Abstract

We demonstrated optical amplification at 1550 nm with a carbon tetrachloride solution of Er3+-Yb3+ codoped NaYF4 nanocubes synthesized with solvo-thermal route. Upon excitation with a 980 nm laser diode, the nanocube solution exhibited strong near-infrared emission by the 4 I 13/24 I 15/2 transition of Er3+ ions due to energy transfer from Yb3+ ions. We obtained the highest optical gain coefficient at 1550 nm of 0.58 cm-1 for the solution with the pumping power of 200 mW. This colloidal solution might be a promising candidate as a liquid medium for optical amplifier and laser at the optical communication wavelength.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, "Optical gain and stimulated emission in nanocrystal quantum dots," Science 290, 314-317 (2000).
    [CrossRef] [PubMed]
  2. V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A. Piryatinski, "Single-exciton optical gain in semiconductor nanocrystals," Nature 447, 441-446 (2007).
    [CrossRef] [PubMed]
  3. Q. Darugar, W. Qian, and M. A. El-Sayed, "Observation of optical gain in solutions of CdS quantum dots at room temperature in the blue region," Appl. Phys. Lett.  88, 261108/1-261108/3 (2006).
    [CrossRef]
  4. R. Hardman, "A toxicologic review of quantum dots: Toxicity depends on physicochemical and environmental factors," Environ. Health Persp. 114, 165-172 (2006).
    [CrossRef]
  5. H. Bao, Y. Gong, Z. Li, and M. Gao, "Enhancement effect of illumination on the photoluminescence of water-soluble CdTe nanocrystals: Toward highly fluorescent CdTe/CdS core-shell structure," Chem. Mater. 16, 3853-3859 (2004).
    [CrossRef]
  6. G. M. Haugen, "Photodegradation of CdxZn1-xSe quantum-wells," Appl. Phys. Lett. 66, 358-3601995.
    [CrossRef]
  7. J. W. Stouwdam, and FrankC. J. M. van Veggel, "Near-infrared emission of redispersible Er3+, Nd3+, and Ho3+ doped LaF3 nanoparticles," Nano Lett. 2, 733-737 (2002).
    [CrossRef]
  8. J. Wang, J. Hu, D. Tang, X. Liu, and Z. Zhen, "Oleic acid (OA)-modified LaF3: Er,Yb nanocrystals and their polymer hybrid materials for potential optical-amplification applications," J. Mater. Chem. 17, 1597-1601 (2001).
    [CrossRef]
  9. R. Yu, K. Yu, W. Wei, X. Xu, X. Qiu, S. Liu, W. Huang, G. Tang, H. Ford, and B. Peng, "Nd2O3 nanoparticles modified with a silane coupling agent as a liquid laser medium," Adv. Mater. 19, 838-842 (2007).
    [CrossRef]
  10. D. Zhang, C. Chen, C. Chen, C. Ma, D. Zhang, S. Bo, and Z. Zhen, "Optical gain at 1535 nm in LaF3:Er,Yb nanoparticle-doped organic-inorganic hybrid material waveguide," Appl. Phys. Lett.  91, 161109/1-161109/3 (2007).
  11. R. Dekker, D. J. W. Klunder, A. Borreman, M. B. J. Diemeer, K. Wörhoff, A. Driessen, J. W. Stouwdam, and F. C. J. M. van Veggel, "Stimulated emission and optical gain in LaF3:Nd nanoparticle-doped polymer-based waveguides," Appl. Phys. Lett. 85, 6104-6106 (2004).
    [CrossRef]
  12. X. Wang, J. Zhuang, Q. Peng, and Y. Li, "A general strategy for nanocrystal synthesis," Nature 437, 121-1242005.
    [CrossRef] [PubMed]
  13. J. A. Dean, Lange's Handbook of Chemistry, 15th Ed. (McGraw-Hill, 1999).
  14. L. Wang and Y. Li, "Na(Y1.5Na0.5)F6 Single-Crystal Nanorods as Multicolor Luminescent Materials," Nano Lett. 6, 1645-1649 (2006).
    [CrossRef] [PubMed]
  15. M. Y. William, S. Shionoya, and H. Yamamoto, Phosphor Handbook, 2nd ed., (CRC press, 2006), Chap. 14.
  16. B. Jaskorzynska, E. V. Vanin, S. He lmfrid, and A. Asseh, "Gain saturation and pump depletion in high-efficiency distributed-feedback rare-earth-doped lasers," Opt. Lett. 21, 1366-1368 (1996).
    [CrossRef] [PubMed]

2007 (2)

V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A. Piryatinski, "Single-exciton optical gain in semiconductor nanocrystals," Nature 447, 441-446 (2007).
[CrossRef] [PubMed]

R. Yu, K. Yu, W. Wei, X. Xu, X. Qiu, S. Liu, W. Huang, G. Tang, H. Ford, and B. Peng, "Nd2O3 nanoparticles modified with a silane coupling agent as a liquid laser medium," Adv. Mater. 19, 838-842 (2007).
[CrossRef]

2006 (2)

R. Hardman, "A toxicologic review of quantum dots: Toxicity depends on physicochemical and environmental factors," Environ. Health Persp. 114, 165-172 (2006).
[CrossRef]

L. Wang and Y. Li, "Na(Y1.5Na0.5)F6 Single-Crystal Nanorods as Multicolor Luminescent Materials," Nano Lett. 6, 1645-1649 (2006).
[CrossRef] [PubMed]

2005 (1)

X. Wang, J. Zhuang, Q. Peng, and Y. Li, "A general strategy for nanocrystal synthesis," Nature 437, 121-1242005.
[CrossRef] [PubMed]

2004 (2)

H. Bao, Y. Gong, Z. Li, and M. Gao, "Enhancement effect of illumination on the photoluminescence of water-soluble CdTe nanocrystals: Toward highly fluorescent CdTe/CdS core-shell structure," Chem. Mater. 16, 3853-3859 (2004).
[CrossRef]

R. Dekker, D. J. W. Klunder, A. Borreman, M. B. J. Diemeer, K. Wörhoff, A. Driessen, J. W. Stouwdam, and F. C. J. M. van Veggel, "Stimulated emission and optical gain in LaF3:Nd nanoparticle-doped polymer-based waveguides," Appl. Phys. Lett. 85, 6104-6106 (2004).
[CrossRef]

2002 (1)

J. W. Stouwdam, and FrankC. J. M. van Veggel, "Near-infrared emission of redispersible Er3+, Nd3+, and Ho3+ doped LaF3 nanoparticles," Nano Lett. 2, 733-737 (2002).
[CrossRef]

J. W. Stouwdam, and FrankC. J. M. van Veggel, "Near-infrared emission of redispersible Er3+, Nd3+, and Ho3+ doped LaF3 nanoparticles," Nano Lett. 2, 733-737 (2002).
[CrossRef]

2001 (1)

J. Wang, J. Hu, D. Tang, X. Liu, and Z. Zhen, "Oleic acid (OA)-modified LaF3: Er,Yb nanocrystals and their polymer hybrid materials for potential optical-amplification applications," J. Mater. Chem. 17, 1597-1601 (2001).
[CrossRef]

2000 (1)

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, "Optical gain and stimulated emission in nanocrystal quantum dots," Science 290, 314-317 (2000).
[CrossRef] [PubMed]

1996 (1)

1995 (1)

G. M. Haugen, "Photodegradation of CdxZn1-xSe quantum-wells," Appl. Phys. Lett. 66, 358-3601995.
[CrossRef]

Achermann, M.

V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A. Piryatinski, "Single-exciton optical gain in semiconductor nanocrystals," Nature 447, 441-446 (2007).
[CrossRef] [PubMed]

Bao, H.

H. Bao, Y. Gong, Z. Li, and M. Gao, "Enhancement effect of illumination on the photoluminescence of water-soluble CdTe nanocrystals: Toward highly fluorescent CdTe/CdS core-shell structure," Chem. Mater. 16, 3853-3859 (2004).
[CrossRef]

Bawendi, M. G.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, "Optical gain and stimulated emission in nanocrystal quantum dots," Science 290, 314-317 (2000).
[CrossRef] [PubMed]

Bezel, I.

V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A. Piryatinski, "Single-exciton optical gain in semiconductor nanocrystals," Nature 447, 441-446 (2007).
[CrossRef] [PubMed]

Borreman, A.

R. Dekker, D. J. W. Klunder, A. Borreman, M. B. J. Diemeer, K. Wörhoff, A. Driessen, J. W. Stouwdam, and F. C. J. M. van Veggel, "Stimulated emission and optical gain in LaF3:Nd nanoparticle-doped polymer-based waveguides," Appl. Phys. Lett. 85, 6104-6106 (2004).
[CrossRef]

Dekker, R.

R. Dekker, D. J. W. Klunder, A. Borreman, M. B. J. Diemeer, K. Wörhoff, A. Driessen, J. W. Stouwdam, and F. C. J. M. van Veggel, "Stimulated emission and optical gain in LaF3:Nd nanoparticle-doped polymer-based waveguides," Appl. Phys. Lett. 85, 6104-6106 (2004).
[CrossRef]

Diemeer, M. B. J.

R. Dekker, D. J. W. Klunder, A. Borreman, M. B. J. Diemeer, K. Wörhoff, A. Driessen, J. W. Stouwdam, and F. C. J. M. van Veggel, "Stimulated emission and optical gain in LaF3:Nd nanoparticle-doped polymer-based waveguides," Appl. Phys. Lett. 85, 6104-6106 (2004).
[CrossRef]

Driessen, A.

R. Dekker, D. J. W. Klunder, A. Borreman, M. B. J. Diemeer, K. Wörhoff, A. Driessen, J. W. Stouwdam, and F. C. J. M. van Veggel, "Stimulated emission and optical gain in LaF3:Nd nanoparticle-doped polymer-based waveguides," Appl. Phys. Lett. 85, 6104-6106 (2004).
[CrossRef]

Eisler, H. J.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, "Optical gain and stimulated emission in nanocrystal quantum dots," Science 290, 314-317 (2000).
[CrossRef] [PubMed]

Ford, H.

R. Yu, K. Yu, W. Wei, X. Xu, X. Qiu, S. Liu, W. Huang, G. Tang, H. Ford, and B. Peng, "Nd2O3 nanoparticles modified with a silane coupling agent as a liquid laser medium," Adv. Mater. 19, 838-842 (2007).
[CrossRef]

Frank, J. W.

J. W. Stouwdam, and FrankC. J. M. van Veggel, "Near-infrared emission of redispersible Er3+, Nd3+, and Ho3+ doped LaF3 nanoparticles," Nano Lett. 2, 733-737 (2002).
[CrossRef]

Gao, M.

H. Bao, Y. Gong, Z. Li, and M. Gao, "Enhancement effect of illumination on the photoluminescence of water-soluble CdTe nanocrystals: Toward highly fluorescent CdTe/CdS core-shell structure," Chem. Mater. 16, 3853-3859 (2004).
[CrossRef]

Gong, Y.

H. Bao, Y. Gong, Z. Li, and M. Gao, "Enhancement effect of illumination on the photoluminescence of water-soluble CdTe nanocrystals: Toward highly fluorescent CdTe/CdS core-shell structure," Chem. Mater. 16, 3853-3859 (2004).
[CrossRef]

Hardman, R.

R. Hardman, "A toxicologic review of quantum dots: Toxicity depends on physicochemical and environmental factors," Environ. Health Persp. 114, 165-172 (2006).
[CrossRef]

Haugen, G. M.

G. M. Haugen, "Photodegradation of CdxZn1-xSe quantum-wells," Appl. Phys. Lett. 66, 358-3601995.
[CrossRef]

Hollingsworth, J. A.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, "Optical gain and stimulated emission in nanocrystal quantum dots," Science 290, 314-317 (2000).
[CrossRef] [PubMed]

Hu, J.

J. Wang, J. Hu, D. Tang, X. Liu, and Z. Zhen, "Oleic acid (OA)-modified LaF3: Er,Yb nanocrystals and their polymer hybrid materials for potential optical-amplification applications," J. Mater. Chem. 17, 1597-1601 (2001).
[CrossRef]

Huang, W.

R. Yu, K. Yu, W. Wei, X. Xu, X. Qiu, S. Liu, W. Huang, G. Tang, H. Ford, and B. Peng, "Nd2O3 nanoparticles modified with a silane coupling agent as a liquid laser medium," Adv. Mater. 19, 838-842 (2007).
[CrossRef]

Ivanov, S. A.

V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A. Piryatinski, "Single-exciton optical gain in semiconductor nanocrystals," Nature 447, 441-446 (2007).
[CrossRef] [PubMed]

Jaskorzynska, B.

Klimov, V. I.

V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A. Piryatinski, "Single-exciton optical gain in semiconductor nanocrystals," Nature 447, 441-446 (2007).
[CrossRef] [PubMed]

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, "Optical gain and stimulated emission in nanocrystal quantum dots," Science 290, 314-317 (2000).
[CrossRef] [PubMed]

Klunder, D. J. W.

R. Dekker, D. J. W. Klunder, A. Borreman, M. B. J. Diemeer, K. Wörhoff, A. Driessen, J. W. Stouwdam, and F. C. J. M. van Veggel, "Stimulated emission and optical gain in LaF3:Nd nanoparticle-doped polymer-based waveguides," Appl. Phys. Lett. 85, 6104-6106 (2004).
[CrossRef]

Leatherdale, C. A.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, "Optical gain and stimulated emission in nanocrystal quantum dots," Science 290, 314-317 (2000).
[CrossRef] [PubMed]

Li, Y.

L. Wang and Y. Li, "Na(Y1.5Na0.5)F6 Single-Crystal Nanorods as Multicolor Luminescent Materials," Nano Lett. 6, 1645-1649 (2006).
[CrossRef] [PubMed]

X. Wang, J. Zhuang, Q. Peng, and Y. Li, "A general strategy for nanocrystal synthesis," Nature 437, 121-1242005.
[CrossRef] [PubMed]

Li, Z.

H. Bao, Y. Gong, Z. Li, and M. Gao, "Enhancement effect of illumination on the photoluminescence of water-soluble CdTe nanocrystals: Toward highly fluorescent CdTe/CdS core-shell structure," Chem. Mater. 16, 3853-3859 (2004).
[CrossRef]

Liu, S.

R. Yu, K. Yu, W. Wei, X. Xu, X. Qiu, S. Liu, W. Huang, G. Tang, H. Ford, and B. Peng, "Nd2O3 nanoparticles modified with a silane coupling agent as a liquid laser medium," Adv. Mater. 19, 838-842 (2007).
[CrossRef]

Liu, X.

J. Wang, J. Hu, D. Tang, X. Liu, and Z. Zhen, "Oleic acid (OA)-modified LaF3: Er,Yb nanocrystals and their polymer hybrid materials for potential optical-amplification applications," J. Mater. Chem. 17, 1597-1601 (2001).
[CrossRef]

Malko, A.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, "Optical gain and stimulated emission in nanocrystal quantum dots," Science 290, 314-317 (2000).
[CrossRef] [PubMed]

McGuire, J. A.

V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A. Piryatinski, "Single-exciton optical gain in semiconductor nanocrystals," Nature 447, 441-446 (2007).
[CrossRef] [PubMed]

Mikhailovsky, A. A.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, "Optical gain and stimulated emission in nanocrystal quantum dots," Science 290, 314-317 (2000).
[CrossRef] [PubMed]

Nanda, J.

V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A. Piryatinski, "Single-exciton optical gain in semiconductor nanocrystals," Nature 447, 441-446 (2007).
[CrossRef] [PubMed]

Peng, B.

R. Yu, K. Yu, W. Wei, X. Xu, X. Qiu, S. Liu, W. Huang, G. Tang, H. Ford, and B. Peng, "Nd2O3 nanoparticles modified with a silane coupling agent as a liquid laser medium," Adv. Mater. 19, 838-842 (2007).
[CrossRef]

Peng, Q.

X. Wang, J. Zhuang, Q. Peng, and Y. Li, "A general strategy for nanocrystal synthesis," Nature 437, 121-1242005.
[CrossRef] [PubMed]

Piryatinski, A.

V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A. Piryatinski, "Single-exciton optical gain in semiconductor nanocrystals," Nature 447, 441-446 (2007).
[CrossRef] [PubMed]

Qiu, X.

R. Yu, K. Yu, W. Wei, X. Xu, X. Qiu, S. Liu, W. Huang, G. Tang, H. Ford, and B. Peng, "Nd2O3 nanoparticles modified with a silane coupling agent as a liquid laser medium," Adv. Mater. 19, 838-842 (2007).
[CrossRef]

Stouwdam, J. W.

R. Dekker, D. J. W. Klunder, A. Borreman, M. B. J. Diemeer, K. Wörhoff, A. Driessen, J. W. Stouwdam, and F. C. J. M. van Veggel, "Stimulated emission and optical gain in LaF3:Nd nanoparticle-doped polymer-based waveguides," Appl. Phys. Lett. 85, 6104-6106 (2004).
[CrossRef]

J. W. Stouwdam, and FrankC. J. M. van Veggel, "Near-infrared emission of redispersible Er3+, Nd3+, and Ho3+ doped LaF3 nanoparticles," Nano Lett. 2, 733-737 (2002).
[CrossRef]

Tang, D.

J. Wang, J. Hu, D. Tang, X. Liu, and Z. Zhen, "Oleic acid (OA)-modified LaF3: Er,Yb nanocrystals and their polymer hybrid materials for potential optical-amplification applications," J. Mater. Chem. 17, 1597-1601 (2001).
[CrossRef]

Tang, G.

R. Yu, K. Yu, W. Wei, X. Xu, X. Qiu, S. Liu, W. Huang, G. Tang, H. Ford, and B. Peng, "Nd2O3 nanoparticles modified with a silane coupling agent as a liquid laser medium," Adv. Mater. 19, 838-842 (2007).
[CrossRef]

van Veggel, F. C. J. M.

R. Dekker, D. J. W. Klunder, A. Borreman, M. B. J. Diemeer, K. Wörhoff, A. Driessen, J. W. Stouwdam, and F. C. J. M. van Veggel, "Stimulated emission and optical gain in LaF3:Nd nanoparticle-doped polymer-based waveguides," Appl. Phys. Lett. 85, 6104-6106 (2004).
[CrossRef]

Vanin, E. V.

Wang, J.

J. Wang, J. Hu, D. Tang, X. Liu, and Z. Zhen, "Oleic acid (OA)-modified LaF3: Er,Yb nanocrystals and their polymer hybrid materials for potential optical-amplification applications," J. Mater. Chem. 17, 1597-1601 (2001).
[CrossRef]

Wang, L.

L. Wang and Y. Li, "Na(Y1.5Na0.5)F6 Single-Crystal Nanorods as Multicolor Luminescent Materials," Nano Lett. 6, 1645-1649 (2006).
[CrossRef] [PubMed]

Wang, X.

X. Wang, J. Zhuang, Q. Peng, and Y. Li, "A general strategy for nanocrystal synthesis," Nature 437, 121-1242005.
[CrossRef] [PubMed]

Wei, W.

R. Yu, K. Yu, W. Wei, X. Xu, X. Qiu, S. Liu, W. Huang, G. Tang, H. Ford, and B. Peng, "Nd2O3 nanoparticles modified with a silane coupling agent as a liquid laser medium," Adv. Mater. 19, 838-842 (2007).
[CrossRef]

Wörhoff, K.

R. Dekker, D. J. W. Klunder, A. Borreman, M. B. J. Diemeer, K. Wörhoff, A. Driessen, J. W. Stouwdam, and F. C. J. M. van Veggel, "Stimulated emission and optical gain in LaF3:Nd nanoparticle-doped polymer-based waveguides," Appl. Phys. Lett. 85, 6104-6106 (2004).
[CrossRef]

Xu, S.

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, "Optical gain and stimulated emission in nanocrystal quantum dots," Science 290, 314-317 (2000).
[CrossRef] [PubMed]

Xu, X.

R. Yu, K. Yu, W. Wei, X. Xu, X. Qiu, S. Liu, W. Huang, G. Tang, H. Ford, and B. Peng, "Nd2O3 nanoparticles modified with a silane coupling agent as a liquid laser medium," Adv. Mater. 19, 838-842 (2007).
[CrossRef]

Yu, K.

R. Yu, K. Yu, W. Wei, X. Xu, X. Qiu, S. Liu, W. Huang, G. Tang, H. Ford, and B. Peng, "Nd2O3 nanoparticles modified with a silane coupling agent as a liquid laser medium," Adv. Mater. 19, 838-842 (2007).
[CrossRef]

Yu, R.

R. Yu, K. Yu, W. Wei, X. Xu, X. Qiu, S. Liu, W. Huang, G. Tang, H. Ford, and B. Peng, "Nd2O3 nanoparticles modified with a silane coupling agent as a liquid laser medium," Adv. Mater. 19, 838-842 (2007).
[CrossRef]

Zhen, Z.

J. Wang, J. Hu, D. Tang, X. Liu, and Z. Zhen, "Oleic acid (OA)-modified LaF3: Er,Yb nanocrystals and their polymer hybrid materials for potential optical-amplification applications," J. Mater. Chem. 17, 1597-1601 (2001).
[CrossRef]

Zhuang, J.

X. Wang, J. Zhuang, Q. Peng, and Y. Li, "A general strategy for nanocrystal synthesis," Nature 437, 121-1242005.
[CrossRef] [PubMed]

Adv. Mater. (1)

R. Yu, K. Yu, W. Wei, X. Xu, X. Qiu, S. Liu, W. Huang, G. Tang, H. Ford, and B. Peng, "Nd2O3 nanoparticles modified with a silane coupling agent as a liquid laser medium," Adv. Mater. 19, 838-842 (2007).
[CrossRef]

Appl. Phys. Lett. (2)

R. Dekker, D. J. W. Klunder, A. Borreman, M. B. J. Diemeer, K. Wörhoff, A. Driessen, J. W. Stouwdam, and F. C. J. M. van Veggel, "Stimulated emission and optical gain in LaF3:Nd nanoparticle-doped polymer-based waveguides," Appl. Phys. Lett. 85, 6104-6106 (2004).
[CrossRef]

G. M. Haugen, "Photodegradation of CdxZn1-xSe quantum-wells," Appl. Phys. Lett. 66, 358-3601995.
[CrossRef]

Chem. Mater. (1)

H. Bao, Y. Gong, Z. Li, and M. Gao, "Enhancement effect of illumination on the photoluminescence of water-soluble CdTe nanocrystals: Toward highly fluorescent CdTe/CdS core-shell structure," Chem. Mater. 16, 3853-3859 (2004).
[CrossRef]

Environ. Health Persp. (1)

R. Hardman, "A toxicologic review of quantum dots: Toxicity depends on physicochemical and environmental factors," Environ. Health Persp. 114, 165-172 (2006).
[CrossRef]

J. Mater. Chem. (1)

J. Wang, J. Hu, D. Tang, X. Liu, and Z. Zhen, "Oleic acid (OA)-modified LaF3: Er,Yb nanocrystals and their polymer hybrid materials for potential optical-amplification applications," J. Mater. Chem. 17, 1597-1601 (2001).
[CrossRef]

Nano Lett. (2)

J. W. Stouwdam, and FrankC. J. M. van Veggel, "Near-infrared emission of redispersible Er3+, Nd3+, and Ho3+ doped LaF3 nanoparticles," Nano Lett. 2, 733-737 (2002).
[CrossRef]

L. Wang and Y. Li, "Na(Y1.5Na0.5)F6 Single-Crystal Nanorods as Multicolor Luminescent Materials," Nano Lett. 6, 1645-1649 (2006).
[CrossRef] [PubMed]

Nature (2)

X. Wang, J. Zhuang, Q. Peng, and Y. Li, "A general strategy for nanocrystal synthesis," Nature 437, 121-1242005.
[CrossRef] [PubMed]

V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire, and A. Piryatinski, "Single-exciton optical gain in semiconductor nanocrystals," Nature 447, 441-446 (2007).
[CrossRef] [PubMed]

Opt. Lett. (1)

Science (1)

V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, "Optical gain and stimulated emission in nanocrystal quantum dots," Science 290, 314-317 (2000).
[CrossRef] [PubMed]

Other (4)

Q. Darugar, W. Qian, and M. A. El-Sayed, "Observation of optical gain in solutions of CdS quantum dots at room temperature in the blue region," Appl. Phys. Lett.  88, 261108/1-261108/3 (2006).
[CrossRef]

M. Y. William, S. Shionoya, and H. Yamamoto, Phosphor Handbook, 2nd ed., (CRC press, 2006), Chap. 14.

J. A. Dean, Lange's Handbook of Chemistry, 15th Ed. (McGraw-Hill, 1999).

D. Zhang, C. Chen, C. Chen, C. Ma, D. Zhang, S. Bo, and Z. Zhen, "Optical gain at 1535 nm in LaF3:Er,Yb nanoparticle-doped organic-inorganic hybrid material waveguide," Appl. Phys. Lett.  91, 161109/1-161109/3 (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Structural characteristics of the Yb3+-Er3+ codoped NaYF4 nanoparticles: (a) XRD pattern, (b) typical TEM image, insert is an image of a single nanocube covered by thin sheath of OA, and (c) size distribution of the nanoparticles obtained by counting the size of approximately 500 separate nanoparticles.

Fig. 2.
Fig. 2.

Transmission spectrum of the colloidal solution containing 1wt.% Yb3+-Er3+ codoped NaYF4, insert is the graph of a quartz vessel (10×10×50 mm3) filled with the nanocube solution.

Fig. 3.
Fig. 3.

Emission spectra of the solution containing 1wt.% of NaY80%-x%Yb20%Er x%F4 (x=0.5, 1, 2, 5, 10) upon excitation by a 980 nm LD, insert shows the decay curves of colloids with Er3+ concentration in the nanocubes of x=2, and 10.

Fig. 4.
Fig. 4.

Optical amplification with the nanocube solution: (a) experimental setup for the measurement of optical gain: (1) 980 nm LD as the pumping beam, (2) 980 nm LD as the signal beam, (3) chopper, 200 Hz, (4) sample, quartz vessel filled with the nanocube solution, (5) filter, (6) InGaAs detector, and (7) digital oscilloscope, M1 and M2 are mirrors, and L1, L2 and L3 are lens; (b) comparison of the intensity for the amplified and the signal beam; (c) plot of gain coefficient as a function pumping power at 980 nm, and (d) plot of gain coefficient as a function of signal power.

Metrics