, P. Gunter, St. Bauer, L. Beckers, and Ch. Buchal, "Blue-light second-harmonic generation in ion-implanted KNbO3 channel waveguides of new design," Appl. Phys. Lett. 69, 4133-4135 (1996).
[CrossRef]

1986

P. J. Chandler and F. L. Lama, "A new approach to determination of planar waveguide profiles by means of non stationary mode index calculation," Optica Acta 33, 127-143 (1986).
[CrossRef]

1973

S. Somekh, E. Garmire, and A. Yariv, "Channel optical waveguide directional couplers," Appl. Phys. Lett. 22, 46-47 (1973).
[CrossRef]

1969

E. A. J. Marcatili, "Dielectric rectangular waveguide and directional coupler for integrated optics," Bell. Syst. Tech. J. 48, 2909-2947 (1969).

Agranat, A. J.

Agranat, A.J.

Bauer, St.

D. Fluck, T. Pliska, P. Gunter, St. Bauer, L. Beckers, and Ch. Buchal, "Blue-light second-harmonic generation in ion-implanted KNbO3 channel waveguides of new design," Appl. Phys. Lett. 69, 4133-4135 (1996).
[CrossRef]

Beckers, L.

D. Fluck, T. Pliska, P. Gunter, St. Bauer, L. Beckers, and Ch. Buchal, "Blue-light second-harmonic generation in ion-implanted KNbO3 channel waveguides of new design," Appl. Phys. Lett. 69, 4133-4135 (1996).
[CrossRef]

Bitman, A.

Buchal, Ch.

D. Fluck, T. Pliska, P. Gunter, St. Bauer, L. Beckers, and Ch. Buchal, "Blue-light second-harmonic generation in ion-implanted KNbO3 channel waveguides of new design," Appl. Phys. Lett. 69, 4133-4135 (1996).
[CrossRef]

Chandler, P. J.

P. J. Chandler and F. L. Lama, "A new approach to determination of planar waveguide profiles by means of non stationary mode index calculation," Optica Acta 33, 127-143 (1986).
[CrossRef]

Chen, F.

Y. Tan, F. Chen, L. Wang, X. L. Wang, K. M. Wang, and Q. M. Lu, "Optical Channel Waveguides in KTiOPO4 Crystal Produced by Proton Implantation," J. Lightwave. Technol. 26, 1304-1308 (2008).

F. Chen, X.L. Wang, and K. M. Wang, "Development of ion-implanted optical waveguides in optical materials: A review," Opt. Mater. 29, 1523-1542 (2007).
[CrossRef]

Fathei, R.

Fluck, D.

D. Fluck, T. Pliska, P. Gunter, St. Bauer, L. Beckers, and Ch. Buchal, "Blue-light second-harmonic generation in ion-implanted KNbO3 channel waveguides of new design," Appl. Phys. Lett. 69, 4133-4135 (1996).
[CrossRef]

Garmire, E.

S. Somekh, E. Garmire, and A. Yariv, "Channel optical waveguide directional couplers," Appl. Phys. Lett. 22, 46-47 (1973).
[CrossRef]

Guarino, A.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl'Innocenti, and P. Günter, "Electro-optically tunable microring resonators in lithium niobate," Nature Photon. 1, 407 - 410 (2007).
[CrossRef]

Gumennik, A.

Gunter, P.

D. Fluck, T. Pliska, P. Gunter, St. Bauer, L. Beckers, and Ch. Buchal, "Blue-light second-harmonic generation in ion-implanted KNbO3 channel waveguides of new design," Appl. Phys. Lett. 69, 4133-4135 (1996).
[CrossRef]

Hass, M.

Ilan, H.

Israel, A.

Lama, F. L.

P. J. Chandler and F. L. Lama, "A new approach to determination of planar waveguide profiles by means of non stationary mode index calculation," Optica Acta 33, 127-143 (1986).
[CrossRef]

Lu, Q. M.

Y. Tan, F. Chen, L. Wang, X. L. Wang, K. M. Wang, and Q. M. Lu, "Optical Channel Waveguides in KTiOPO4 Crystal Produced by Proton Implantation," J. Lightwave. Technol. 26, 1304-1308 (2008).

Marcatili, E. A. J.

E. A. J. Marcatili, "Dielectric rectangular waveguide and directional coupler for integrated optics," Bell. Syst. Tech. J. 48, 2909-2947 (1969).

Pliska, T.

D. Fluck, T. Pliska, P. Gunter, St. Bauer, L. Beckers, and Ch. Buchal, "Blue-light second-harmonic generation in ion-implanted KNbO3 channel waveguides of new design," Appl. Phys. Lett. 69, 4133-4135 (1996).
[CrossRef]

Poberaj, G.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl'Innocenti, and P. Günter, "Electro-optically tunable microring resonators in lithium niobate," Nature Photon. 1, 407 - 410 (2007).
[CrossRef]

Rezzonico, D.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl'Innocenti, and P. Günter, "Electro-optically tunable microring resonators in lithium niobate," Nature Photon. 1, 407 - 410 (2007).
[CrossRef]

Sapiens, N.

Secundo, L.

Shachar, I.

Somekh, S.

S. Somekh, E. Garmire, and A. Yariv, "Channel optical waveguide directional couplers," Appl. Phys. Lett. 22, 46-47 (1973).
[CrossRef]

Tan, Y.

Y. Tan, F. Chen, L. Wang, X. L. Wang, K. M. Wang, and Q. M. Lu, "Optical Channel Waveguides in KTiOPO4 Crystal Produced by Proton Implantation," J. Lightwave. Technol. 26, 1304-1308 (2008).

Wang, K. M.

Y. Tan, F. Chen, L. Wang, X. L. Wang, K. M. Wang, and Q. M. Lu, "Optical Channel Waveguides in KTiOPO4 Crystal Produced by Proton Implantation," J. Lightwave. Technol. 26, 1304-1308 (2008).

F. Chen, X.L. Wang, and K. M. Wang, "Development of ion-implanted optical waveguides in optical materials: A review," Opt. Mater. 29, 1523-1542 (2007).
[CrossRef]

Wang, L.

Y. Tan, F. Chen, L. Wang, X. L. Wang, K. M. Wang, and Q. M. Lu, "Optical Channel Waveguides in KTiOPO4 Crystal Produced by Proton Implantation," J. Lightwave. Technol. 26, 1304-1308 (2008).

Wang, X. L.

Y. Tan, F. Chen, L. Wang, X. L. Wang, K. M. Wang, and Q. M. Lu, "Optical Channel Waveguides in KTiOPO4 Crystal Produced by Proton Implantation," J. Lightwave. Technol. 26, 1304-1308 (2008).

Wang, X.L.

F. Chen, X.L. Wang, and K. M. Wang, "Development of ion-implanted optical waveguides in optical materials: A review," Opt. Mater. 29, 1523-1542 (2007).
[CrossRef]

Yariv, A.

S. Somekh, E. Garmire, and A. Yariv, "Channel optical waveguide directional couplers," Appl. Phys. Lett. 22, 46-47 (1973).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

S. Somekh, E. Garmire, and A. Yariv, "Channel optical waveguide directional couplers," Appl. Phys. Lett. 22, 46-47 (1973).
[CrossRef]

D. Fluck, T. Pliska, P. Gunter, St. Bauer, L. Beckers, and Ch. Buchal, "Blue-light second-harmonic generation in ion-implanted KNbO3 channel waveguides of new design," Appl. Phys. Lett. 69, 4133-4135 (1996).
[CrossRef]

Bell. Syst. Tech. J.

E. A. J. Marcatili, "Dielectric rectangular waveguide and directional coupler for integrated optics," Bell. Syst. Tech. J. 48, 2909-2947 (1969).

J. Lightwave. Technol.

Y. Tan, F. Chen, L. Wang, X. L. Wang, K. M. Wang, and Q. M. Lu, "Optical Channel Waveguides in KTiOPO4 Crystal Produced by Proton Implantation," J. Lightwave. Technol. 26, 1304-1308 (2008).

Nature Photon.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl'Innocenti, and P. Günter, "Electro-optically tunable microring resonators in lithium niobate," Nature Photon. 1, 407 - 410 (2007).
[CrossRef]

Opt. Lett.

Opt. Mater.

F. Chen, X.L. Wang, and K. M. Wang, "Development of ion-implanted optical waveguides in optical materials: A review," Opt. Mater. 29, 1523-1542 (2007).
[CrossRef]

Optica Acta

P. J. Chandler and F. L. Lama, "A new approach to determination of planar waveguide profiles by means of non stationary mode index calculation," Optica Acta 33, 127-143 (1986).
[CrossRef]

Other

J.F. Ziegler, J.P. Biersack, U. Littmark, The stopping and range of ions in solids (Pergamon press, 1985), http://www.srim.org/.

E. Rimini, Ion Implantation: Basics to Device Fabrication (Kluwer Academic, Dordrecht, 1995), Chap. 3.

A. Gumennik, A. J. Agranat, I. Shachar, and M. Hass, "Thermal stability of a slab waveguide implemented by particles implantation in potassium lithium tantalate niobate," Appl. Phys. Lett. 87, 251917 1-3 (2005).
[CrossRef]

H. Ilan, A. Gumennik, G. Perepelitsa, A. Israel, and A. J. Agranat, "Construction of an optical wire imprinted in potassium lithium tantalate niobate by He+ implantation," Appl. Phys. Lett. 92, 191101 1-3 (2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic description of the channel array

Fig. 2.
Fig. 2.

Process flow for the construction of the channel array

Fig. 3.
Fig. 3.

The expected RI profile + TE basic mode field under the SU8 (inter-channel cladding) half period (left) and under the Au (channel core) half period (right) of the stopping mask. Solid line stands for RI distribution as function of the depth, dashed - for the basic TE mode field distribution and dotted arrow points out to the effective RI of the mode in the relevant half period.

Fig. 4.
Fig. 4.

Intensity distribution in a channel array waveguide with parameters as expected from the RI-Eng design at 633nm wavelength

Fig. 5.
Fig. 5.

(a) View of the front end of the channel array waveguide illuminated from the back by a white light source. Silica spacers were attached to the top of the array at the front and back ends. The spacers were a 150 μm thick and 1.5 mm wide, and were attached to the substrate by a ~10 μm thick transparent epoxy layer. (b) Enlarged image of the front end central section of the array with inverse log scale of the intensity.

Fig. 6.
Fig. 6.

The measured and the processed intensity distributions in the output plane of the device at different voltages (solid black + symbol) and the respective fits of (5) (solid red). The intensity on the snapshots is inverse-log scaled by the image processing software of the CCD camera; the fits of (5) were converted to inverse-log scale respectively.

Fig. 7.
Fig. 7.

The RI contrast between the core and the inter-channel cladding in a single channel of the array for 2 dominant modes.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

d E m ( z ) dz = E m 1 ( z ) E m + 1 ( z ) α 2 E m ( z ) ,
E m ( z ) = ( i ) m J m ( 2 κz ) exp ( 1 2 αz ) ,
κ = 2 k x 2 q x exp ( q x d ) k z a ( q x 2 + k x 2 ) ,
Δ n = n 0 3 g eff ε 2 E 2 ,
I ( x , z ) = l = 1 2 ( A l m = 10 10 ( i ) m J m ( 2 κ l z ) exp ( 1 2 αz ) exp ( ( x md ) 2 σ 2 ) ) 2 .

Metrics