Abstract

A simple method is described for efficient, asymmetric and coherent continuum generation in the mid-infrared region based on the dynamics of a stabilized soliton in the vicinity of a second dispersion zero of a nonlinear fiber. The mechanism involves nonlinear soliton compression, Raman self-frequency shift and resonant emission of a dispersive (Cherenkov) wave in a non-uniformly tapered ZBLAN fluoride fiber pumped by a low-power compact femtosecond laser at 1.55 μm. The fiber taper features a continuous shift of the second zero dispersion wavelength, which facilitates the progressive shift in the wavelength of the dispersive wave generated by the stabilized soliton. Numerical solution of the generalized nonlinear Schrödinger equation, which accounts for the exact wavelength dependence of dispersion and nonlinear coefficients, shows robust generation of near-octave continuum spanning 1.5–3 μm wavelength range.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. T. Sorokina and K. L. Vodopyanov, eds., Solid-State Mid-Infrared Laser Sources, (Springer-Verlag, 2003).
    [CrossRef]
  2. C. Xia, M. Kumar, O. P. Kulkarni, M. N. Islam, F. L. Terry, M. J. Freeman, M. Poulain, and G . Maze, "Mid infrared supercontinuum generation to 4.5 μm in ZBLAN fluoride fibers by nanosecond diode pumping," Opt. Lett. 31, 2553-2555 (2006).
    [CrossRef] [PubMed]
  3. C. L. Hagen, J. W. Walewski, and S. T. Sanders, "Generation of a continuum extending to midinfrared by pumping ZBLAN fiber with an ultrafast 1550-nm source," IEEE Photon. Technol. Lett. 18, 91-93 (2006).
    [CrossRef]
  4. G. P. Agrawal, Nonlinear Fiber Optics, 4th edition, (Academic Press, 2007).
  5. J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006).
    [CrossRef]
  6. J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm," Opt. Lett. 25, 25-27 (2000).
    [CrossRef]
  7. T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, "Supercontinuum generation in tapered fibers," Opt. Lett. 25, 1415-1417 (2000).
    [CrossRef]
  8. A. Efimov, A. J. Taylor, F. G. Omenetto, A. V. Yulin, N. Y. Joly, F. Biancalana, D. V. Skryabin, J. C. Knight, and P. St. J. Russell,"Time-spectrally-resolved ultrafast nonlinear dynamics in small-core photonic crystal fibers: Experiment and modeling," Opt. Express 12, 6498-6507 (2004).
    [CrossRef] [PubMed]
  9. D. V. Skryabin and A. V. Yulin, "Theory of generation of new frequencies by mixing of solitons and dispersive waves in optical fibers," Phys. Rev. E 72, 016619 (2005).
    [CrossRef]
  10. D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, "Soliton self-frequency shift cancellation in photonic crystal fibers," Science 301,1705-1708 (2003).
    [CrossRef] [PubMed]
  11. M. A. Foster, K. D. Moll, and A. L. Gaeta, "Optimal waveguide dimensions for nonlinear interactions," Opt. Express 12, 2880-2887 (2004).
    [CrossRef] [PubMed]
  12. A. Kudlinski, A. K. George, J. C. Knight, J. C. Travers, A. B. Rulkov, S. V. Popov, and J. R. Taylor, "Zerodispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation," Opt. Express 14, 5715-5722 (2006).
    [CrossRef] [PubMed]
  13. J. C. Travers, J. M. Stone, A. B. Rulkov, B. A. Cumberland, A. K. George, S. V. Popov, J. C. Knight, and J. R. Taylor, "Optical pulse compression in dispersion decreasing photonic crystal fiber," Opt. Express 15, 13203-13211 (2007).
    [CrossRef] [PubMed]
  14. D. Mogilevtsev, T. A. Birks, and P. St. J. Russell, "Group-velocity dispersion in photonic crystal fibers," Opt. Lett. 23, 1662-1664 (1998).
    [CrossRef]
  15. S. A. Akhmanov, V. A. Vysloukh, and A. S. Chirkin, Optics of Femtosecond Laser Pulses, (American Institue of Physics, 1992).
  16. G. Canat, T. Laverre, L. Lombard, V. Jolivet, and P. Bourdon, "Influence of the wavelength dependence of the effective area on infrared supercontinuum generation," in Conference on Lasers and Electro-Optics, p. CMT4 (Optical Society of America, San Jose, CA, 2008).
  17. A. Saissy, J. Botineau, L. Macon, and G. Maze, "Raman scattering in a fluorozirconate glass optical fiber," J. De Physicque Lettres  46, 289-294 (1985).
  18. A. Efimov and A. J. Taylor, "Supercontinuum generation and soliton timing jitter in SF6 soft glass photonic crystal fibers," Opt. Express 16, 5942-5953 (2008).
    [CrossRef] [PubMed]

2008 (1)

2007 (1)

2006 (4)

2005 (1)

D. V. Skryabin and A. V. Yulin, "Theory of generation of new frequencies by mixing of solitons and dispersive waves in optical fibers," Phys. Rev. E 72, 016619 (2005).
[CrossRef]

2004 (2)

2003 (1)

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, "Soliton self-frequency shift cancellation in photonic crystal fibers," Science 301,1705-1708 (2003).
[CrossRef] [PubMed]

2000 (2)

1998 (1)

1985 (1)

A. Saissy, J. Botineau, L. Macon, and G. Maze, "Raman scattering in a fluorozirconate glass optical fiber," J. De Physicque Lettres  46, 289-294 (1985).

Biancalana, F.

Birks, T. A.

Botineau, J.

A. Saissy, J. Botineau, L. Macon, and G. Maze, "Raman scattering in a fluorozirconate glass optical fiber," J. De Physicque Lettres  46, 289-294 (1985).

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006).
[CrossRef]

Cumberland, B. A.

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006).
[CrossRef]

Efimov, A.

Foster, M. A.

Freeman, M. J.

Gaeta, A. L.

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006).
[CrossRef]

George, A. K.

Hagen, C. L.

C. L. Hagen, J. W. Walewski, and S. T. Sanders, "Generation of a continuum extending to midinfrared by pumping ZBLAN fiber with an ultrafast 1550-nm source," IEEE Photon. Technol. Lett. 18, 91-93 (2006).
[CrossRef]

Islam, M. N.

Joly, N. Y.

Knight, J. C.

Kudlinski, A.

Kulkarni, O. P.

Kumar, M.

Luan, F.

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, "Soliton self-frequency shift cancellation in photonic crystal fibers," Science 301,1705-1708 (2003).
[CrossRef] [PubMed]

Macon, L.

A. Saissy, J. Botineau, L. Macon, and G. Maze, "Raman scattering in a fluorozirconate glass optical fiber," J. De Physicque Lettres  46, 289-294 (1985).

Maze, G

Maze, G.

A. Saissy, J. Botineau, L. Macon, and G. Maze, "Raman scattering in a fluorozirconate glass optical fiber," J. De Physicque Lettres  46, 289-294 (1985).

Mogilevtsev, D.

Moll, K. D.

Omenetto, F. G.

Popov, S. V.

Poulain, M.

Ranka, J. K.

Rulkov, A. B.

Russell, P. St. J.

Saissy, A.

A. Saissy, J. Botineau, L. Macon, and G. Maze, "Raman scattering in a fluorozirconate glass optical fiber," J. De Physicque Lettres  46, 289-294 (1985).

Sanders, S. T.

C. L. Hagen, J. W. Walewski, and S. T. Sanders, "Generation of a continuum extending to midinfrared by pumping ZBLAN fiber with an ultrafast 1550-nm source," IEEE Photon. Technol. Lett. 18, 91-93 (2006).
[CrossRef]

Skryabin, D. V.

D. V. Skryabin and A. V. Yulin, "Theory of generation of new frequencies by mixing of solitons and dispersive waves in optical fibers," Phys. Rev. E 72, 016619 (2005).
[CrossRef]

A. Efimov, A. J. Taylor, F. G. Omenetto, A. V. Yulin, N. Y. Joly, F. Biancalana, D. V. Skryabin, J. C. Knight, and P. St. J. Russell,"Time-spectrally-resolved ultrafast nonlinear dynamics in small-core photonic crystal fibers: Experiment and modeling," Opt. Express 12, 6498-6507 (2004).
[CrossRef] [PubMed]

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, "Soliton self-frequency shift cancellation in photonic crystal fibers," Science 301,1705-1708 (2003).
[CrossRef] [PubMed]

Stentz, A. J.

Stone, J. M.

Taylor, A. J.

Taylor, J. R.

Terry, F. L.

Travers, J. C.

Wadsworth, W. J.

Walewski, J. W.

C. L. Hagen, J. W. Walewski, and S. T. Sanders, "Generation of a continuum extending to midinfrared by pumping ZBLAN fiber with an ultrafast 1550-nm source," IEEE Photon. Technol. Lett. 18, 91-93 (2006).
[CrossRef]

Windeler, R. S.

Xia, C.

Yulin, A. V.

IEEE Photon. Technol. Lett. (1)

C. L. Hagen, J. W. Walewski, and S. T. Sanders, "Generation of a continuum extending to midinfrared by pumping ZBLAN fiber with an ultrafast 1550-nm source," IEEE Photon. Technol. Lett. 18, 91-93 (2006).
[CrossRef]

J. De Physicque Lettres (1)

A. Saissy, J. Botineau, L. Macon, and G. Maze, "Raman scattering in a fluorozirconate glass optical fiber," J. De Physicque Lettres  46, 289-294 (1985).

Opt. Express (5)

Opt. Lett. (4)

Phys. Rev. E (1)

D. V. Skryabin and A. V. Yulin, "Theory of generation of new frequencies by mixing of solitons and dispersive waves in optical fibers," Phys. Rev. E 72, 016619 (2005).
[CrossRef]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006).
[CrossRef]

Science (1)

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, "Soliton self-frequency shift cancellation in photonic crystal fibers," Science 301,1705-1708 (2003).
[CrossRef] [PubMed]

Other (4)

S. A. Akhmanov, V. A. Vysloukh, and A. S. Chirkin, Optics of Femtosecond Laser Pulses, (American Institue of Physics, 1992).

G. Canat, T. Laverre, L. Lombard, V. Jolivet, and P. Bourdon, "Influence of the wavelength dependence of the effective area on infrared supercontinuum generation," in Conference on Lasers and Electro-Optics, p. CMT4 (Optical Society of America, San Jose, CA, 2008).

I. T. Sorokina and K. L. Vodopyanov, eds., Solid-State Mid-Infrared Laser Sources, (Springer-Verlag, 2003).
[CrossRef]

G. P. Agrawal, Nonlinear Fiber Optics, 4th edition, (Academic Press, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Conceptual illustration of the asymmetric continuum generation in the mid-infrared.

Fig. 2.
Fig. 2.

(a) Group velocity dispersion β 2 and (b) nonlinear coefficient γ for various ZBLAN fiber core radii and Δn = 0.09. ZBLAN material dispersion is also plotted (dashed line).

Fig. 3.
Fig. 3.

Spectrum evolution with propagation distance (left) and output spectral amplitude (right) on logarithmic scale. Input pulse FWHM duration is 100 fs and energy 1.0 nJ, which corresponds to soliton number N = 2.3.

Fig. 4.
Fig. 4.

(a) Output spectral amplitude on logarithmic scale for several input pulse energies. The spectra are offset for clarity. (b) The degree of coherence |g (1) 12| for spectrum generated by a 1.0 nJ input pulse, calculated over an ensemble of 20 simulations with random input pulse noise.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

γ = 2 π λ n 2 S z 2 d 2 r ( S z d 2 r ) 2 .
A z + α 2 A + m 2 i m 1 m ! β m m A T m = m 0 i m + 1 m ! γ m m T m ( A + R ( T ' ) A ( z , T T ' ) 2 d T ' ) .
g 12 ( 1 ) ( λ ) = E 1 * ( λ ) E 2 ( λ ) E 1 ( λ ) 2 E 2 ( λ ) 2 .

Metrics