Abstract

In the present work, we studied particle candidates for metamaterial applications, especially in terms of their electrical size and resonance strength. The analyzed particles can be easily produced via planar fabrication techniques. The electrical size of multi-split ring resonators, spiral resonators, and multi-spiral resonators are reported as a function of the particle side length and substrate permittivity. The study is continued by demonstrating the scalability of the particles to higher frequencies and the proposition of the optimized particle for antenna, absorber, and superlens applications: a multi-spiral resonator with λ/30 electrical size operating at 0.810 GHz. We explain a method for tuning the resonance frequency of the multi-split structures. Finally, we demonstrate that by inserting deep subwavelength resonators into periodically arranged subwavelength apertures, complete transmission enhancement can be obtained at the magnetic resonance frequency.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001).
    [CrossRef] [PubMed]
  2. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett. 76, 4773-4776 (1996).
    [CrossRef] [PubMed]
  3. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
    [CrossRef]
  4. K. B. Alici and E. Ozbay, "Characterization and tilted response of a fishnet metamaterial operating at 100 GHz," J. Phys. D: Appl. Phys. 41, 135011.
  5. M. Gokkavas, K. Guven, I. Bulu, K. Aydin, R. S. Penciu, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, "Experimental demonstration of a left-handed metamaterial operating at 100 GHz," Phys. Rev. B 73, 193103 (2006).
    [CrossRef]
  6. B. D. F. Casse, M. O. Moser, J. W. Lee, M. Bahou, S. Inglis, and L. K. Jian, "Towards three-dimensional and multilayer rod-split-ring metamaterial structures by means of deep x-ray lithography," Appl. Phys. Lett. 90, 254106 (2007).
    [CrossRef]
  7. S. Zhang, W. Fan, K. J. Malloy, S. R. J. BrueckN. C. Panoiu, and R. M. Osgood, "Near-infrared double negative metamaterials," Opt. Express 13, 4922-4930 (2005).
    [CrossRef] [PubMed]
  8. K. Buell, H. Mosallaei, and K. Sarabandi, "A substrate for small patch antennas providing tunable miniaturization factors," IEEE Trans. Microwave Theory Tech. 54, 135-146 (2006).
    [CrossRef]
  9. Alu, F. Bilotti, N. Engheta, and L. Vegni, "Subwavelength compact resonant patch antennas loaded with metamaterials," IEEE Trans. Antennas Propag. 55, 13-25 (2007).
    [CrossRef]
  10. K. B. Alici and E. Ozbay, "Electrically small split ring resonator antennas," J. Appl. Phys. 101, 083104 (2007).
    [CrossRef]
  11. K. B. Alici and E. Ozbay, "Radiation properties of a split ring resonator and monopole composite, " Physica Solidi Status B 244, 1192-1196 (2007).
    [CrossRef]
  12. Erentok and R. Ziolkowski, "A hybrid optimization method to analyze metamaterial-based electrically small antennas," IEEE Trans. Antennas Propag. 55, 731-741 (2007).
    [CrossRef]
  13. Alu, F. Bilotti, N. Engheta, and L. Vegni, "Metamaterial covers over a small aperture," IEEE Trans. Antennas Propag. 54, 1632-1643 (2006).
    [CrossRef]
  14. D. Sievenpiper, L. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Trans. Microwave Theory Tech. 47, 2059-2074 (1999).
    [CrossRef]
  15. Ourir, A. Lustrac, and J. M. Lourtioz, "All-metamaterial-based subwavelength cavities (?/60) for ultrathin directive antennas," Appl. Phys. Lett. 88, 084103 (2006).
    [CrossRef]
  16. J. Garcia-Garcia, F. Martin, F. Falcone, J. Bonache, J. d.  Baena, I.  Gil, E.  Amat, T.  Lopetegi, M. A. G.  Laso, J. A. M.  Iturmendi, M.  Sorolla, and R.  Marques, "Microwave filters with improved stopband based on sub-wavelentgh resonators," IEEE Trans. Microwave Theory Tech. 53, 1997-2006 (2005).
    [CrossRef]
  17. J. Bonache, I. Gil, J. Garcia-Garcia, and F. Martin, "Novel microstrip bandpass filters based on complementary split-ring resonators," IEEE Trans. Microwave Theory Tech. 18, 265-271 (2006).
    [CrossRef]
  18. F. Falcone, F. Martin, J. Bonache, M. A. G. Laso, J. Garcia-Garcia, J. D. Baena, R. Marques, and M. Sorolla, "Stop-band and band-pass characteristics in coplanar waveguides coupled to spiral resonators," Microw. Opt. Techn. Lett. 42, 386-388 (2004).
    [CrossRef]
  19. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, "Experimental Verification and simulation of negative index of refration using Snell’s law," Phys. Rev. Lett. 90, 107401 (2003).
    [CrossRef] [PubMed]
  20. S. He, Y. Jin, Z. Ruan, and J. Kuang, "On subwavelength and open resonators involving matematerials of negative refraction index," New J. Phys. 7, 210 (2005).
    [CrossRef]
  21. J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science 312, 1780 (2006).
    [CrossRef] [PubMed]
  22. Alu and N. Engheta, "Plasmonic materials in transparency and cloaking problems: mechanism, robustness, and physical insights," Opt. Express 15, 3318-3332 (2007).
    [CrossRef] [PubMed]
  23. S. Guenneau, S. A. Ramakrishna, S. Enoch, S. Chakrabarti, G. Tayeb, and B. Gralak, "Cloaking and imaging effects in plasmonic checkerboards of negative ? and µ and dielectric photonic crystal checkerboards," Photonics Nanostruct. 5, 63-72 (2007).
    [CrossRef]
  24. L. Zhang, G. Tuttle, and C. M. Soukoulis, "GHz magnetic response of split ring resonators," Photonics Nanostruct. 2, 155-159 (2004).
    [CrossRef]
  25. O. Sydoruk, A. Radkovskaya, O. Zhuromskyy, E. Shamonina, M. Shamonin, C. J. Stevens, G. Faulkner, D. J. Edwards, and L. Solymar, "Tailoring the near field guiding properties of magnetic metamaterials with two resonant elements per unit cell," Phys. Rev. B 73, 224406 (2006).
    [CrossRef]
  26. K. Aydin and E. Ozbay, "Capacitor-loaded split ring resonators as tunable metamaterial components," J. Appl. Phys. 101, 024911 (2007).
    [CrossRef]
  27. Gil, J. Garcia-Garcia, J. Bonache, F. Martin, M. Sorolla, and R. Marques, "Varactor-loaded split ring resonators for tunable notch filters at microwave frequencies," Electron. Lett. 40, 1347-1348 (2004).
    [CrossRef]
  28. M. C. K. Wiltshire, J. B. Pendry, I. R. Young, D. J. Larkman, D. J. Gilderdale, and J. V. Hajnal, "Microstructured magnetic materials for RF flux guides in magnetic resonance imaging," Science 291, 849-851 (2001).
    [CrossRef] [PubMed]
  29. M. C. K. Wiltshire, E. Shamonina, I. R. Young, and L. Solymar, "Dispersion sharacteristics of magneto-inductive waves: comparison between theory and experiment," Electron. Lett. 39, 215-217 (2003).
    [CrossRef]
  30. J.D. Baena, R. Marques, F. Medina, and J. Martel, "Artificial magnetic metamaterial design by using spiral resonators," Phys. Rev. B 69, 014402 (2004).
    [CrossRef]
  31. R. R. A. Syms, I. R. Young, and L. Solymar, "Low loss magneto-inductive waves," J. Phys. D 39, 3945-3951 (2006).
    [CrossRef]
  32. K. B. Alici, F. Bilotti, L. Vegni, and E. Ozbay, "Miniaturized negative permeability materials," Appl. Phys. Lett. 91, 071121 (2007).
    [CrossRef]
  33. F. Bilotti, A. Toscano, L. Vegni, K. Aydin, K. B. Alici, and E. Ozbay, "Equivalent-Circuit models for the design of metamaterials based on artificial magnetic inclusions," IEEE Trans. Microwave Theory Tech. 55, 2865-2873 (2007).
    [CrossRef]
  34. F. Aznar, M. Gil, J. Bonache, J. Garcia-Garcia, and F. Martin, "Metamaterial transmission lines based on broad-side coupled spiral resonators," Electron. Lett. 43, 530-532 (2007).
    [CrossRef]
  35. Bahl and P. Bhartia, Microwave Solid State Circuit Design, 2nd ed. (Wiley, New York, 2003), 57-63.
  36. Th. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, "Effective medium theory of lefthanded materials," Phys. Rev. Lett. 93, 107402 (2004).
    [CrossRef] [PubMed]
  37. K. B. Alici and E. Ozbay, "Complete characterization and far field radiation pattern of a negative index metamaterial slab operating at the milli-meter wave regime," submitted.
  38. User Manual, Version 5.0, CST GmbH, Darmstadt, Germany, 2005, http://www.cst.de.
  39. F. Bilotti, A. Toscano, and L. Vegni, "Design of spiral and multiple split-ring resonators for the realization of miniaturized metamaterial samples," IEEE Trans. Antennas Propag. 55, 2258-2267 (2007).
    [CrossRef]
  40. J. Panagamuwa, A. Chauraya, and J. C. Vardaxoglou, "Frequency and beam reconfigurable antenna using Photoconducting switches," IEEE Trans. Antennas Propag. 54, 449-454 (2006).
    [CrossRef]
  41. H. A. Bethe, "Theory of diffraction by small holes," Phys. Rev. 66, 163-182 (1944).
    [CrossRef]
  42. G. T. W. Ebbesen, "Light in tiny holes," Nature 445, 39-46 (2007).
    [CrossRef] [PubMed]
  43. N. Katsarakis, Th. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, "Electric coupling to the magnetic resonance of split ring resonators," Appl. Phys. Lett. 84, 2943-2945 (2004).
    [CrossRef]

2007 (13)

Alu, F. Bilotti, N. Engheta, and L. Vegni, "Subwavelength compact resonant patch antennas loaded with metamaterials," IEEE Trans. Antennas Propag. 55, 13-25 (2007).
[CrossRef]

K. B. Alici and E. Ozbay, "Electrically small split ring resonator antennas," J. Appl. Phys. 101, 083104 (2007).
[CrossRef]

K. B. Alici and E. Ozbay, "Radiation properties of a split ring resonator and monopole composite, " Physica Solidi Status B 244, 1192-1196 (2007).
[CrossRef]

Erentok and R. Ziolkowski, "A hybrid optimization method to analyze metamaterial-based electrically small antennas," IEEE Trans. Antennas Propag. 55, 731-741 (2007).
[CrossRef]

B. D. F. Casse, M. O. Moser, J. W. Lee, M. Bahou, S. Inglis, and L. K. Jian, "Towards three-dimensional and multilayer rod-split-ring metamaterial structures by means of deep x-ray lithography," Appl. Phys. Lett. 90, 254106 (2007).
[CrossRef]

Alu and N. Engheta, "Plasmonic materials in transparency and cloaking problems: mechanism, robustness, and physical insights," Opt. Express 15, 3318-3332 (2007).
[CrossRef] [PubMed]

S. Guenneau, S. A. Ramakrishna, S. Enoch, S. Chakrabarti, G. Tayeb, and B. Gralak, "Cloaking and imaging effects in plasmonic checkerboards of negative ? and µ and dielectric photonic crystal checkerboards," Photonics Nanostruct. 5, 63-72 (2007).
[CrossRef]

K. Aydin and E. Ozbay, "Capacitor-loaded split ring resonators as tunable metamaterial components," J. Appl. Phys. 101, 024911 (2007).
[CrossRef]

K. B. Alici, F. Bilotti, L. Vegni, and E. Ozbay, "Miniaturized negative permeability materials," Appl. Phys. Lett. 91, 071121 (2007).
[CrossRef]

F. Bilotti, A. Toscano, L. Vegni, K. Aydin, K. B. Alici, and E. Ozbay, "Equivalent-Circuit models for the design of metamaterials based on artificial magnetic inclusions," IEEE Trans. Microwave Theory Tech. 55, 2865-2873 (2007).
[CrossRef]

F. Aznar, M. Gil, J. Bonache, J. Garcia-Garcia, and F. Martin, "Metamaterial transmission lines based on broad-side coupled spiral resonators," Electron. Lett. 43, 530-532 (2007).
[CrossRef]

F. Bilotti, A. Toscano, and L. Vegni, "Design of spiral and multiple split-ring resonators for the realization of miniaturized metamaterial samples," IEEE Trans. Antennas Propag. 55, 2258-2267 (2007).
[CrossRef]

G. T. W. Ebbesen, "Light in tiny holes," Nature 445, 39-46 (2007).
[CrossRef] [PubMed]

2006 (9)

J. Panagamuwa, A. Chauraya, and J. C. Vardaxoglou, "Frequency and beam reconfigurable antenna using Photoconducting switches," IEEE Trans. Antennas Propag. 54, 449-454 (2006).
[CrossRef]

J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science 312, 1780 (2006).
[CrossRef] [PubMed]

O. Sydoruk, A. Radkovskaya, O. Zhuromskyy, E. Shamonina, M. Shamonin, C. J. Stevens, G. Faulkner, D. J. Edwards, and L. Solymar, "Tailoring the near field guiding properties of magnetic metamaterials with two resonant elements per unit cell," Phys. Rev. B 73, 224406 (2006).
[CrossRef]

Ourir, A. Lustrac, and J. M. Lourtioz, "All-metamaterial-based subwavelength cavities (?/60) for ultrathin directive antennas," Appl. Phys. Lett. 88, 084103 (2006).
[CrossRef]

J. Bonache, I. Gil, J. Garcia-Garcia, and F. Martin, "Novel microstrip bandpass filters based on complementary split-ring resonators," IEEE Trans. Microwave Theory Tech. 18, 265-271 (2006).
[CrossRef]

K. Buell, H. Mosallaei, and K. Sarabandi, "A substrate for small patch antennas providing tunable miniaturization factors," IEEE Trans. Microwave Theory Tech. 54, 135-146 (2006).
[CrossRef]

Alu, F. Bilotti, N. Engheta, and L. Vegni, "Metamaterial covers over a small aperture," IEEE Trans. Antennas Propag. 54, 1632-1643 (2006).
[CrossRef]

M. Gokkavas, K. Guven, I. Bulu, K. Aydin, R. S. Penciu, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, "Experimental demonstration of a left-handed metamaterial operating at 100 GHz," Phys. Rev. B 73, 193103 (2006).
[CrossRef]

R. R. A. Syms, I. R. Young, and L. Solymar, "Low loss magneto-inductive waves," J. Phys. D 39, 3945-3951 (2006).
[CrossRef]

2005 (3)

S. He, Y. Jin, Z. Ruan, and J. Kuang, "On subwavelength and open resonators involving matematerials of negative refraction index," New J. Phys. 7, 210 (2005).
[CrossRef]

J. Garcia-Garcia, F. Martin, F. Falcone, J. Bonache, J. d.  Baena, I.  Gil, E.  Amat, T.  Lopetegi, M. A. G.  Laso, J. A. M.  Iturmendi, M.  Sorolla, and R.  Marques, "Microwave filters with improved stopband based on sub-wavelentgh resonators," IEEE Trans. Microwave Theory Tech. 53, 1997-2006 (2005).
[CrossRef]

S. Zhang, W. Fan, K. J. Malloy, S. R. J. BrueckN. C. Panoiu, and R. M. Osgood, "Near-infrared double negative metamaterials," Opt. Express 13, 4922-4930 (2005).
[CrossRef] [PubMed]

2004 (6)

F. Falcone, F. Martin, J. Bonache, M. A. G. Laso, J. Garcia-Garcia, J. D. Baena, R. Marques, and M. Sorolla, "Stop-band and band-pass characteristics in coplanar waveguides coupled to spiral resonators," Microw. Opt. Techn. Lett. 42, 386-388 (2004).
[CrossRef]

L. Zhang, G. Tuttle, and C. M. Soukoulis, "GHz magnetic response of split ring resonators," Photonics Nanostruct. 2, 155-159 (2004).
[CrossRef]

Gil, J. Garcia-Garcia, J. Bonache, F. Martin, M. Sorolla, and R. Marques, "Varactor-loaded split ring resonators for tunable notch filters at microwave frequencies," Electron. Lett. 40, 1347-1348 (2004).
[CrossRef]

J.D. Baena, R. Marques, F. Medina, and J. Martel, "Artificial magnetic metamaterial design by using spiral resonators," Phys. Rev. B 69, 014402 (2004).
[CrossRef]

N. Katsarakis, Th. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, "Electric coupling to the magnetic resonance of split ring resonators," Appl. Phys. Lett. 84, 2943-2945 (2004).
[CrossRef]

Th. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, "Effective medium theory of lefthanded materials," Phys. Rev. Lett. 93, 107402 (2004).
[CrossRef] [PubMed]

2003 (2)

M. C. K. Wiltshire, E. Shamonina, I. R. Young, and L. Solymar, "Dispersion sharacteristics of magneto-inductive waves: comparison between theory and experiment," Electron. Lett. 39, 215-217 (2003).
[CrossRef]

G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, "Experimental Verification and simulation of negative index of refration using Snell’s law," Phys. Rev. Lett. 90, 107401 (2003).
[CrossRef] [PubMed]

2001 (2)

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001).
[CrossRef] [PubMed]

M. C. K. Wiltshire, J. B. Pendry, I. R. Young, D. J. Larkman, D. J. Gilderdale, and J. V. Hajnal, "Microstructured magnetic materials for RF flux guides in magnetic resonance imaging," Science 291, 849-851 (2001).
[CrossRef] [PubMed]

1999 (2)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
[CrossRef]

D. Sievenpiper, L. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Trans. Microwave Theory Tech. 47, 2059-2074 (1999).
[CrossRef]

1996 (1)

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett. 76, 4773-4776 (1996).
[CrossRef] [PubMed]

1944 (1)

H. A. Bethe, "Theory of diffraction by small holes," Phys. Rev. 66, 163-182 (1944).
[CrossRef]

Alexopolous, N. G.

D. Sievenpiper, L. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Trans. Microwave Theory Tech. 47, 2059-2074 (1999).
[CrossRef]

Alici, K. B.

K. B. Alici and E. Ozbay, "Electrically small split ring resonator antennas," J. Appl. Phys. 101, 083104 (2007).
[CrossRef]

K. B. Alici and E. Ozbay, "Radiation properties of a split ring resonator and monopole composite, " Physica Solidi Status B 244, 1192-1196 (2007).
[CrossRef]

K. B. Alici, F. Bilotti, L. Vegni, and E. Ozbay, "Miniaturized negative permeability materials," Appl. Phys. Lett. 91, 071121 (2007).
[CrossRef]

F. Bilotti, A. Toscano, L. Vegni, K. Aydin, K. B. Alici, and E. Ozbay, "Equivalent-Circuit models for the design of metamaterials based on artificial magnetic inclusions," IEEE Trans. Microwave Theory Tech. 55, 2865-2873 (2007).
[CrossRef]

K. B. Alici and E. Ozbay, "Complete characterization and far field radiation pattern of a negative index metamaterial slab operating at the milli-meter wave regime," submitted.

K. B. Alici and E. Ozbay, "Characterization and tilted response of a fishnet metamaterial operating at 100 GHz," J. Phys. D: Appl. Phys. 41, 135011.

Alu,

Alu, F. Bilotti, N. Engheta, and L. Vegni, "Subwavelength compact resonant patch antennas loaded with metamaterials," IEEE Trans. Antennas Propag. 55, 13-25 (2007).
[CrossRef]

Alu and N. Engheta, "Plasmonic materials in transparency and cloaking problems: mechanism, robustness, and physical insights," Opt. Express 15, 3318-3332 (2007).
[CrossRef] [PubMed]

Alu, F. Bilotti, N. Engheta, and L. Vegni, "Metamaterial covers over a small aperture," IEEE Trans. Antennas Propag. 54, 1632-1643 (2006).
[CrossRef]

Amat, E.

J. Garcia-Garcia, F. Martin, F. Falcone, J. Bonache, J. d.  Baena, I.  Gil, E.  Amat, T.  Lopetegi, M. A. G.  Laso, J. A. M.  Iturmendi, M.  Sorolla, and R.  Marques, "Microwave filters with improved stopband based on sub-wavelentgh resonators," IEEE Trans. Microwave Theory Tech. 53, 1997-2006 (2005).
[CrossRef]

Aydin, K.

K. Aydin and E. Ozbay, "Capacitor-loaded split ring resonators as tunable metamaterial components," J. Appl. Phys. 101, 024911 (2007).
[CrossRef]

F. Bilotti, A. Toscano, L. Vegni, K. Aydin, K. B. Alici, and E. Ozbay, "Equivalent-Circuit models for the design of metamaterials based on artificial magnetic inclusions," IEEE Trans. Microwave Theory Tech. 55, 2865-2873 (2007).
[CrossRef]

M. Gokkavas, K. Guven, I. Bulu, K. Aydin, R. S. Penciu, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, "Experimental demonstration of a left-handed metamaterial operating at 100 GHz," Phys. Rev. B 73, 193103 (2006).
[CrossRef]

Aznar, F.

F. Aznar, M. Gil, J. Bonache, J. Garcia-Garcia, and F. Martin, "Metamaterial transmission lines based on broad-side coupled spiral resonators," Electron. Lett. 43, 530-532 (2007).
[CrossRef]

Baena, J. d.

J. Garcia-Garcia, F. Martin, F. Falcone, J. Bonache, J. d.  Baena, I.  Gil, E.  Amat, T.  Lopetegi, M. A. G.  Laso, J. A. M.  Iturmendi, M.  Sorolla, and R.  Marques, "Microwave filters with improved stopband based on sub-wavelentgh resonators," IEEE Trans. Microwave Theory Tech. 53, 1997-2006 (2005).
[CrossRef]

Baena, J. D.

F. Falcone, F. Martin, J. Bonache, M. A. G. Laso, J. Garcia-Garcia, J. D. Baena, R. Marques, and M. Sorolla, "Stop-band and band-pass characteristics in coplanar waveguides coupled to spiral resonators," Microw. Opt. Techn. Lett. 42, 386-388 (2004).
[CrossRef]

Baena, J.D.

J.D. Baena, R. Marques, F. Medina, and J. Martel, "Artificial magnetic metamaterial design by using spiral resonators," Phys. Rev. B 69, 014402 (2004).
[CrossRef]

Bahou, M.

B. D. F. Casse, M. O. Moser, J. W. Lee, M. Bahou, S. Inglis, and L. K. Jian, "Towards three-dimensional and multilayer rod-split-ring metamaterial structures by means of deep x-ray lithography," Appl. Phys. Lett. 90, 254106 (2007).
[CrossRef]

Bethe, H. A.

H. A. Bethe, "Theory of diffraction by small holes," Phys. Rev. 66, 163-182 (1944).
[CrossRef]

Bilotti, F.

F. Bilotti, A. Toscano, and L. Vegni, "Design of spiral and multiple split-ring resonators for the realization of miniaturized metamaterial samples," IEEE Trans. Antennas Propag. 55, 2258-2267 (2007).
[CrossRef]

F. Bilotti, A. Toscano, L. Vegni, K. Aydin, K. B. Alici, and E. Ozbay, "Equivalent-Circuit models for the design of metamaterials based on artificial magnetic inclusions," IEEE Trans. Microwave Theory Tech. 55, 2865-2873 (2007).
[CrossRef]

K. B. Alici, F. Bilotti, L. Vegni, and E. Ozbay, "Miniaturized negative permeability materials," Appl. Phys. Lett. 91, 071121 (2007).
[CrossRef]

Alu, F. Bilotti, N. Engheta, and L. Vegni, "Subwavelength compact resonant patch antennas loaded with metamaterials," IEEE Trans. Antennas Propag. 55, 13-25 (2007).
[CrossRef]

Alu, F. Bilotti, N. Engheta, and L. Vegni, "Metamaterial covers over a small aperture," IEEE Trans. Antennas Propag. 54, 1632-1643 (2006).
[CrossRef]

Bonache, J.

F. Aznar, M. Gil, J. Bonache, J. Garcia-Garcia, and F. Martin, "Metamaterial transmission lines based on broad-side coupled spiral resonators," Electron. Lett. 43, 530-532 (2007).
[CrossRef]

J. Bonache, I. Gil, J. Garcia-Garcia, and F. Martin, "Novel microstrip bandpass filters based on complementary split-ring resonators," IEEE Trans. Microwave Theory Tech. 18, 265-271 (2006).
[CrossRef]

J. Garcia-Garcia, F. Martin, F. Falcone, J. Bonache, J. d.  Baena, I.  Gil, E.  Amat, T.  Lopetegi, M. A. G.  Laso, J. A. M.  Iturmendi, M.  Sorolla, and R.  Marques, "Microwave filters with improved stopband based on sub-wavelentgh resonators," IEEE Trans. Microwave Theory Tech. 53, 1997-2006 (2005).
[CrossRef]

F. Falcone, F. Martin, J. Bonache, M. A. G. Laso, J. Garcia-Garcia, J. D. Baena, R. Marques, and M. Sorolla, "Stop-band and band-pass characteristics in coplanar waveguides coupled to spiral resonators," Microw. Opt. Techn. Lett. 42, 386-388 (2004).
[CrossRef]

Gil, J. Garcia-Garcia, J. Bonache, F. Martin, M. Sorolla, and R. Marques, "Varactor-loaded split ring resonators for tunable notch filters at microwave frequencies," Electron. Lett. 40, 1347-1348 (2004).
[CrossRef]

Broas, R. F. J.

D. Sievenpiper, L. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Trans. Microwave Theory Tech. 47, 2059-2074 (1999).
[CrossRef]

Brueck, S. R. J.

Buell, K.

K. Buell, H. Mosallaei, and K. Sarabandi, "A substrate for small patch antennas providing tunable miniaturization factors," IEEE Trans. Microwave Theory Tech. 54, 135-146 (2006).
[CrossRef]

Bulu, I.

M. Gokkavas, K. Guven, I. Bulu, K. Aydin, R. S. Penciu, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, "Experimental demonstration of a left-handed metamaterial operating at 100 GHz," Phys. Rev. B 73, 193103 (2006).
[CrossRef]

Casse, B. D. F.

B. D. F. Casse, M. O. Moser, J. W. Lee, M. Bahou, S. Inglis, and L. K. Jian, "Towards three-dimensional and multilayer rod-split-ring metamaterial structures by means of deep x-ray lithography," Appl. Phys. Lett. 90, 254106 (2007).
[CrossRef]

Chakrabarti, S.

S. Guenneau, S. A. Ramakrishna, S. Enoch, S. Chakrabarti, G. Tayeb, and B. Gralak, "Cloaking and imaging effects in plasmonic checkerboards of negative ? and µ and dielectric photonic crystal checkerboards," Photonics Nanostruct. 5, 63-72 (2007).
[CrossRef]

Chauraya, A.

J. Panagamuwa, A. Chauraya, and J. C. Vardaxoglou, "Frequency and beam reconfigurable antenna using Photoconducting switches," IEEE Trans. Antennas Propag. 54, 449-454 (2006).
[CrossRef]

Ebbesen, G. T. W.

G. T. W. Ebbesen, "Light in tiny holes," Nature 445, 39-46 (2007).
[CrossRef] [PubMed]

Economou, E. N.

N. Katsarakis, Th. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, "Electric coupling to the magnetic resonance of split ring resonators," Appl. Phys. Lett. 84, 2943-2945 (2004).
[CrossRef]

Th. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, "Effective medium theory of lefthanded materials," Phys. Rev. Lett. 93, 107402 (2004).
[CrossRef] [PubMed]

Edwards, D. J.

O. Sydoruk, A. Radkovskaya, O. Zhuromskyy, E. Shamonina, M. Shamonin, C. J. Stevens, G. Faulkner, D. J. Edwards, and L. Solymar, "Tailoring the near field guiding properties of magnetic metamaterials with two resonant elements per unit cell," Phys. Rev. B 73, 224406 (2006).
[CrossRef]

Engheta, N.

Alu and N. Engheta, "Plasmonic materials in transparency and cloaking problems: mechanism, robustness, and physical insights," Opt. Express 15, 3318-3332 (2007).
[CrossRef] [PubMed]

Alu, F. Bilotti, N. Engheta, and L. Vegni, "Subwavelength compact resonant patch antennas loaded with metamaterials," IEEE Trans. Antennas Propag. 55, 13-25 (2007).
[CrossRef]

Alu, F. Bilotti, N. Engheta, and L. Vegni, "Metamaterial covers over a small aperture," IEEE Trans. Antennas Propag. 54, 1632-1643 (2006).
[CrossRef]

Enoch, S.

S. Guenneau, S. A. Ramakrishna, S. Enoch, S. Chakrabarti, G. Tayeb, and B. Gralak, "Cloaking and imaging effects in plasmonic checkerboards of negative ? and µ and dielectric photonic crystal checkerboards," Photonics Nanostruct. 5, 63-72 (2007).
[CrossRef]

Erentok,

Erentok and R. Ziolkowski, "A hybrid optimization method to analyze metamaterial-based electrically small antennas," IEEE Trans. Antennas Propag. 55, 731-741 (2007).
[CrossRef]

Falcone, F.

J. Garcia-Garcia, F. Martin, F. Falcone, J. Bonache, J. d.  Baena, I.  Gil, E.  Amat, T.  Lopetegi, M. A. G.  Laso, J. A. M.  Iturmendi, M.  Sorolla, and R.  Marques, "Microwave filters with improved stopband based on sub-wavelentgh resonators," IEEE Trans. Microwave Theory Tech. 53, 1997-2006 (2005).
[CrossRef]

F. Falcone, F. Martin, J. Bonache, M. A. G. Laso, J. Garcia-Garcia, J. D. Baena, R. Marques, and M. Sorolla, "Stop-band and band-pass characteristics in coplanar waveguides coupled to spiral resonators," Microw. Opt. Techn. Lett. 42, 386-388 (2004).
[CrossRef]

Fan, W.

Faulkner, G.

O. Sydoruk, A. Radkovskaya, O. Zhuromskyy, E. Shamonina, M. Shamonin, C. J. Stevens, G. Faulkner, D. J. Edwards, and L. Solymar, "Tailoring the near field guiding properties of magnetic metamaterials with two resonant elements per unit cell," Phys. Rev. B 73, 224406 (2006).
[CrossRef]

Garcia-Garcia, J.

F. Aznar, M. Gil, J. Bonache, J. Garcia-Garcia, and F. Martin, "Metamaterial transmission lines based on broad-side coupled spiral resonators," Electron. Lett. 43, 530-532 (2007).
[CrossRef]

J. Bonache, I. Gil, J. Garcia-Garcia, and F. Martin, "Novel microstrip bandpass filters based on complementary split-ring resonators," IEEE Trans. Microwave Theory Tech. 18, 265-271 (2006).
[CrossRef]

J. Garcia-Garcia, F. Martin, F. Falcone, J. Bonache, J. d.  Baena, I.  Gil, E.  Amat, T.  Lopetegi, M. A. G.  Laso, J. A. M.  Iturmendi, M.  Sorolla, and R.  Marques, "Microwave filters with improved stopband based on sub-wavelentgh resonators," IEEE Trans. Microwave Theory Tech. 53, 1997-2006 (2005).
[CrossRef]

F. Falcone, F. Martin, J. Bonache, M. A. G. Laso, J. Garcia-Garcia, J. D. Baena, R. Marques, and M. Sorolla, "Stop-band and band-pass characteristics in coplanar waveguides coupled to spiral resonators," Microw. Opt. Techn. Lett. 42, 386-388 (2004).
[CrossRef]

Gil, J. Garcia-Garcia, J. Bonache, F. Martin, M. Sorolla, and R. Marques, "Varactor-loaded split ring resonators for tunable notch filters at microwave frequencies," Electron. Lett. 40, 1347-1348 (2004).
[CrossRef]

Gil,

Gil, J. Garcia-Garcia, J. Bonache, F. Martin, M. Sorolla, and R. Marques, "Varactor-loaded split ring resonators for tunable notch filters at microwave frequencies," Electron. Lett. 40, 1347-1348 (2004).
[CrossRef]

Gil, I.

J. Bonache, I. Gil, J. Garcia-Garcia, and F. Martin, "Novel microstrip bandpass filters based on complementary split-ring resonators," IEEE Trans. Microwave Theory Tech. 18, 265-271 (2006).
[CrossRef]

Gil, I.

J. Garcia-Garcia, F. Martin, F. Falcone, J. Bonache, J. d.  Baena, I.  Gil, E.  Amat, T.  Lopetegi, M. A. G.  Laso, J. A. M.  Iturmendi, M.  Sorolla, and R.  Marques, "Microwave filters with improved stopband based on sub-wavelentgh resonators," IEEE Trans. Microwave Theory Tech. 53, 1997-2006 (2005).
[CrossRef]

Gil, M.

F. Aznar, M. Gil, J. Bonache, J. Garcia-Garcia, and F. Martin, "Metamaterial transmission lines based on broad-side coupled spiral resonators," Electron. Lett. 43, 530-532 (2007).
[CrossRef]

Gilderdale, D. J.

M. C. K. Wiltshire, J. B. Pendry, I. R. Young, D. J. Larkman, D. J. Gilderdale, and J. V. Hajnal, "Microstructured magnetic materials for RF flux guides in magnetic resonance imaging," Science 291, 849-851 (2001).
[CrossRef] [PubMed]

Gokkavas, M.

M. Gokkavas, K. Guven, I. Bulu, K. Aydin, R. S. Penciu, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, "Experimental demonstration of a left-handed metamaterial operating at 100 GHz," Phys. Rev. B 73, 193103 (2006).
[CrossRef]

Gralak, B.

S. Guenneau, S. A. Ramakrishna, S. Enoch, S. Chakrabarti, G. Tayeb, and B. Gralak, "Cloaking and imaging effects in plasmonic checkerboards of negative ? and µ and dielectric photonic crystal checkerboards," Photonics Nanostruct. 5, 63-72 (2007).
[CrossRef]

Greegor, R. B.

G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, "Experimental Verification and simulation of negative index of refration using Snell’s law," Phys. Rev. Lett. 90, 107401 (2003).
[CrossRef] [PubMed]

Guenneau, S.

S. Guenneau, S. A. Ramakrishna, S. Enoch, S. Chakrabarti, G. Tayeb, and B. Gralak, "Cloaking and imaging effects in plasmonic checkerboards of negative ? and µ and dielectric photonic crystal checkerboards," Photonics Nanostruct. 5, 63-72 (2007).
[CrossRef]

Guven, K.

M. Gokkavas, K. Guven, I. Bulu, K. Aydin, R. S. Penciu, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, "Experimental demonstration of a left-handed metamaterial operating at 100 GHz," Phys. Rev. B 73, 193103 (2006).
[CrossRef]

Hajnal, J. V.

M. C. K. Wiltshire, J. B. Pendry, I. R. Young, D. J. Larkman, D. J. Gilderdale, and J. V. Hajnal, "Microstructured magnetic materials for RF flux guides in magnetic resonance imaging," Science 291, 849-851 (2001).
[CrossRef] [PubMed]

He, S.

S. He, Y. Jin, Z. Ruan, and J. Kuang, "On subwavelength and open resonators involving matematerials of negative refraction index," New J. Phys. 7, 210 (2005).
[CrossRef]

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
[CrossRef]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett. 76, 4773-4776 (1996).
[CrossRef] [PubMed]

Inglis, S.

B. D. F. Casse, M. O. Moser, J. W. Lee, M. Bahou, S. Inglis, and L. K. Jian, "Towards three-dimensional and multilayer rod-split-ring metamaterial structures by means of deep x-ray lithography," Appl. Phys. Lett. 90, 254106 (2007).
[CrossRef]

Iturmendi, J. A. M.

J. Garcia-Garcia, F. Martin, F. Falcone, J. Bonache, J. d.  Baena, I.  Gil, E.  Amat, T.  Lopetegi, M. A. G.  Laso, J. A. M.  Iturmendi, M.  Sorolla, and R.  Marques, "Microwave filters with improved stopband based on sub-wavelentgh resonators," IEEE Trans. Microwave Theory Tech. 53, 1997-2006 (2005).
[CrossRef]

Jian, L. K.

B. D. F. Casse, M. O. Moser, J. W. Lee, M. Bahou, S. Inglis, and L. K. Jian, "Towards three-dimensional and multilayer rod-split-ring metamaterial structures by means of deep x-ray lithography," Appl. Phys. Lett. 90, 254106 (2007).
[CrossRef]

Jin, Y.

S. He, Y. Jin, Z. Ruan, and J. Kuang, "On subwavelength and open resonators involving matematerials of negative refraction index," New J. Phys. 7, 210 (2005).
[CrossRef]

Kafesaki, M.

M. Gokkavas, K. Guven, I. Bulu, K. Aydin, R. S. Penciu, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, "Experimental demonstration of a left-handed metamaterial operating at 100 GHz," Phys. Rev. B 73, 193103 (2006).
[CrossRef]

Th. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, "Effective medium theory of lefthanded materials," Phys. Rev. Lett. 93, 107402 (2004).
[CrossRef] [PubMed]

N. Katsarakis, Th. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, "Electric coupling to the magnetic resonance of split ring resonators," Appl. Phys. Lett. 84, 2943-2945 (2004).
[CrossRef]

Katsarakis, N.

N. Katsarakis, Th. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, "Electric coupling to the magnetic resonance of split ring resonators," Appl. Phys. Lett. 84, 2943-2945 (2004).
[CrossRef]

Koltenbah, B. E. C.

G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, "Experimental Verification and simulation of negative index of refration using Snell’s law," Phys. Rev. Lett. 90, 107401 (2003).
[CrossRef] [PubMed]

Koschny, Th.

N. Katsarakis, Th. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, "Electric coupling to the magnetic resonance of split ring resonators," Appl. Phys. Lett. 84, 2943-2945 (2004).
[CrossRef]

Th. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, "Effective medium theory of lefthanded materials," Phys. Rev. Lett. 93, 107402 (2004).
[CrossRef] [PubMed]

Kuang, J.

S. He, Y. Jin, Z. Ruan, and J. Kuang, "On subwavelength and open resonators involving matematerials of negative refraction index," New J. Phys. 7, 210 (2005).
[CrossRef]

Larkman, D. J.

M. C. K. Wiltshire, J. B. Pendry, I. R. Young, D. J. Larkman, D. J. Gilderdale, and J. V. Hajnal, "Microstructured magnetic materials for RF flux guides in magnetic resonance imaging," Science 291, 849-851 (2001).
[CrossRef] [PubMed]

Laso, M. A. G.

J. Garcia-Garcia, F. Martin, F. Falcone, J. Bonache, J. d.  Baena, I.  Gil, E.  Amat, T.  Lopetegi, M. A. G.  Laso, J. A. M.  Iturmendi, M.  Sorolla, and R.  Marques, "Microwave filters with improved stopband based on sub-wavelentgh resonators," IEEE Trans. Microwave Theory Tech. 53, 1997-2006 (2005).
[CrossRef]

Laso, M. A. G.

F. Falcone, F. Martin, J. Bonache, M. A. G. Laso, J. Garcia-Garcia, J. D. Baena, R. Marques, and M. Sorolla, "Stop-band and band-pass characteristics in coplanar waveguides coupled to spiral resonators," Microw. Opt. Techn. Lett. 42, 386-388 (2004).
[CrossRef]

Lee, J. W.

B. D. F. Casse, M. O. Moser, J. W. Lee, M. Bahou, S. Inglis, and L. K. Jian, "Towards three-dimensional and multilayer rod-split-ring metamaterial structures by means of deep x-ray lithography," Appl. Phys. Lett. 90, 254106 (2007).
[CrossRef]

Li, K.

G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, "Experimental Verification and simulation of negative index of refration using Snell’s law," Phys. Rev. Lett. 90, 107401 (2003).
[CrossRef] [PubMed]

Lopetegi, T.

J. Garcia-Garcia, F. Martin, F. Falcone, J. Bonache, J. d.  Baena, I.  Gil, E.  Amat, T.  Lopetegi, M. A. G.  Laso, J. A. M.  Iturmendi, M.  Sorolla, and R.  Marques, "Microwave filters with improved stopband based on sub-wavelentgh resonators," IEEE Trans. Microwave Theory Tech. 53, 1997-2006 (2005).
[CrossRef]

Lourtioz, J. M.

Ourir, A. Lustrac, and J. M. Lourtioz, "All-metamaterial-based subwavelength cavities (?/60) for ultrathin directive antennas," Appl. Phys. Lett. 88, 084103 (2006).
[CrossRef]

Lustrac, A.

Ourir, A. Lustrac, and J. M. Lourtioz, "All-metamaterial-based subwavelength cavities (?/60) for ultrathin directive antennas," Appl. Phys. Lett. 88, 084103 (2006).
[CrossRef]

Malloy, K. J.

Marques, R.

J. Garcia-Garcia, F. Martin, F. Falcone, J. Bonache, J. d.  Baena, I.  Gil, E.  Amat, T.  Lopetegi, M. A. G.  Laso, J. A. M.  Iturmendi, M.  Sorolla, and R.  Marques, "Microwave filters with improved stopband based on sub-wavelentgh resonators," IEEE Trans. Microwave Theory Tech. 53, 1997-2006 (2005).
[CrossRef]

Marques, R.

F. Falcone, F. Martin, J. Bonache, M. A. G. Laso, J. Garcia-Garcia, J. D. Baena, R. Marques, and M. Sorolla, "Stop-band and band-pass characteristics in coplanar waveguides coupled to spiral resonators," Microw. Opt. Techn. Lett. 42, 386-388 (2004).
[CrossRef]

Gil, J. Garcia-Garcia, J. Bonache, F. Martin, M. Sorolla, and R. Marques, "Varactor-loaded split ring resonators for tunable notch filters at microwave frequencies," Electron. Lett. 40, 1347-1348 (2004).
[CrossRef]

J.D. Baena, R. Marques, F. Medina, and J. Martel, "Artificial magnetic metamaterial design by using spiral resonators," Phys. Rev. B 69, 014402 (2004).
[CrossRef]

Martel, J.

J.D. Baena, R. Marques, F. Medina, and J. Martel, "Artificial magnetic metamaterial design by using spiral resonators," Phys. Rev. B 69, 014402 (2004).
[CrossRef]

Martin, F.

F. Aznar, M. Gil, J. Bonache, J. Garcia-Garcia, and F. Martin, "Metamaterial transmission lines based on broad-side coupled spiral resonators," Electron. Lett. 43, 530-532 (2007).
[CrossRef]

J. Bonache, I. Gil, J. Garcia-Garcia, and F. Martin, "Novel microstrip bandpass filters based on complementary split-ring resonators," IEEE Trans. Microwave Theory Tech. 18, 265-271 (2006).
[CrossRef]

J. Garcia-Garcia, F. Martin, F. Falcone, J. Bonache, J. d.  Baena, I.  Gil, E.  Amat, T.  Lopetegi, M. A. G.  Laso, J. A. M.  Iturmendi, M.  Sorolla, and R.  Marques, "Microwave filters with improved stopband based on sub-wavelentgh resonators," IEEE Trans. Microwave Theory Tech. 53, 1997-2006 (2005).
[CrossRef]

F. Falcone, F. Martin, J. Bonache, M. A. G. Laso, J. Garcia-Garcia, J. D. Baena, R. Marques, and M. Sorolla, "Stop-band and band-pass characteristics in coplanar waveguides coupled to spiral resonators," Microw. Opt. Techn. Lett. 42, 386-388 (2004).
[CrossRef]

Gil, J. Garcia-Garcia, J. Bonache, F. Martin, M. Sorolla, and R. Marques, "Varactor-loaded split ring resonators for tunable notch filters at microwave frequencies," Electron. Lett. 40, 1347-1348 (2004).
[CrossRef]

Medina, F.

J.D. Baena, R. Marques, F. Medina, and J. Martel, "Artificial magnetic metamaterial design by using spiral resonators," Phys. Rev. B 69, 014402 (2004).
[CrossRef]

Mosallaei, H.

K. Buell, H. Mosallaei, and K. Sarabandi, "A substrate for small patch antennas providing tunable miniaturization factors," IEEE Trans. Microwave Theory Tech. 54, 135-146 (2006).
[CrossRef]

Moser, M. O.

B. D. F. Casse, M. O. Moser, J. W. Lee, M. Bahou, S. Inglis, and L. K. Jian, "Towards three-dimensional and multilayer rod-split-ring metamaterial structures by means of deep x-ray lithography," Appl. Phys. Lett. 90, 254106 (2007).
[CrossRef]

Osgood, R. M.

Ourir,

Ourir, A. Lustrac, and J. M. Lourtioz, "All-metamaterial-based subwavelength cavities (?/60) for ultrathin directive antennas," Appl. Phys. Lett. 88, 084103 (2006).
[CrossRef]

Ozbay, E.

K. B. Alici and E. Ozbay, "Radiation properties of a split ring resonator and monopole composite, " Physica Solidi Status B 244, 1192-1196 (2007).
[CrossRef]

K. B. Alici and E. Ozbay, "Electrically small split ring resonator antennas," J. Appl. Phys. 101, 083104 (2007).
[CrossRef]

K. Aydin and E. Ozbay, "Capacitor-loaded split ring resonators as tunable metamaterial components," J. Appl. Phys. 101, 024911 (2007).
[CrossRef]

F. Bilotti, A. Toscano, L. Vegni, K. Aydin, K. B. Alici, and E. Ozbay, "Equivalent-Circuit models for the design of metamaterials based on artificial magnetic inclusions," IEEE Trans. Microwave Theory Tech. 55, 2865-2873 (2007).
[CrossRef]

K. B. Alici, F. Bilotti, L. Vegni, and E. Ozbay, "Miniaturized negative permeability materials," Appl. Phys. Lett. 91, 071121 (2007).
[CrossRef]

M. Gokkavas, K. Guven, I. Bulu, K. Aydin, R. S. Penciu, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, "Experimental demonstration of a left-handed metamaterial operating at 100 GHz," Phys. Rev. B 73, 193103 (2006).
[CrossRef]

K. B. Alici and E. Ozbay, "Characterization and tilted response of a fishnet metamaterial operating at 100 GHz," J. Phys. D: Appl. Phys. 41, 135011.

K. B. Alici and E. Ozbay, "Complete characterization and far field radiation pattern of a negative index metamaterial slab operating at the milli-meter wave regime," submitted.

Panagamuwa, J.

J. Panagamuwa, A. Chauraya, and J. C. Vardaxoglou, "Frequency and beam reconfigurable antenna using Photoconducting switches," IEEE Trans. Antennas Propag. 54, 449-454 (2006).
[CrossRef]

Panoiu, N. C.

Parazzoli, G.

G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, "Experimental Verification and simulation of negative index of refration using Snell’s law," Phys. Rev. Lett. 90, 107401 (2003).
[CrossRef] [PubMed]

Penciu, R. S.

M. Gokkavas, K. Guven, I. Bulu, K. Aydin, R. S. Penciu, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, "Experimental demonstration of a left-handed metamaterial operating at 100 GHz," Phys. Rev. B 73, 193103 (2006).
[CrossRef]

Pendry, J. B.

J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science 312, 1780 (2006).
[CrossRef] [PubMed]

M. C. K. Wiltshire, J. B. Pendry, I. R. Young, D. J. Larkman, D. J. Gilderdale, and J. V. Hajnal, "Microstructured magnetic materials for RF flux guides in magnetic resonance imaging," Science 291, 849-851 (2001).
[CrossRef] [PubMed]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
[CrossRef]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett. 76, 4773-4776 (1996).
[CrossRef] [PubMed]

Radkovskaya, A.

O. Sydoruk, A. Radkovskaya, O. Zhuromskyy, E. Shamonina, M. Shamonin, C. J. Stevens, G. Faulkner, D. J. Edwards, and L. Solymar, "Tailoring the near field guiding properties of magnetic metamaterials with two resonant elements per unit cell," Phys. Rev. B 73, 224406 (2006).
[CrossRef]

Ramakrishna, S. A.

S. Guenneau, S. A. Ramakrishna, S. Enoch, S. Chakrabarti, G. Tayeb, and B. Gralak, "Cloaking and imaging effects in plasmonic checkerboards of negative ? and µ and dielectric photonic crystal checkerboards," Photonics Nanostruct. 5, 63-72 (2007).
[CrossRef]

Robbins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
[CrossRef]

Ruan, Z.

S. He, Y. Jin, Z. Ruan, and J. Kuang, "On subwavelength and open resonators involving matematerials of negative refraction index," New J. Phys. 7, 210 (2005).
[CrossRef]

Sarabandi, K.

K. Buell, H. Mosallaei, and K. Sarabandi, "A substrate for small patch antennas providing tunable miniaturization factors," IEEE Trans. Microwave Theory Tech. 54, 135-146 (2006).
[CrossRef]

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001).
[CrossRef] [PubMed]

Schurig, D.

J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science 312, 1780 (2006).
[CrossRef] [PubMed]

Shamonin, M.

O. Sydoruk, A. Radkovskaya, O. Zhuromskyy, E. Shamonina, M. Shamonin, C. J. Stevens, G. Faulkner, D. J. Edwards, and L. Solymar, "Tailoring the near field guiding properties of magnetic metamaterials with two resonant elements per unit cell," Phys. Rev. B 73, 224406 (2006).
[CrossRef]

Shamonina, E.

O. Sydoruk, A. Radkovskaya, O. Zhuromskyy, E. Shamonina, M. Shamonin, C. J. Stevens, G. Faulkner, D. J. Edwards, and L. Solymar, "Tailoring the near field guiding properties of magnetic metamaterials with two resonant elements per unit cell," Phys. Rev. B 73, 224406 (2006).
[CrossRef]

M. C. K. Wiltshire, E. Shamonina, I. R. Young, and L. Solymar, "Dispersion sharacteristics of magneto-inductive waves: comparison between theory and experiment," Electron. Lett. 39, 215-217 (2003).
[CrossRef]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001).
[CrossRef] [PubMed]

Sievenpiper, D.

D. Sievenpiper, L. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Trans. Microwave Theory Tech. 47, 2059-2074 (1999).
[CrossRef]

Smith, D. R.

J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science 312, 1780 (2006).
[CrossRef] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001).
[CrossRef] [PubMed]

Solymar, L.

O. Sydoruk, A. Radkovskaya, O. Zhuromskyy, E. Shamonina, M. Shamonin, C. J. Stevens, G. Faulkner, D. J. Edwards, and L. Solymar, "Tailoring the near field guiding properties of magnetic metamaterials with two resonant elements per unit cell," Phys. Rev. B 73, 224406 (2006).
[CrossRef]

R. R. A. Syms, I. R. Young, and L. Solymar, "Low loss magneto-inductive waves," J. Phys. D 39, 3945-3951 (2006).
[CrossRef]

M. C. K. Wiltshire, E. Shamonina, I. R. Young, and L. Solymar, "Dispersion sharacteristics of magneto-inductive waves: comparison between theory and experiment," Electron. Lett. 39, 215-217 (2003).
[CrossRef]

Sorolla, M.

J. Garcia-Garcia, F. Martin, F. Falcone, J. Bonache, J. d.  Baena, I.  Gil, E.  Amat, T.  Lopetegi, M. A. G.  Laso, J. A. M.  Iturmendi, M.  Sorolla, and R.  Marques, "Microwave filters with improved stopband based on sub-wavelentgh resonators," IEEE Trans. Microwave Theory Tech. 53, 1997-2006 (2005).
[CrossRef]

Sorolla, M.

F. Falcone, F. Martin, J. Bonache, M. A. G. Laso, J. Garcia-Garcia, J. D. Baena, R. Marques, and M. Sorolla, "Stop-band and band-pass characteristics in coplanar waveguides coupled to spiral resonators," Microw. Opt. Techn. Lett. 42, 386-388 (2004).
[CrossRef]

Gil, J. Garcia-Garcia, J. Bonache, F. Martin, M. Sorolla, and R. Marques, "Varactor-loaded split ring resonators for tunable notch filters at microwave frequencies," Electron. Lett. 40, 1347-1348 (2004).
[CrossRef]

Soukoulis, C. M.

M. Gokkavas, K. Guven, I. Bulu, K. Aydin, R. S. Penciu, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, "Experimental demonstration of a left-handed metamaterial operating at 100 GHz," Phys. Rev. B 73, 193103 (2006).
[CrossRef]

L. Zhang, G. Tuttle, and C. M. Soukoulis, "GHz magnetic response of split ring resonators," Photonics Nanostruct. 2, 155-159 (2004).
[CrossRef]

N. Katsarakis, Th. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, "Electric coupling to the magnetic resonance of split ring resonators," Appl. Phys. Lett. 84, 2943-2945 (2004).
[CrossRef]

Th. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, "Effective medium theory of lefthanded materials," Phys. Rev. Lett. 93, 107402 (2004).
[CrossRef] [PubMed]

Stevens, C. J.

O. Sydoruk, A. Radkovskaya, O. Zhuromskyy, E. Shamonina, M. Shamonin, C. J. Stevens, G. Faulkner, D. J. Edwards, and L. Solymar, "Tailoring the near field guiding properties of magnetic metamaterials with two resonant elements per unit cell," Phys. Rev. B 73, 224406 (2006).
[CrossRef]

Stewart, W. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
[CrossRef]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett. 76, 4773-4776 (1996).
[CrossRef] [PubMed]

Sydoruk, O.

O. Sydoruk, A. Radkovskaya, O. Zhuromskyy, E. Shamonina, M. Shamonin, C. J. Stevens, G. Faulkner, D. J. Edwards, and L. Solymar, "Tailoring the near field guiding properties of magnetic metamaterials with two resonant elements per unit cell," Phys. Rev. B 73, 224406 (2006).
[CrossRef]

Syms, R. R. A.

R. R. A. Syms, I. R. Young, and L. Solymar, "Low loss magneto-inductive waves," J. Phys. D 39, 3945-3951 (2006).
[CrossRef]

Tanielian, M.

G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, "Experimental Verification and simulation of negative index of refration using Snell’s law," Phys. Rev. Lett. 90, 107401 (2003).
[CrossRef] [PubMed]

Tayeb, G.

S. Guenneau, S. A. Ramakrishna, S. Enoch, S. Chakrabarti, G. Tayeb, and B. Gralak, "Cloaking and imaging effects in plasmonic checkerboards of negative ? and µ and dielectric photonic crystal checkerboards," Photonics Nanostruct. 5, 63-72 (2007).
[CrossRef]

Toscano, A.

F. Bilotti, A. Toscano, and L. Vegni, "Design of spiral and multiple split-ring resonators for the realization of miniaturized metamaterial samples," IEEE Trans. Antennas Propag. 55, 2258-2267 (2007).
[CrossRef]

F. Bilotti, A. Toscano, L. Vegni, K. Aydin, K. B. Alici, and E. Ozbay, "Equivalent-Circuit models for the design of metamaterials based on artificial magnetic inclusions," IEEE Trans. Microwave Theory Tech. 55, 2865-2873 (2007).
[CrossRef]

Tuttle, G.

L. Zhang, G. Tuttle, and C. M. Soukoulis, "GHz magnetic response of split ring resonators," Photonics Nanostruct. 2, 155-159 (2004).
[CrossRef]

Vardaxoglou, J. C.

J. Panagamuwa, A. Chauraya, and J. C. Vardaxoglou, "Frequency and beam reconfigurable antenna using Photoconducting switches," IEEE Trans. Antennas Propag. 54, 449-454 (2006).
[CrossRef]

Vegni, L.

F. Bilotti, A. Toscano, and L. Vegni, "Design of spiral and multiple split-ring resonators for the realization of miniaturized metamaterial samples," IEEE Trans. Antennas Propag. 55, 2258-2267 (2007).
[CrossRef]

F. Bilotti, A. Toscano, L. Vegni, K. Aydin, K. B. Alici, and E. Ozbay, "Equivalent-Circuit models for the design of metamaterials based on artificial magnetic inclusions," IEEE Trans. Microwave Theory Tech. 55, 2865-2873 (2007).
[CrossRef]

K. B. Alici, F. Bilotti, L. Vegni, and E. Ozbay, "Miniaturized negative permeability materials," Appl. Phys. Lett. 91, 071121 (2007).
[CrossRef]

Alu, F. Bilotti, N. Engheta, and L. Vegni, "Subwavelength compact resonant patch antennas loaded with metamaterials," IEEE Trans. Antennas Propag. 55, 13-25 (2007).
[CrossRef]

Alu, F. Bilotti, N. Engheta, and L. Vegni, "Metamaterial covers over a small aperture," IEEE Trans. Antennas Propag. 54, 1632-1643 (2006).
[CrossRef]

Wiltshire, M. C. K.

M. C. K. Wiltshire, E. Shamonina, I. R. Young, and L. Solymar, "Dispersion sharacteristics of magneto-inductive waves: comparison between theory and experiment," Electron. Lett. 39, 215-217 (2003).
[CrossRef]

M. C. K. Wiltshire, J. B. Pendry, I. R. Young, D. J. Larkman, D. J. Gilderdale, and J. V. Hajnal, "Microstructured magnetic materials for RF flux guides in magnetic resonance imaging," Science 291, 849-851 (2001).
[CrossRef] [PubMed]

Yablonovitch, E.

D. Sievenpiper, L. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Trans. Microwave Theory Tech. 47, 2059-2074 (1999).
[CrossRef]

Young, I. R.

R. R. A. Syms, I. R. Young, and L. Solymar, "Low loss magneto-inductive waves," J. Phys. D 39, 3945-3951 (2006).
[CrossRef]

M. C. K. Wiltshire, E. Shamonina, I. R. Young, and L. Solymar, "Dispersion sharacteristics of magneto-inductive waves: comparison between theory and experiment," Electron. Lett. 39, 215-217 (2003).
[CrossRef]

M. C. K. Wiltshire, J. B. Pendry, I. R. Young, D. J. Larkman, D. J. Gilderdale, and J. V. Hajnal, "Microstructured magnetic materials for RF flux guides in magnetic resonance imaging," Science 291, 849-851 (2001).
[CrossRef] [PubMed]

Youngs, I.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett. 76, 4773-4776 (1996).
[CrossRef] [PubMed]

Zhang, L.

L. Zhang, G. Tuttle, and C. M. Soukoulis, "GHz magnetic response of split ring resonators," Photonics Nanostruct. 2, 155-159 (2004).
[CrossRef]

D. Sievenpiper, L. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Trans. Microwave Theory Tech. 47, 2059-2074 (1999).
[CrossRef]

Zhang, S.

Zhuromskyy, O.

O. Sydoruk, A. Radkovskaya, O. Zhuromskyy, E. Shamonina, M. Shamonin, C. J. Stevens, G. Faulkner, D. J. Edwards, and L. Solymar, "Tailoring the near field guiding properties of magnetic metamaterials with two resonant elements per unit cell," Phys. Rev. B 73, 224406 (2006).
[CrossRef]

Ziolkowski, R.

Erentok and R. Ziolkowski, "A hybrid optimization method to analyze metamaterial-based electrically small antennas," IEEE Trans. Antennas Propag. 55, 731-741 (2007).
[CrossRef]

Appl. Phys. Lett. (4)

B. D. F. Casse, M. O. Moser, J. W. Lee, M. Bahou, S. Inglis, and L. K. Jian, "Towards three-dimensional and multilayer rod-split-ring metamaterial structures by means of deep x-ray lithography," Appl. Phys. Lett. 90, 254106 (2007).
[CrossRef]

Ourir, A. Lustrac, and J. M. Lourtioz, "All-metamaterial-based subwavelength cavities (?/60) for ultrathin directive antennas," Appl. Phys. Lett. 88, 084103 (2006).
[CrossRef]

K. B. Alici, F. Bilotti, L. Vegni, and E. Ozbay, "Miniaturized negative permeability materials," Appl. Phys. Lett. 91, 071121 (2007).
[CrossRef]

N. Katsarakis, Th. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, "Electric coupling to the magnetic resonance of split ring resonators," Appl. Phys. Lett. 84, 2943-2945 (2004).
[CrossRef]

Electron. Lett. (3)

M. C. K. Wiltshire, E. Shamonina, I. R. Young, and L. Solymar, "Dispersion sharacteristics of magneto-inductive waves: comparison between theory and experiment," Electron. Lett. 39, 215-217 (2003).
[CrossRef]

F. Aznar, M. Gil, J. Bonache, J. Garcia-Garcia, and F. Martin, "Metamaterial transmission lines based on broad-side coupled spiral resonators," Electron. Lett. 43, 530-532 (2007).
[CrossRef]

Gil, J. Garcia-Garcia, J. Bonache, F. Martin, M. Sorolla, and R. Marques, "Varactor-loaded split ring resonators for tunable notch filters at microwave frequencies," Electron. Lett. 40, 1347-1348 (2004).
[CrossRef]

IEEE Trans. Antennas Propag. (5)

Erentok and R. Ziolkowski, "A hybrid optimization method to analyze metamaterial-based electrically small antennas," IEEE Trans. Antennas Propag. 55, 731-741 (2007).
[CrossRef]

Alu, F. Bilotti, N. Engheta, and L. Vegni, "Metamaterial covers over a small aperture," IEEE Trans. Antennas Propag. 54, 1632-1643 (2006).
[CrossRef]

Alu, F. Bilotti, N. Engheta, and L. Vegni, "Subwavelength compact resonant patch antennas loaded with metamaterials," IEEE Trans. Antennas Propag. 55, 13-25 (2007).
[CrossRef]

F. Bilotti, A. Toscano, and L. Vegni, "Design of spiral and multiple split-ring resonators for the realization of miniaturized metamaterial samples," IEEE Trans. Antennas Propag. 55, 2258-2267 (2007).
[CrossRef]

J. Panagamuwa, A. Chauraya, and J. C. Vardaxoglou, "Frequency and beam reconfigurable antenna using Photoconducting switches," IEEE Trans. Antennas Propag. 54, 449-454 (2006).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (6)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
[CrossRef]

D. Sievenpiper, L. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Trans. Microwave Theory Tech. 47, 2059-2074 (1999).
[CrossRef]

J. Garcia-Garcia, F. Martin, F. Falcone, J. Bonache, J. d.  Baena, I.  Gil, E.  Amat, T.  Lopetegi, M. A. G.  Laso, J. A. M.  Iturmendi, M.  Sorolla, and R.  Marques, "Microwave filters with improved stopband based on sub-wavelentgh resonators," IEEE Trans. Microwave Theory Tech. 53, 1997-2006 (2005).
[CrossRef]

J. Bonache, I. Gil, J. Garcia-Garcia, and F. Martin, "Novel microstrip bandpass filters based on complementary split-ring resonators," IEEE Trans. Microwave Theory Tech. 18, 265-271 (2006).
[CrossRef]

K. Buell, H. Mosallaei, and K. Sarabandi, "A substrate for small patch antennas providing tunable miniaturization factors," IEEE Trans. Microwave Theory Tech. 54, 135-146 (2006).
[CrossRef]

F. Bilotti, A. Toscano, L. Vegni, K. Aydin, K. B. Alici, and E. Ozbay, "Equivalent-Circuit models for the design of metamaterials based on artificial magnetic inclusions," IEEE Trans. Microwave Theory Tech. 55, 2865-2873 (2007).
[CrossRef]

J. Appl. Phys. (2)

K. Aydin and E. Ozbay, "Capacitor-loaded split ring resonators as tunable metamaterial components," J. Appl. Phys. 101, 024911 (2007).
[CrossRef]

K. B. Alici and E. Ozbay, "Electrically small split ring resonator antennas," J. Appl. Phys. 101, 083104 (2007).
[CrossRef]

J. Phys. D (1)

R. R. A. Syms, I. R. Young, and L. Solymar, "Low loss magneto-inductive waves," J. Phys. D 39, 3945-3951 (2006).
[CrossRef]

J. Phys. D: Appl. Phys. (1)

K. B. Alici and E. Ozbay, "Characterization and tilted response of a fishnet metamaterial operating at 100 GHz," J. Phys. D: Appl. Phys. 41, 135011.

Microw. Opt. Techn. Lett. (1)

F. Falcone, F. Martin, J. Bonache, M. A. G. Laso, J. Garcia-Garcia, J. D. Baena, R. Marques, and M. Sorolla, "Stop-band and band-pass characteristics in coplanar waveguides coupled to spiral resonators," Microw. Opt. Techn. Lett. 42, 386-388 (2004).
[CrossRef]

Nature (1)

G. T. W. Ebbesen, "Light in tiny holes," Nature 445, 39-46 (2007).
[CrossRef] [PubMed]

New J. Phys. (1)

S. He, Y. Jin, Z. Ruan, and J. Kuang, "On subwavelength and open resonators involving matematerials of negative refraction index," New J. Phys. 7, 210 (2005).
[CrossRef]

Opt. Express (2)

Photonics Nanostruct. (2)

S. Guenneau, S. A. Ramakrishna, S. Enoch, S. Chakrabarti, G. Tayeb, and B. Gralak, "Cloaking and imaging effects in plasmonic checkerboards of negative ? and µ and dielectric photonic crystal checkerboards," Photonics Nanostruct. 5, 63-72 (2007).
[CrossRef]

L. Zhang, G. Tuttle, and C. M. Soukoulis, "GHz magnetic response of split ring resonators," Photonics Nanostruct. 2, 155-159 (2004).
[CrossRef]

Phys. Rev. (1)

H. A. Bethe, "Theory of diffraction by small holes," Phys. Rev. 66, 163-182 (1944).
[CrossRef]

Phys. Rev. B (3)

O. Sydoruk, A. Radkovskaya, O. Zhuromskyy, E. Shamonina, M. Shamonin, C. J. Stevens, G. Faulkner, D. J. Edwards, and L. Solymar, "Tailoring the near field guiding properties of magnetic metamaterials with two resonant elements per unit cell," Phys. Rev. B 73, 224406 (2006).
[CrossRef]

J.D. Baena, R. Marques, F. Medina, and J. Martel, "Artificial magnetic metamaterial design by using spiral resonators," Phys. Rev. B 69, 014402 (2004).
[CrossRef]

M. Gokkavas, K. Guven, I. Bulu, K. Aydin, R. S. Penciu, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, "Experimental demonstration of a left-handed metamaterial operating at 100 GHz," Phys. Rev. B 73, 193103 (2006).
[CrossRef]

Phys. Rev. Lett. (3)

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett. 76, 4773-4776 (1996).
[CrossRef] [PubMed]

G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, "Experimental Verification and simulation of negative index of refration using Snell’s law," Phys. Rev. Lett. 90, 107401 (2003).
[CrossRef] [PubMed]

Th. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, "Effective medium theory of lefthanded materials," Phys. Rev. Lett. 93, 107402 (2004).
[CrossRef] [PubMed]

Physica Solidi Status B (1)

K. B. Alici and E. Ozbay, "Radiation properties of a split ring resonator and monopole composite, " Physica Solidi Status B 244, 1192-1196 (2007).
[CrossRef]

Science (3)

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science 312, 1780 (2006).
[CrossRef] [PubMed]

M. C. K. Wiltshire, J. B. Pendry, I. R. Young, D. J. Larkman, D. J. Gilderdale, and J. V. Hajnal, "Microstructured magnetic materials for RF flux guides in magnetic resonance imaging," Science 291, 849-851 (2001).
[CrossRef] [PubMed]

Other (3)

K. B. Alici and E. Ozbay, "Complete characterization and far field radiation pattern of a negative index metamaterial slab operating at the milli-meter wave regime," submitted.

User Manual, Version 5.0, CST GmbH, Darmstadt, Germany, 2005, http://www.cst.de.

Bahl and P. Bhartia, Microwave Solid State Circuit Design, 2nd ed. (Wiley, New York, 2003), 57-63.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Experiment setup

Fig. 2.
Fig. 2.

The multi-split ring resonator (MSRR) response (a) Geometry of the multi-split ring resonator (MSRR), l = 8 mm, w = s = g = 100 μm, h = 9 μm, t = 254 μm. (b) Experimental transmission data as a function of the frequency. (c) Resonance frequency (d) Calculated electrical size as a function of the simultaneously changing N and l.

Fig. 3.
Fig. 3.

The spiral resonator (SR) response (a) Geometry of the spiral resonator (SR), l = 8 mm, w = s = 100 μm, h = 9 μm, t = 254 μm. (b) Experimental transmission data as a function of the frequency. (c) Resonance frequency (d) Calculated electrical size as a function of the simultaneously changing N and l.

Fig. 4.
Fig. 4.

The multi-spiral resonator (MSR) response. Geometry of the particles analyzed (top). Experimental transmission data of each resonator as a function of frequency (bottom).

Fig. 5.
Fig. 5.

(a) Geometry of the multi-split ring resonator (MSRR) particle, N = 10, l = 4 mm, s = w = g = 100 μm. (b), (e) Resonance frequency in reduced units (fred). For the MSRR fred = f0/(4.17), for SR fred = f0/ (1.307), where 4.17 and 1.307 are the resonance frequency for RT5880 substrate in GHz units, respectively. (d) Geometry of the spiral resonator (SR) particle, N = 10, l = 4 mm, s = w = 100 μm. (c), (f) Calculated electrical size as a function of the substrate permittivity. The permittivity of the substrates: RO5880: ε = 2.0, RO3003: ε = 3.0, FR-4: ε = 4.9, RO3006: ε = 6.15, RO3010: ε = 10.2, Si: ε = 11.9.

Fig. 6.
Fig. 6.

The shorted multi-split ring resonator (MSRR) response. Here the resonators were fabricated as shorted and photoconductive switches were not used.

Fig. 7.
Fig. 7.

(a) Geometry of the subwavelength (a) square hole array only, (b) MSRRs inserted (c) Simulated transmission response of the two cases. At the magnetic resonance frequency of the MSRRs transmission was 0.98.

Tables (1)

Tables Icon

Table 1. Geometric parameters and resonance frequencies for the particles (MSRRs and SRs) with a number of rings (turns) N = 20 scaled to operate at higher frequencies. The side length (l), strip width (w), separation between the strips (s), and resonance frequency (f0) are shown.

Metrics