Abstract

Our anisotropic rate equation model outlines the relationship between the relaxation dynamics in a four-level solid-state laser and its anisotropic gain properties. Anisotropic pump rates and stimulated emission cross-sections were included to account for specific atom orientations in the gain material. The model is compared with experimental measurements of two relaxation oscillation frequencies which are related to the anisotropic atom-laser interaction in orthogonally polarized dual-mode lasers. The model predicts that crystal orientation and pump polarization affect the laser operation characteristics, as found experimentally. The gain anisotropy influences the fast laser dynamics, as in single-mode relaxation oscillations.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. L. Tang, H. Statz, and G. deMars, "Spectral output and spiking behavior of solid-state lasers," J. Appl. Phys. 34, 2289-2295 (1963).
    [CrossRef]
  2. K. Wiesenfeld, C. Bracikowski, G. James, and R. Roy, "Observation of anti-phase state in a multimode laser," Phys. Rev. Lett. 65, 1749-1752 (1990).
    [CrossRef] [PubMed]
  3. K. Otsuka, P. Mandel, S. Bielawski, D. Derozier, and P. Glorieux, "Alternate time scale in multimode lasers," Phys. Rev. A 46, 1692-1695 (1992).
    [CrossRef] [PubMed]
  4. S. Bielawski, D. Derozier, and P. Glorieux, "Anti-phase dynamics and polarization effects in the Nd-doped fiber laser," Phys. Rev. A 46, 2811-2822 (1992).
    [CrossRef] [PubMed]
  5. T. Hill, L. Stamatescu, and M. W. Hamilton, "Method for determining anti-phase dynamics in a multimode laser," Phys. Rev. E. 61, R4718-R4721 (2000).
    [CrossRef]
  6. A. McKay, P. Dekker, D. W. Coutts, and J. M. Dawes, "Enhanced self-heterodyne performance of dual-polarization lasers using a Nd-doped ceramic YAG laser," Opt. Commun. 272, 425-430 (2007).
    [CrossRef]
  7. A. McKay, J. M. Dawes, and J. D. Park, "Polarization-mode coupling in (100)-cut Nd:YAG," Opt. Express 15, 16342-16347 (2007).
    [CrossRef] [PubMed]
  8. Q. Zhang, B. Feng, D. Zhang, P. Fu, Z. Zhang, Z. Zhao, P. Deng, J. Xu, X. Xu, Y. Wang, and X. Ma, "Anti-phase state in a passively Q-switched Yb:YAG microchip multimode lasers with a saturable absorber GaAs," Phys. Rev. A 69, 053815(2004).
    [CrossRef]
  9. M. Brunel, A. Amon, and M. Vallet, "Dual-polarization microchip laser at 1.53 µm," Opt. Lett. 30, 2418-2420 (2005).
    [CrossRef] [PubMed]
  10. C. Masoller, M. S. Torre, and P. Mandel, "Anti-phase dynamics in multimode semiconductor lasers with optical feedback," Phys. Rev. A 71, 013818 (2005).
    [CrossRef]
  11. B. Peters, J. Hunkemeier, V. M. Baev, and Y. I. Khanin, "Low-frequency dynamics of a Nd-doped glass laser," Phys. Rev. A 64, 023816 (2001).
    [CrossRef]
  12. M. Sargent, III, M. O. Scully, and W. E. Lamb, Laser Physics (Addison-Wesley, Massachusetts, 1974).
  13. M. Alouini, F. Bretenaker, M. Brunel, A. Floch, M. Vallet, and P. Thony, "Existence of two coupling constants in microchip lasers," Opt. Lett. 25, 896-898 (2000).
    [CrossRef]
  14. E. Lacot and F. Stoeckel, "Nonlinear mode coupling in a microchip laser," J. Opt. Soc. Am. B 13, 2034-2040 (1996).
    [CrossRef]
  15. P. Dekker and J. M. Dawes, "Pulsed output from a dual-polarization cw diode-pumped Nd:YAG laser," J. Opt. Soc. Am. B 15, 247-251 (1998).
    [CrossRef]
  16. Q1. G. Bouwmans, B. Segard, P. Glorieux, P. Khandokhin, N. Milovsky, and E. Shirokov, "Polarization dynamics of longitudinally monomode bipolarized solid-state lasers," Radiophys. Quantum Electron. 47, 729-742 (2004).
    [CrossRef]
  17. I. V. Ievlev, P. A. Khandokhin, and E. Yu. Shirokov, "Polarization dynamics of single-longitudinal-mode Nd:YAG lasers with a weakly anisotropic cavity," Quantum Electron. 36, 228-232 (2006).
    [CrossRef]
  18. K. Otsuka, "Oscillation properties of anisotropic lasers," IEEE J. Quantum Electron. 14, 49-55 (1978).
    [CrossRef]
  19. H. Zeghlache and A. Boulnois, "Polarization instability in lasers. I. Model and steady states of neodymium-doped fiber lasers," Phys. Rev. A 52, 4229-4242 (1995).
    [CrossRef] [PubMed]
  20. M. Brunel, O. Emile, M. Alouini, A. L. Floch, and F. Bretenaker, "Experimental and theoretical study of longitudinally monomode vectorial solid-state lasers," Phys. Rev. A 59, 831-840 (1999).
    [CrossRef]
  21. P. A. Khandokhin, P. A. Mandel, I. V. Koryukin, B. A. Nguyen, and Y. I. Khanin, "Disappearance of relaxation oscillation frequencies in a multimode solid-state laser," Phys. Lett. A 235, 248-252 (1997).
    [CrossRef]
  22. J. L. Wagener, D. G. Falquier, M. J. F. Digonnet, and H. J. Shaw, "A Mueller matrix formalism for modeling polarization effects in Erbium-doped fiber," J. Lightwave Technol. 16, 200-206 (1998).
    [CrossRef]
  23. R. Dalgliesh, A. D. May, and G. Stephan, "Polarization states of a single-mode (microchip) Nd3+:YAG laser-Part I: Theory," IEEE J. Quantum Electron. 34, 1485-1492 (1998).
    [CrossRef]
  24. R. Dalgliesh, A. D. May, and G. Stephan, "Polarization states of a single-mode (microchip) Nd3+:YAG laser-Part II: Comparison of theory and experiment," IEEE J. Quantum Electron. 34, 1493-1502 (1998).
    [CrossRef]
  25. J. Degnan, "Theory of optimally coupled Q-switched lasers," IEEE J. Quantum Electron. 25, 214-220 (1989).
    [CrossRef]
  26. R. Kawai, Y. Asakawa, and K Otsuka, "Simultaneous single-frequency oscillations on different transitions in laser-diode-pumped microchip LiNdP4O12 lasers" IEEE J Quantum Electron. 35, 1542-1547 (1999).
    [CrossRef]
  27. K. J. Weingarten, B. Braun, and U. Keller, "In situ small-signal gain of solid-state lasers determined from relaxation oscillation frequency measurements," Opt. Lett. 19, 1140-1142 (1994).
    [PubMed]

2007

A. McKay, P. Dekker, D. W. Coutts, and J. M. Dawes, "Enhanced self-heterodyne performance of dual-polarization lasers using a Nd-doped ceramic YAG laser," Opt. Commun. 272, 425-430 (2007).
[CrossRef]

A. McKay, J. M. Dawes, and J. D. Park, "Polarization-mode coupling in (100)-cut Nd:YAG," Opt. Express 15, 16342-16347 (2007).
[CrossRef] [PubMed]

2006

I. V. Ievlev, P. A. Khandokhin, and E. Yu. Shirokov, "Polarization dynamics of single-longitudinal-mode Nd:YAG lasers with a weakly anisotropic cavity," Quantum Electron. 36, 228-232 (2006).
[CrossRef]

2005

C. Masoller, M. S. Torre, and P. Mandel, "Anti-phase dynamics in multimode semiconductor lasers with optical feedback," Phys. Rev. A 71, 013818 (2005).
[CrossRef]

M. Brunel, A. Amon, and M. Vallet, "Dual-polarization microchip laser at 1.53 µm," Opt. Lett. 30, 2418-2420 (2005).
[CrossRef] [PubMed]

2004

Q. Zhang, B. Feng, D. Zhang, P. Fu, Z. Zhang, Z. Zhao, P. Deng, J. Xu, X. Xu, Y. Wang, and X. Ma, "Anti-phase state in a passively Q-switched Yb:YAG microchip multimode lasers with a saturable absorber GaAs," Phys. Rev. A 69, 053815(2004).
[CrossRef]

Q1. G. Bouwmans, B. Segard, P. Glorieux, P. Khandokhin, N. Milovsky, and E. Shirokov, "Polarization dynamics of longitudinally monomode bipolarized solid-state lasers," Radiophys. Quantum Electron. 47, 729-742 (2004).
[CrossRef]

2001

B. Peters, J. Hunkemeier, V. M. Baev, and Y. I. Khanin, "Low-frequency dynamics of a Nd-doped glass laser," Phys. Rev. A 64, 023816 (2001).
[CrossRef]

2000

T. Hill, L. Stamatescu, and M. W. Hamilton, "Method for determining anti-phase dynamics in a multimode laser," Phys. Rev. E. 61, R4718-R4721 (2000).
[CrossRef]

M. Alouini, F. Bretenaker, M. Brunel, A. Floch, M. Vallet, and P. Thony, "Existence of two coupling constants in microchip lasers," Opt. Lett. 25, 896-898 (2000).
[CrossRef]

1999

M. Brunel, O. Emile, M. Alouini, A. L. Floch, and F. Bretenaker, "Experimental and theoretical study of longitudinally monomode vectorial solid-state lasers," Phys. Rev. A 59, 831-840 (1999).
[CrossRef]

R. Kawai, Y. Asakawa, and K Otsuka, "Simultaneous single-frequency oscillations on different transitions in laser-diode-pumped microchip LiNdP4O12 lasers" IEEE J Quantum Electron. 35, 1542-1547 (1999).
[CrossRef]

1998

R. Dalgliesh, A. D. May, and G. Stephan, "Polarization states of a single-mode (microchip) Nd3+:YAG laser-Part I: Theory," IEEE J. Quantum Electron. 34, 1485-1492 (1998).
[CrossRef]

R. Dalgliesh, A. D. May, and G. Stephan, "Polarization states of a single-mode (microchip) Nd3+:YAG laser-Part II: Comparison of theory and experiment," IEEE J. Quantum Electron. 34, 1493-1502 (1998).
[CrossRef]

P. Dekker and J. M. Dawes, "Pulsed output from a dual-polarization cw diode-pumped Nd:YAG laser," J. Opt. Soc. Am. B 15, 247-251 (1998).
[CrossRef]

J. L. Wagener, D. G. Falquier, M. J. F. Digonnet, and H. J. Shaw, "A Mueller matrix formalism for modeling polarization effects in Erbium-doped fiber," J. Lightwave Technol. 16, 200-206 (1998).
[CrossRef]

1997

P. A. Khandokhin, P. A. Mandel, I. V. Koryukin, B. A. Nguyen, and Y. I. Khanin, "Disappearance of relaxation oscillation frequencies in a multimode solid-state laser," Phys. Lett. A 235, 248-252 (1997).
[CrossRef]

1996

1995

H. Zeghlache and A. Boulnois, "Polarization instability in lasers. I. Model and steady states of neodymium-doped fiber lasers," Phys. Rev. A 52, 4229-4242 (1995).
[CrossRef] [PubMed]

1994

1992

K. Otsuka, P. Mandel, S. Bielawski, D. Derozier, and P. Glorieux, "Alternate time scale in multimode lasers," Phys. Rev. A 46, 1692-1695 (1992).
[CrossRef] [PubMed]

S. Bielawski, D. Derozier, and P. Glorieux, "Anti-phase dynamics and polarization effects in the Nd-doped fiber laser," Phys. Rev. A 46, 2811-2822 (1992).
[CrossRef] [PubMed]

1990

K. Wiesenfeld, C. Bracikowski, G. James, and R. Roy, "Observation of anti-phase state in a multimode laser," Phys. Rev. Lett. 65, 1749-1752 (1990).
[CrossRef] [PubMed]

1989

J. Degnan, "Theory of optimally coupled Q-switched lasers," IEEE J. Quantum Electron. 25, 214-220 (1989).
[CrossRef]

1978

K. Otsuka, "Oscillation properties of anisotropic lasers," IEEE J. Quantum Electron. 14, 49-55 (1978).
[CrossRef]

1963

C. L. Tang, H. Statz, and G. deMars, "Spectral output and spiking behavior of solid-state lasers," J. Appl. Phys. 34, 2289-2295 (1963).
[CrossRef]

Alouini, M.

M. Alouini, F. Bretenaker, M. Brunel, A. Floch, M. Vallet, and P. Thony, "Existence of two coupling constants in microchip lasers," Opt. Lett. 25, 896-898 (2000).
[CrossRef]

M. Brunel, O. Emile, M. Alouini, A. L. Floch, and F. Bretenaker, "Experimental and theoretical study of longitudinally monomode vectorial solid-state lasers," Phys. Rev. A 59, 831-840 (1999).
[CrossRef]

Amon, A.

Asakawa, Y.

R. Kawai, Y. Asakawa, and K Otsuka, "Simultaneous single-frequency oscillations on different transitions in laser-diode-pumped microchip LiNdP4O12 lasers" IEEE J Quantum Electron. 35, 1542-1547 (1999).
[CrossRef]

Baev, V. M.

B. Peters, J. Hunkemeier, V. M. Baev, and Y. I. Khanin, "Low-frequency dynamics of a Nd-doped glass laser," Phys. Rev. A 64, 023816 (2001).
[CrossRef]

Bielawski, S.

S. Bielawski, D. Derozier, and P. Glorieux, "Anti-phase dynamics and polarization effects in the Nd-doped fiber laser," Phys. Rev. A 46, 2811-2822 (1992).
[CrossRef] [PubMed]

K. Otsuka, P. Mandel, S. Bielawski, D. Derozier, and P. Glorieux, "Alternate time scale in multimode lasers," Phys. Rev. A 46, 1692-1695 (1992).
[CrossRef] [PubMed]

Boulnois, A.

H. Zeghlache and A. Boulnois, "Polarization instability in lasers. I. Model and steady states of neodymium-doped fiber lasers," Phys. Rev. A 52, 4229-4242 (1995).
[CrossRef] [PubMed]

Bouwmans, G.

Q1. G. Bouwmans, B. Segard, P. Glorieux, P. Khandokhin, N. Milovsky, and E. Shirokov, "Polarization dynamics of longitudinally monomode bipolarized solid-state lasers," Radiophys. Quantum Electron. 47, 729-742 (2004).
[CrossRef]

Bracikowski, C.

K. Wiesenfeld, C. Bracikowski, G. James, and R. Roy, "Observation of anti-phase state in a multimode laser," Phys. Rev. Lett. 65, 1749-1752 (1990).
[CrossRef] [PubMed]

Braun, B.

Bretenaker, F.

M. Alouini, F. Bretenaker, M. Brunel, A. Floch, M. Vallet, and P. Thony, "Existence of two coupling constants in microchip lasers," Opt. Lett. 25, 896-898 (2000).
[CrossRef]

M. Brunel, O. Emile, M. Alouini, A. L. Floch, and F. Bretenaker, "Experimental and theoretical study of longitudinally monomode vectorial solid-state lasers," Phys. Rev. A 59, 831-840 (1999).
[CrossRef]

Brunel, M.

Coutts, D. W.

A. McKay, P. Dekker, D. W. Coutts, and J. M. Dawes, "Enhanced self-heterodyne performance of dual-polarization lasers using a Nd-doped ceramic YAG laser," Opt. Commun. 272, 425-430 (2007).
[CrossRef]

Dalgliesh, R.

R. Dalgliesh, A. D. May, and G. Stephan, "Polarization states of a single-mode (microchip) Nd3+:YAG laser-Part I: Theory," IEEE J. Quantum Electron. 34, 1485-1492 (1998).
[CrossRef]

R. Dalgliesh, A. D. May, and G. Stephan, "Polarization states of a single-mode (microchip) Nd3+:YAG laser-Part II: Comparison of theory and experiment," IEEE J. Quantum Electron. 34, 1493-1502 (1998).
[CrossRef]

Dawes, J. M.

Degnan, J.

J. Degnan, "Theory of optimally coupled Q-switched lasers," IEEE J. Quantum Electron. 25, 214-220 (1989).
[CrossRef]

Dekker, P.

A. McKay, P. Dekker, D. W. Coutts, and J. M. Dawes, "Enhanced self-heterodyne performance of dual-polarization lasers using a Nd-doped ceramic YAG laser," Opt. Commun. 272, 425-430 (2007).
[CrossRef]

P. Dekker and J. M. Dawes, "Pulsed output from a dual-polarization cw diode-pumped Nd:YAG laser," J. Opt. Soc. Am. B 15, 247-251 (1998).
[CrossRef]

deMars, G.

C. L. Tang, H. Statz, and G. deMars, "Spectral output and spiking behavior of solid-state lasers," J. Appl. Phys. 34, 2289-2295 (1963).
[CrossRef]

Deng, P.

Q. Zhang, B. Feng, D. Zhang, P. Fu, Z. Zhang, Z. Zhao, P. Deng, J. Xu, X. Xu, Y. Wang, and X. Ma, "Anti-phase state in a passively Q-switched Yb:YAG microchip multimode lasers with a saturable absorber GaAs," Phys. Rev. A 69, 053815(2004).
[CrossRef]

Derozier, D.

S. Bielawski, D. Derozier, and P. Glorieux, "Anti-phase dynamics and polarization effects in the Nd-doped fiber laser," Phys. Rev. A 46, 2811-2822 (1992).
[CrossRef] [PubMed]

K. Otsuka, P. Mandel, S. Bielawski, D. Derozier, and P. Glorieux, "Alternate time scale in multimode lasers," Phys. Rev. A 46, 1692-1695 (1992).
[CrossRef] [PubMed]

Digonnet, M. J. F.

Emile, O.

M. Brunel, O. Emile, M. Alouini, A. L. Floch, and F. Bretenaker, "Experimental and theoretical study of longitudinally monomode vectorial solid-state lasers," Phys. Rev. A 59, 831-840 (1999).
[CrossRef]

Falquier, D. G.

Feng, B.

Q. Zhang, B. Feng, D. Zhang, P. Fu, Z. Zhang, Z. Zhao, P. Deng, J. Xu, X. Xu, Y. Wang, and X. Ma, "Anti-phase state in a passively Q-switched Yb:YAG microchip multimode lasers with a saturable absorber GaAs," Phys. Rev. A 69, 053815(2004).
[CrossRef]

Floch, A.

Floch, A. L.

M. Brunel, O. Emile, M. Alouini, A. L. Floch, and F. Bretenaker, "Experimental and theoretical study of longitudinally monomode vectorial solid-state lasers," Phys. Rev. A 59, 831-840 (1999).
[CrossRef]

Fu, P.

Q. Zhang, B. Feng, D. Zhang, P. Fu, Z. Zhang, Z. Zhao, P. Deng, J. Xu, X. Xu, Y. Wang, and X. Ma, "Anti-phase state in a passively Q-switched Yb:YAG microchip multimode lasers with a saturable absorber GaAs," Phys. Rev. A 69, 053815(2004).
[CrossRef]

Glorieux, P.

Q1. G. Bouwmans, B. Segard, P. Glorieux, P. Khandokhin, N. Milovsky, and E. Shirokov, "Polarization dynamics of longitudinally monomode bipolarized solid-state lasers," Radiophys. Quantum Electron. 47, 729-742 (2004).
[CrossRef]

S. Bielawski, D. Derozier, and P. Glorieux, "Anti-phase dynamics and polarization effects in the Nd-doped fiber laser," Phys. Rev. A 46, 2811-2822 (1992).
[CrossRef] [PubMed]

K. Otsuka, P. Mandel, S. Bielawski, D. Derozier, and P. Glorieux, "Alternate time scale in multimode lasers," Phys. Rev. A 46, 1692-1695 (1992).
[CrossRef] [PubMed]

Hamilton, M. W.

T. Hill, L. Stamatescu, and M. W. Hamilton, "Method for determining anti-phase dynamics in a multimode laser," Phys. Rev. E. 61, R4718-R4721 (2000).
[CrossRef]

Hill, T.

T. Hill, L. Stamatescu, and M. W. Hamilton, "Method for determining anti-phase dynamics in a multimode laser," Phys. Rev. E. 61, R4718-R4721 (2000).
[CrossRef]

Hunkemeier, J.

B. Peters, J. Hunkemeier, V. M. Baev, and Y. I. Khanin, "Low-frequency dynamics of a Nd-doped glass laser," Phys. Rev. A 64, 023816 (2001).
[CrossRef]

Ievlev, I. V.

I. V. Ievlev, P. A. Khandokhin, and E. Yu. Shirokov, "Polarization dynamics of single-longitudinal-mode Nd:YAG lasers with a weakly anisotropic cavity," Quantum Electron. 36, 228-232 (2006).
[CrossRef]

James, G.

K. Wiesenfeld, C. Bracikowski, G. James, and R. Roy, "Observation of anti-phase state in a multimode laser," Phys. Rev. Lett. 65, 1749-1752 (1990).
[CrossRef] [PubMed]

Kawai, R.

R. Kawai, Y. Asakawa, and K Otsuka, "Simultaneous single-frequency oscillations on different transitions in laser-diode-pumped microchip LiNdP4O12 lasers" IEEE J Quantum Electron. 35, 1542-1547 (1999).
[CrossRef]

Keller, U.

Khandokhin, P.

Q1. G. Bouwmans, B. Segard, P. Glorieux, P. Khandokhin, N. Milovsky, and E. Shirokov, "Polarization dynamics of longitudinally monomode bipolarized solid-state lasers," Radiophys. Quantum Electron. 47, 729-742 (2004).
[CrossRef]

Khandokhin, P. A.

I. V. Ievlev, P. A. Khandokhin, and E. Yu. Shirokov, "Polarization dynamics of single-longitudinal-mode Nd:YAG lasers with a weakly anisotropic cavity," Quantum Electron. 36, 228-232 (2006).
[CrossRef]

P. A. Khandokhin, P. A. Mandel, I. V. Koryukin, B. A. Nguyen, and Y. I. Khanin, "Disappearance of relaxation oscillation frequencies in a multimode solid-state laser," Phys. Lett. A 235, 248-252 (1997).
[CrossRef]

Khanin, Y. I.

B. Peters, J. Hunkemeier, V. M. Baev, and Y. I. Khanin, "Low-frequency dynamics of a Nd-doped glass laser," Phys. Rev. A 64, 023816 (2001).
[CrossRef]

P. A. Khandokhin, P. A. Mandel, I. V. Koryukin, B. A. Nguyen, and Y. I. Khanin, "Disappearance of relaxation oscillation frequencies in a multimode solid-state laser," Phys. Lett. A 235, 248-252 (1997).
[CrossRef]

Koryukin, I. V.

P. A. Khandokhin, P. A. Mandel, I. V. Koryukin, B. A. Nguyen, and Y. I. Khanin, "Disappearance of relaxation oscillation frequencies in a multimode solid-state laser," Phys. Lett. A 235, 248-252 (1997).
[CrossRef]

Lacot, E.

Ma, X.

Q. Zhang, B. Feng, D. Zhang, P. Fu, Z. Zhang, Z. Zhao, P. Deng, J. Xu, X. Xu, Y. Wang, and X. Ma, "Anti-phase state in a passively Q-switched Yb:YAG microchip multimode lasers with a saturable absorber GaAs," Phys. Rev. A 69, 053815(2004).
[CrossRef]

Mandel, P.

C. Masoller, M. S. Torre, and P. Mandel, "Anti-phase dynamics in multimode semiconductor lasers with optical feedback," Phys. Rev. A 71, 013818 (2005).
[CrossRef]

K. Otsuka, P. Mandel, S. Bielawski, D. Derozier, and P. Glorieux, "Alternate time scale in multimode lasers," Phys. Rev. A 46, 1692-1695 (1992).
[CrossRef] [PubMed]

Mandel, P. A.

P. A. Khandokhin, P. A. Mandel, I. V. Koryukin, B. A. Nguyen, and Y. I. Khanin, "Disappearance of relaxation oscillation frequencies in a multimode solid-state laser," Phys. Lett. A 235, 248-252 (1997).
[CrossRef]

Masoller, C.

C. Masoller, M. S. Torre, and P. Mandel, "Anti-phase dynamics in multimode semiconductor lasers with optical feedback," Phys. Rev. A 71, 013818 (2005).
[CrossRef]

May, A. D.

R. Dalgliesh, A. D. May, and G. Stephan, "Polarization states of a single-mode (microchip) Nd3+:YAG laser-Part I: Theory," IEEE J. Quantum Electron. 34, 1485-1492 (1998).
[CrossRef]

R. Dalgliesh, A. D. May, and G. Stephan, "Polarization states of a single-mode (microchip) Nd3+:YAG laser-Part II: Comparison of theory and experiment," IEEE J. Quantum Electron. 34, 1493-1502 (1998).
[CrossRef]

McKay, A.

A. McKay, J. M. Dawes, and J. D. Park, "Polarization-mode coupling in (100)-cut Nd:YAG," Opt. Express 15, 16342-16347 (2007).
[CrossRef] [PubMed]

A. McKay, P. Dekker, D. W. Coutts, and J. M. Dawes, "Enhanced self-heterodyne performance of dual-polarization lasers using a Nd-doped ceramic YAG laser," Opt. Commun. 272, 425-430 (2007).
[CrossRef]

Milovsky, N.

Q1. G. Bouwmans, B. Segard, P. Glorieux, P. Khandokhin, N. Milovsky, and E. Shirokov, "Polarization dynamics of longitudinally monomode bipolarized solid-state lasers," Radiophys. Quantum Electron. 47, 729-742 (2004).
[CrossRef]

Nguyen, B. A.

P. A. Khandokhin, P. A. Mandel, I. V. Koryukin, B. A. Nguyen, and Y. I. Khanin, "Disappearance of relaxation oscillation frequencies in a multimode solid-state laser," Phys. Lett. A 235, 248-252 (1997).
[CrossRef]

Otsuka, K

R. Kawai, Y. Asakawa, and K Otsuka, "Simultaneous single-frequency oscillations on different transitions in laser-diode-pumped microchip LiNdP4O12 lasers" IEEE J Quantum Electron. 35, 1542-1547 (1999).
[CrossRef]

Otsuka, K.

K. Otsuka, P. Mandel, S. Bielawski, D. Derozier, and P. Glorieux, "Alternate time scale in multimode lasers," Phys. Rev. A 46, 1692-1695 (1992).
[CrossRef] [PubMed]

K. Otsuka, "Oscillation properties of anisotropic lasers," IEEE J. Quantum Electron. 14, 49-55 (1978).
[CrossRef]

Park, J. D.

Peters, B.

B. Peters, J. Hunkemeier, V. M. Baev, and Y. I. Khanin, "Low-frequency dynamics of a Nd-doped glass laser," Phys. Rev. A 64, 023816 (2001).
[CrossRef]

Roy, R.

K. Wiesenfeld, C. Bracikowski, G. James, and R. Roy, "Observation of anti-phase state in a multimode laser," Phys. Rev. Lett. 65, 1749-1752 (1990).
[CrossRef] [PubMed]

Segard, B.

Q1. G. Bouwmans, B. Segard, P. Glorieux, P. Khandokhin, N. Milovsky, and E. Shirokov, "Polarization dynamics of longitudinally monomode bipolarized solid-state lasers," Radiophys. Quantum Electron. 47, 729-742 (2004).
[CrossRef]

Shaw, H. J.

Shirokov, E.

Q1. G. Bouwmans, B. Segard, P. Glorieux, P. Khandokhin, N. Milovsky, and E. Shirokov, "Polarization dynamics of longitudinally monomode bipolarized solid-state lasers," Radiophys. Quantum Electron. 47, 729-742 (2004).
[CrossRef]

Shirokov, E. Yu.

I. V. Ievlev, P. A. Khandokhin, and E. Yu. Shirokov, "Polarization dynamics of single-longitudinal-mode Nd:YAG lasers with a weakly anisotropic cavity," Quantum Electron. 36, 228-232 (2006).
[CrossRef]

Stamatescu, L.

T. Hill, L. Stamatescu, and M. W. Hamilton, "Method for determining anti-phase dynamics in a multimode laser," Phys. Rev. E. 61, R4718-R4721 (2000).
[CrossRef]

Statz, H.

C. L. Tang, H. Statz, and G. deMars, "Spectral output and spiking behavior of solid-state lasers," J. Appl. Phys. 34, 2289-2295 (1963).
[CrossRef]

Stephan, G.

R. Dalgliesh, A. D. May, and G. Stephan, "Polarization states of a single-mode (microchip) Nd3+:YAG laser-Part II: Comparison of theory and experiment," IEEE J. Quantum Electron. 34, 1493-1502 (1998).
[CrossRef]

R. Dalgliesh, A. D. May, and G. Stephan, "Polarization states of a single-mode (microchip) Nd3+:YAG laser-Part I: Theory," IEEE J. Quantum Electron. 34, 1485-1492 (1998).
[CrossRef]

Stoeckel, F.

Tang, C. L.

C. L. Tang, H. Statz, and G. deMars, "Spectral output and spiking behavior of solid-state lasers," J. Appl. Phys. 34, 2289-2295 (1963).
[CrossRef]

Thony, P.

Torre, M. S.

C. Masoller, M. S. Torre, and P. Mandel, "Anti-phase dynamics in multimode semiconductor lasers with optical feedback," Phys. Rev. A 71, 013818 (2005).
[CrossRef]

Vallet, M.

Wagener, J. L.

Wang, Y.

Q. Zhang, B. Feng, D. Zhang, P. Fu, Z. Zhang, Z. Zhao, P. Deng, J. Xu, X. Xu, Y. Wang, and X. Ma, "Anti-phase state in a passively Q-switched Yb:YAG microchip multimode lasers with a saturable absorber GaAs," Phys. Rev. A 69, 053815(2004).
[CrossRef]

Weingarten, K. J.

Wiesenfeld, K.

K. Wiesenfeld, C. Bracikowski, G. James, and R. Roy, "Observation of anti-phase state in a multimode laser," Phys. Rev. Lett. 65, 1749-1752 (1990).
[CrossRef] [PubMed]

Xu, J.

Q. Zhang, B. Feng, D. Zhang, P. Fu, Z. Zhang, Z. Zhao, P. Deng, J. Xu, X. Xu, Y. Wang, and X. Ma, "Anti-phase state in a passively Q-switched Yb:YAG microchip multimode lasers with a saturable absorber GaAs," Phys. Rev. A 69, 053815(2004).
[CrossRef]

Xu, X.

Q. Zhang, B. Feng, D. Zhang, P. Fu, Z. Zhang, Z. Zhao, P. Deng, J. Xu, X. Xu, Y. Wang, and X. Ma, "Anti-phase state in a passively Q-switched Yb:YAG microchip multimode lasers with a saturable absorber GaAs," Phys. Rev. A 69, 053815(2004).
[CrossRef]

Zeghlache, H.

H. Zeghlache and A. Boulnois, "Polarization instability in lasers. I. Model and steady states of neodymium-doped fiber lasers," Phys. Rev. A 52, 4229-4242 (1995).
[CrossRef] [PubMed]

Zhang, D.

Q. Zhang, B. Feng, D. Zhang, P. Fu, Z. Zhang, Z. Zhao, P. Deng, J. Xu, X. Xu, Y. Wang, and X. Ma, "Anti-phase state in a passively Q-switched Yb:YAG microchip multimode lasers with a saturable absorber GaAs," Phys. Rev. A 69, 053815(2004).
[CrossRef]

Zhang, Q.

Q. Zhang, B. Feng, D. Zhang, P. Fu, Z. Zhang, Z. Zhao, P. Deng, J. Xu, X. Xu, Y. Wang, and X. Ma, "Anti-phase state in a passively Q-switched Yb:YAG microchip multimode lasers with a saturable absorber GaAs," Phys. Rev. A 69, 053815(2004).
[CrossRef]

Zhang, Z.

Q. Zhang, B. Feng, D. Zhang, P. Fu, Z. Zhang, Z. Zhao, P. Deng, J. Xu, X. Xu, Y. Wang, and X. Ma, "Anti-phase state in a passively Q-switched Yb:YAG microchip multimode lasers with a saturable absorber GaAs," Phys. Rev. A 69, 053815(2004).
[CrossRef]

Zhao, Z.

Q. Zhang, B. Feng, D. Zhang, P. Fu, Z. Zhang, Z. Zhao, P. Deng, J. Xu, X. Xu, Y. Wang, and X. Ma, "Anti-phase state in a passively Q-switched Yb:YAG microchip multimode lasers with a saturable absorber GaAs," Phys. Rev. A 69, 053815(2004).
[CrossRef]

IEEE J Quantum Electron.

R. Kawai, Y. Asakawa, and K Otsuka, "Simultaneous single-frequency oscillations on different transitions in laser-diode-pumped microchip LiNdP4O12 lasers" IEEE J Quantum Electron. 35, 1542-1547 (1999).
[CrossRef]

IEEE J. Quantum Electron.

R. Dalgliesh, A. D. May, and G. Stephan, "Polarization states of a single-mode (microchip) Nd3+:YAG laser-Part I: Theory," IEEE J. Quantum Electron. 34, 1485-1492 (1998).
[CrossRef]

R. Dalgliesh, A. D. May, and G. Stephan, "Polarization states of a single-mode (microchip) Nd3+:YAG laser-Part II: Comparison of theory and experiment," IEEE J. Quantum Electron. 34, 1493-1502 (1998).
[CrossRef]

J. Degnan, "Theory of optimally coupled Q-switched lasers," IEEE J. Quantum Electron. 25, 214-220 (1989).
[CrossRef]

K. Otsuka, "Oscillation properties of anisotropic lasers," IEEE J. Quantum Electron. 14, 49-55 (1978).
[CrossRef]

J. Appl. Phys.

C. L. Tang, H. Statz, and G. deMars, "Spectral output and spiking behavior of solid-state lasers," J. Appl. Phys. 34, 2289-2295 (1963).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

Opt. Commun.

A. McKay, P. Dekker, D. W. Coutts, and J. M. Dawes, "Enhanced self-heterodyne performance of dual-polarization lasers using a Nd-doped ceramic YAG laser," Opt. Commun. 272, 425-430 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Lett. A

P. A. Khandokhin, P. A. Mandel, I. V. Koryukin, B. A. Nguyen, and Y. I. Khanin, "Disappearance of relaxation oscillation frequencies in a multimode solid-state laser," Phys. Lett. A 235, 248-252 (1997).
[CrossRef]

Phys. Rev. A

C. Masoller, M. S. Torre, and P. Mandel, "Anti-phase dynamics in multimode semiconductor lasers with optical feedback," Phys. Rev. A 71, 013818 (2005).
[CrossRef]

B. Peters, J. Hunkemeier, V. M. Baev, and Y. I. Khanin, "Low-frequency dynamics of a Nd-doped glass laser," Phys. Rev. A 64, 023816 (2001).
[CrossRef]

K. Otsuka, P. Mandel, S. Bielawski, D. Derozier, and P. Glorieux, "Alternate time scale in multimode lasers," Phys. Rev. A 46, 1692-1695 (1992).
[CrossRef] [PubMed]

S. Bielawski, D. Derozier, and P. Glorieux, "Anti-phase dynamics and polarization effects in the Nd-doped fiber laser," Phys. Rev. A 46, 2811-2822 (1992).
[CrossRef] [PubMed]

H. Zeghlache and A. Boulnois, "Polarization instability in lasers. I. Model and steady states of neodymium-doped fiber lasers," Phys. Rev. A 52, 4229-4242 (1995).
[CrossRef] [PubMed]

M. Brunel, O. Emile, M. Alouini, A. L. Floch, and F. Bretenaker, "Experimental and theoretical study of longitudinally monomode vectorial solid-state lasers," Phys. Rev. A 59, 831-840 (1999).
[CrossRef]

Q. Zhang, B. Feng, D. Zhang, P. Fu, Z. Zhang, Z. Zhao, P. Deng, J. Xu, X. Xu, Y. Wang, and X. Ma, "Anti-phase state in a passively Q-switched Yb:YAG microchip multimode lasers with a saturable absorber GaAs," Phys. Rev. A 69, 053815(2004).
[CrossRef]

Phys. Rev. E.

T. Hill, L. Stamatescu, and M. W. Hamilton, "Method for determining anti-phase dynamics in a multimode laser," Phys. Rev. E. 61, R4718-R4721 (2000).
[CrossRef]

Phys. Rev. Lett.

K. Wiesenfeld, C. Bracikowski, G. James, and R. Roy, "Observation of anti-phase state in a multimode laser," Phys. Rev. Lett. 65, 1749-1752 (1990).
[CrossRef] [PubMed]

Quantum Electron.

I. V. Ievlev, P. A. Khandokhin, and E. Yu. Shirokov, "Polarization dynamics of single-longitudinal-mode Nd:YAG lasers with a weakly anisotropic cavity," Quantum Electron. 36, 228-232 (2006).
[CrossRef]

Radiophys. Quantum Electron.

Q1. G. Bouwmans, B. Segard, P. Glorieux, P. Khandokhin, N. Milovsky, and E. Shirokov, "Polarization dynamics of longitudinally monomode bipolarized solid-state lasers," Radiophys. Quantum Electron. 47, 729-742 (2004).
[CrossRef]

Other

M. Sargent, III, M. O. Scully, and W. E. Lamb, Laser Physics (Addison-Wesley, Massachusetts, 1974).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Modeled (a) x- and (b) y-polarized output powers of a dual-polarization Nd:YAG laser pumped at 1.2 × threshold as a function of crystal angle (ϕc ) and relative pump angle (ϕp ). Corresponding experimental (c) x- and (d) y-polarized output powers as a function of pump polarization angle at a fixed crystal angle.

Fig. 2.
Fig. 2.

Measurement arrangement of the polarized outputs (see Fig. 1) and polarization dynamics (see Fig. 3) of the dual-polarization laser. E is an etalon; OC laser output mirror; HWP is a half-waveplate; PBS is a polarization beam splitter; G are glass slides reflecting ~4%; PM are optical power meters; and PD are >1 MHz bandwidth photodiodes.

Fig. 3.
Fig. 3.

Modeled (a) in-phase and (b) anti-phase RO frequency for a dual-polarization Nd:YAG laser pumped near threshold as a function of crystal angle (ϕc ) and relative pump angle (ϕp ). Corresponding (c) experimental in- and anti-phase RO frequencies and (d) Mode-coupling constant (C = [(ωR 2-ωL 2)/(ωR 2+ωL 2)]2) as a function of pump polarization angle.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

d ϕ x dt = ϕ x t r [ 2 l ( i = 1 N σ x i ( n i + n x i ) ) 1 n ( 1 R ) L x ]
d ϕ y dt = ϕ y t r [ 2 l ( i = 1 N σ y i ( n i + n x i ) ) 1 n ( 1 R ) L y ]
d n i dt = β Λ i γc ( σ x i ϕ x + σ y i ϕ y ) n i n i τ s
d n x i dt = ( 1 β 2 ) Λ i γc σ x i ϕ x n x i n x i τ s
d n y i dt = ( 1 β 2 ) Λ i γc σ y i ϕ y n y i + n y i τ s
S 2 + i = 1 N 2 σ x i ϕ xst l t r γc σ x i n st i i = 1 N 2 σ x i ϕ xst l t r γc σ y i n st i i = 1 N 2 σ y i ϕ yst l t r γc σ x i n st i S 2 + i = 1 N 2 σ y i ϕ yst l t r γc σ y i n st i = 0 ,
ω L 2 + ω R 2 i = 1 N ( G x i Γ x i + G y i Γ y i )
ω L 2 · ω R 2 { i , j } N ( G x i G y j G y i G x j ) ( Γ x i Γ y j Γ y i Γ x j )
ω L 2 + ω R 2 i = 1 N r i 1 τ s ( α x i τ px i + α y i τ py i ) .

Metrics