Abstract

We report on the generation of 281.2 nJ mode locked pulses directly from an erbium-doped fiber laser mode-locked with the nonlinear polarization rotation technique. We show that apart from the conventional dissipative soliton operation, an all-normal-dispersion fiber laser can also emit square-profile dissipative solitons whose energy could increase to a very large value without pulse breaking.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. M. Zhao, D. Y. Tang, and J. Wu, “Gain-guided soliton in a positive group-dispersion fiber laser,” Opt. Lett. 31, 1788–1790 (2006).
    [CrossRef] [PubMed]
  2. A. Chong, J. Buckley, W. Renninger, and F. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express 14, 10095–10100 (2006).
    [CrossRef] [PubMed]
  3. A. Chong, J. Buckley, W. Renninger, and F. Wise, “All-normal-dispersion femtosecond fiber laser with pulse energy above 20 nJ,” Opt. Lett. 32, 2408–2410 (2007).
    [CrossRef] [PubMed]
  4. N. Akhmediev and A. Ankiewicz, “Dissipative Solitons in the Complex Ginzburg-Landau and Swift-Hohenberg Equations,” in Dissipative Solitons, N. Akhmediev and A. Ankiewicz, ed., (Springer, Berlin, 2005).
    [CrossRef]
  5. N. N. Akhmediev, V. V. Afanasjev, and J. M. Soto-Crespo, “Singularities and special soliton solutions of the cubic-quintic complex Ginzburg-Landau equation,” Phys. Rev. E 53, 1190–1201 (1996).
    [CrossRef]
  6. B. A. Malomed and A. A. Nepomnyashchy, “Kinks and solitons in the generalized Ginzburg-Landau equation,” Phys. Rev. A 42, 6009–6014 (1990).
    [CrossRef] [PubMed]
  7. J. M. Soto-Crespo, N. N. Akhmediev, V. V. Afanasjev, and S. Wabnitz, “Pulse solutions of the cubic-quintic complex Ginzburg-Landau equation in the case of normal dispersion,” Phys. Rev. E 55, 4783–4796 (1997).
    [CrossRef]
  8. N. N. Akhmediev, J. M. Soto-Crespo, and Ph. Grelu, “Roadmap to ultra-short record high-energy pulses out of laser oscillators,” Phys. Lett. A 372, 3124–3128 (2008).
    [CrossRef]
  9. W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances,” Phys. Rev. A 78, 023830 (2008).
    [CrossRef]
  10. H. Zhang, D. Y. Tang, X. Wu, and L. M. Zhao, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, are preparing a manuscript to be called “Dark soliton fiber laser.”
  11. L. M. Zhao, D. Y. Tang, T. H. Cheng, and C. Lu, “Nanosecond square pulse generation in fiber lasers with normal dispersion,” Opt. Commun. 272, 431–434 (2007).
    [CrossRef]
  12. P. Kolodner, D. Bensimon, and C. M. Surko, “Traveling-wave convection in an annulus,” Phys. Rev. Lett. 60, 1723–1726 (1988).
    [CrossRef] [PubMed]
  13. V. J. Matsas, T. P. newson, and M. N. Zervas, “Self-starting passively mode-locked fiber ring laser exploiting nonlinear polarization switching,” Opt. Commun. 92, 61–66 (1992).
    [CrossRef]

2008 (2)

N. N. Akhmediev, J. M. Soto-Crespo, and Ph. Grelu, “Roadmap to ultra-short record high-energy pulses out of laser oscillators,” Phys. Lett. A 372, 3124–3128 (2008).
[CrossRef]

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances,” Phys. Rev. A 78, 023830 (2008).
[CrossRef]

2007 (2)

L. M. Zhao, D. Y. Tang, T. H. Cheng, and C. Lu, “Nanosecond square pulse generation in fiber lasers with normal dispersion,” Opt. Commun. 272, 431–434 (2007).
[CrossRef]

A. Chong, J. Buckley, W. Renninger, and F. Wise, “All-normal-dispersion femtosecond fiber laser with pulse energy above 20 nJ,” Opt. Lett. 32, 2408–2410 (2007).
[CrossRef] [PubMed]

2006 (2)

1997 (1)

J. M. Soto-Crespo, N. N. Akhmediev, V. V. Afanasjev, and S. Wabnitz, “Pulse solutions of the cubic-quintic complex Ginzburg-Landau equation in the case of normal dispersion,” Phys. Rev. E 55, 4783–4796 (1997).
[CrossRef]

1996 (1)

N. N. Akhmediev, V. V. Afanasjev, and J. M. Soto-Crespo, “Singularities and special soliton solutions of the cubic-quintic complex Ginzburg-Landau equation,” Phys. Rev. E 53, 1190–1201 (1996).
[CrossRef]

1992 (1)

V. J. Matsas, T. P. newson, and M. N. Zervas, “Self-starting passively mode-locked fiber ring laser exploiting nonlinear polarization switching,” Opt. Commun. 92, 61–66 (1992).
[CrossRef]

1990 (1)

B. A. Malomed and A. A. Nepomnyashchy, “Kinks and solitons in the generalized Ginzburg-Landau equation,” Phys. Rev. A 42, 6009–6014 (1990).
[CrossRef] [PubMed]

1988 (1)

P. Kolodner, D. Bensimon, and C. M. Surko, “Traveling-wave convection in an annulus,” Phys. Rev. Lett. 60, 1723–1726 (1988).
[CrossRef] [PubMed]

Afanasjev, V. V.

J. M. Soto-Crespo, N. N. Akhmediev, V. V. Afanasjev, and S. Wabnitz, “Pulse solutions of the cubic-quintic complex Ginzburg-Landau equation in the case of normal dispersion,” Phys. Rev. E 55, 4783–4796 (1997).
[CrossRef]

N. N. Akhmediev, V. V. Afanasjev, and J. M. Soto-Crespo, “Singularities and special soliton solutions of the cubic-quintic complex Ginzburg-Landau equation,” Phys. Rev. E 53, 1190–1201 (1996).
[CrossRef]

Akhmediev, N.

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances,” Phys. Rev. A 78, 023830 (2008).
[CrossRef]

N. Akhmediev and A. Ankiewicz, “Dissipative Solitons in the Complex Ginzburg-Landau and Swift-Hohenberg Equations,” in Dissipative Solitons, N. Akhmediev and A. Ankiewicz, ed., (Springer, Berlin, 2005).
[CrossRef]

Akhmediev, N. N.

N. N. Akhmediev, J. M. Soto-Crespo, and Ph. Grelu, “Roadmap to ultra-short record high-energy pulses out of laser oscillators,” Phys. Lett. A 372, 3124–3128 (2008).
[CrossRef]

J. M. Soto-Crespo, N. N. Akhmediev, V. V. Afanasjev, and S. Wabnitz, “Pulse solutions of the cubic-quintic complex Ginzburg-Landau equation in the case of normal dispersion,” Phys. Rev. E 55, 4783–4796 (1997).
[CrossRef]

N. N. Akhmediev, V. V. Afanasjev, and J. M. Soto-Crespo, “Singularities and special soliton solutions of the cubic-quintic complex Ginzburg-Landau equation,” Phys. Rev. E 53, 1190–1201 (1996).
[CrossRef]

Ankiewicz, A.

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances,” Phys. Rev. A 78, 023830 (2008).
[CrossRef]

N. Akhmediev and A. Ankiewicz, “Dissipative Solitons in the Complex Ginzburg-Landau and Swift-Hohenberg Equations,” in Dissipative Solitons, N. Akhmediev and A. Ankiewicz, ed., (Springer, Berlin, 2005).
[CrossRef]

Bensimon, D.

P. Kolodner, D. Bensimon, and C. M. Surko, “Traveling-wave convection in an annulus,” Phys. Rev. Lett. 60, 1723–1726 (1988).
[CrossRef] [PubMed]

Buckley, J.

Chang, W.

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances,” Phys. Rev. A 78, 023830 (2008).
[CrossRef]

Cheng, T. H.

L. M. Zhao, D. Y. Tang, T. H. Cheng, and C. Lu, “Nanosecond square pulse generation in fiber lasers with normal dispersion,” Opt. Commun. 272, 431–434 (2007).
[CrossRef]

Chong, A.

Grelu, Ph.

N. N. Akhmediev, J. M. Soto-Crespo, and Ph. Grelu, “Roadmap to ultra-short record high-energy pulses out of laser oscillators,” Phys. Lett. A 372, 3124–3128 (2008).
[CrossRef]

Kolodner, P.

P. Kolodner, D. Bensimon, and C. M. Surko, “Traveling-wave convection in an annulus,” Phys. Rev. Lett. 60, 1723–1726 (1988).
[CrossRef] [PubMed]

Lu, C.

L. M. Zhao, D. Y. Tang, T. H. Cheng, and C. Lu, “Nanosecond square pulse generation in fiber lasers with normal dispersion,” Opt. Commun. 272, 431–434 (2007).
[CrossRef]

Malomed, B. A.

B. A. Malomed and A. A. Nepomnyashchy, “Kinks and solitons in the generalized Ginzburg-Landau equation,” Phys. Rev. A 42, 6009–6014 (1990).
[CrossRef] [PubMed]

Matsas, V. J.

V. J. Matsas, T. P. newson, and M. N. Zervas, “Self-starting passively mode-locked fiber ring laser exploiting nonlinear polarization switching,” Opt. Commun. 92, 61–66 (1992).
[CrossRef]

Nepomnyashchy, A. A.

B. A. Malomed and A. A. Nepomnyashchy, “Kinks and solitons in the generalized Ginzburg-Landau equation,” Phys. Rev. A 42, 6009–6014 (1990).
[CrossRef] [PubMed]

newson, T. P.

V. J. Matsas, T. P. newson, and M. N. Zervas, “Self-starting passively mode-locked fiber ring laser exploiting nonlinear polarization switching,” Opt. Commun. 92, 61–66 (1992).
[CrossRef]

Renninger, W.

Soto-Crespo, J. M.

N. N. Akhmediev, J. M. Soto-Crespo, and Ph. Grelu, “Roadmap to ultra-short record high-energy pulses out of laser oscillators,” Phys. Lett. A 372, 3124–3128 (2008).
[CrossRef]

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances,” Phys. Rev. A 78, 023830 (2008).
[CrossRef]

J. M. Soto-Crespo, N. N. Akhmediev, V. V. Afanasjev, and S. Wabnitz, “Pulse solutions of the cubic-quintic complex Ginzburg-Landau equation in the case of normal dispersion,” Phys. Rev. E 55, 4783–4796 (1997).
[CrossRef]

N. N. Akhmediev, V. V. Afanasjev, and J. M. Soto-Crespo, “Singularities and special soliton solutions of the cubic-quintic complex Ginzburg-Landau equation,” Phys. Rev. E 53, 1190–1201 (1996).
[CrossRef]

Surko, C. M.

P. Kolodner, D. Bensimon, and C. M. Surko, “Traveling-wave convection in an annulus,” Phys. Rev. Lett. 60, 1723–1726 (1988).
[CrossRef] [PubMed]

Tang, D. Y.

L. M. Zhao, D. Y. Tang, T. H. Cheng, and C. Lu, “Nanosecond square pulse generation in fiber lasers with normal dispersion,” Opt. Commun. 272, 431–434 (2007).
[CrossRef]

L. M. Zhao, D. Y. Tang, and J. Wu, “Gain-guided soliton in a positive group-dispersion fiber laser,” Opt. Lett. 31, 1788–1790 (2006).
[CrossRef] [PubMed]

H. Zhang, D. Y. Tang, X. Wu, and L. M. Zhao, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, are preparing a manuscript to be called “Dark soliton fiber laser.”

Wabnitz, S.

J. M. Soto-Crespo, N. N. Akhmediev, V. V. Afanasjev, and S. Wabnitz, “Pulse solutions of the cubic-quintic complex Ginzburg-Landau equation in the case of normal dispersion,” Phys. Rev. E 55, 4783–4796 (1997).
[CrossRef]

Wise, F.

Wu, J.

Wu, X.

H. Zhang, D. Y. Tang, X. Wu, and L. M. Zhao, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, are preparing a manuscript to be called “Dark soliton fiber laser.”

Zervas, M. N.

V. J. Matsas, T. P. newson, and M. N. Zervas, “Self-starting passively mode-locked fiber ring laser exploiting nonlinear polarization switching,” Opt. Commun. 92, 61–66 (1992).
[CrossRef]

Zhang, H.

H. Zhang, D. Y. Tang, X. Wu, and L. M. Zhao, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, are preparing a manuscript to be called “Dark soliton fiber laser.”

Zhao, L. M.

L. M. Zhao, D. Y. Tang, T. H. Cheng, and C. Lu, “Nanosecond square pulse generation in fiber lasers with normal dispersion,” Opt. Commun. 272, 431–434 (2007).
[CrossRef]

L. M. Zhao, D. Y. Tang, and J. Wu, “Gain-guided soliton in a positive group-dispersion fiber laser,” Opt. Lett. 31, 1788–1790 (2006).
[CrossRef] [PubMed]

H. Zhang, D. Y. Tang, X. Wu, and L. M. Zhao, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, are preparing a manuscript to be called “Dark soliton fiber laser.”

Opt. Commun. (2)

L. M. Zhao, D. Y. Tang, T. H. Cheng, and C. Lu, “Nanosecond square pulse generation in fiber lasers with normal dispersion,” Opt. Commun. 272, 431–434 (2007).
[CrossRef]

V. J. Matsas, T. P. newson, and M. N. Zervas, “Self-starting passively mode-locked fiber ring laser exploiting nonlinear polarization switching,” Opt. Commun. 92, 61–66 (1992).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Phys. Lett. A (1)

N. N. Akhmediev, J. M. Soto-Crespo, and Ph. Grelu, “Roadmap to ultra-short record high-energy pulses out of laser oscillators,” Phys. Lett. A 372, 3124–3128 (2008).
[CrossRef]

Phys. Rev. A (2)

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances,” Phys. Rev. A 78, 023830 (2008).
[CrossRef]

B. A. Malomed and A. A. Nepomnyashchy, “Kinks and solitons in the generalized Ginzburg-Landau equation,” Phys. Rev. A 42, 6009–6014 (1990).
[CrossRef] [PubMed]

Phys. Rev. E (2)

J. M. Soto-Crespo, N. N. Akhmediev, V. V. Afanasjev, and S. Wabnitz, “Pulse solutions of the cubic-quintic complex Ginzburg-Landau equation in the case of normal dispersion,” Phys. Rev. E 55, 4783–4796 (1997).
[CrossRef]

N. N. Akhmediev, V. V. Afanasjev, and J. M. Soto-Crespo, “Singularities and special soliton solutions of the cubic-quintic complex Ginzburg-Landau equation,” Phys. Rev. E 53, 1190–1201 (1996).
[CrossRef]

Phys. Rev. Lett. (1)

P. Kolodner, D. Bensimon, and C. M. Surko, “Traveling-wave convection in an annulus,” Phys. Rev. Lett. 60, 1723–1726 (1988).
[CrossRef] [PubMed]

Other (2)

H. Zhang, D. Y. Tang, X. Wu, and L. M. Zhao, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, are preparing a manuscript to be called “Dark soliton fiber laser.”

N. Akhmediev and A. Ankiewicz, “Dissipative Solitons in the Complex Ginzburg-Landau and Swift-Hohenberg Equations,” in Dissipative Solitons, N. Akhmediev and A. Ankiewicz, ed., (Springer, Berlin, 2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Schematic of the experimental setup. WDM, wavelength-division-multiplexing coupler; EDF, erbium-doped fiber; PDISO, polarization-dependent isolator; PC, polarization controllers.

Fig. 2.
Fig. 2.

Square pulse emission of the laser. (a) Zoom-in high speed oscilloscope traces under different pump power; inset: oscilloscope trace of a square pulse train. (b) Optical spectra of the square pulses under different pump power.

Fig. 3.
Fig. 3.

The experimentally measured average output power and pulse width versus the pump power injected into the cavity.

Metrics