Abstract

The first measurements of thermally induced depolarization in a [110] oriented cubic crystal at powerful heat release were made. It was demonstrated that depolarization in a crystal with such orientation may be less than in analogous crystals having orientation [001] or [111]. In a TGG crystal, for example, maximum depolarization value was 10% and dropped down to 3% with a further increase of radiation power in full conformity with the theoretical predictions.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. V. Mezenov, L. N. Soms, and A. I. Stepanov, Thermooptics of solid-state lasers. (Leningrad: Mashinostroenie, 1986).
  2. W. Koechner, Solid-state laser engineering. (Berlin: Springer, 1999).
  3. F. W. Quelle, "Thermal distortion of diffraction-limited optical elements," Appl. Opt. 5, 633-637 (1966).
    [CrossRef] [PubMed]
  4. S. D. Sims, A. Stein, and C. Roth, "Rods pumped by flash lamps," Appl. Opt. 6, 579-580 (1967).
    [CrossRef] [PubMed]
  5. A. Anan'ev, N. A. Kozlov, A. A. Mak, and A. I. Stepanov, "Thermal distortion of solid state laser cavity," Prikladnaya spektroskopiya 5, 51-55 (1966).
  6. I. B.  Vitrishchak, L. N.  Soms, and A. A.  Tarasov, "On intrinsic polarizations of a resonator with thermally distorted active element," Zh. Tekhn. Fiz.,  44, 1055-1062 (1974) (in Russian).
  7. N. Gopi, T. P. S. Nathan, and B. K. Sinha, "Experimental studies of transient, thermal depolarization in a Nd:glass laser rod," Appl. Opt. 29, 2259-2265 (1990).
    [CrossRef] [PubMed]
  8. A. Anan'ev and N. I. Grishmanova, "Deformation of active elements of interferometer and thermooptical constant Nd: glass," Prikladnaya spektroskopiya 12, 668-673 (1970).
  9. A. A. Mak, V. M. Mit'kin, and L. N. Soms, "About thermooptical constant of doped glasses," Optiko-mechanicheskaya promishlennost 9, 65-66 (1971).
  10. J. D. Foster and L. M. Osterink, "Thermal effects in a Nd:YAG laser," J. Appl. Phys. 41, 3656-3663 (1970).
    [CrossRef]
  11. G. A. Massey, "Criterion for selection of cw laser host materials to increase available power in the fundamental mode," Appl. Phys. Lett. 17, 213-215 (1970).
    [CrossRef]
  12. W. Koechner, "Absorbed pump power, thermal profile and stresses in a cw pumped Nd:YAG crystal," Appl. Opt. 9, 1429-1434 (1970).
    [CrossRef] [PubMed]
  13. W. Koechner and D. K. Rice, "Effect of birefringence on the performance of linearly polarized YAG:Nd lasers," IEEE J. Quantum Electron. QE-6, 557-566 (1970).
    [CrossRef]
  14. M. A. Karr, "Nd:YAIG laser cavity loss due to an internal Brewster polarizer," Appl. Opt. 10, 893-895 (1971).
    [CrossRef] [PubMed]
  15. H. J. Eichler, A. Haase, R. Menzel, and A. Siemoneit, "Thermal lensing and depolarization in a highly pumped Nd:YAG laser amplifier," J. Phys. D 26, 1884-1891 (1993).
    [CrossRef]
  16. S. D. Jackson and J. A. Piper, "Thermally induced strain and birefringence calculations for a Nd:YAG rod encapsulated in a solid pump light collector," Appl. Opt. 35, 1409-1423 (1996).
    [CrossRef] [PubMed]
  17. M. Schmid, T. Graf, and H. P. Weber, "Analytical model of the temperature distribution and the thermally induced birefringence in laser rods with cylindrically symmetric heating," J. Opt. Soc. Am. B 17, 1398-1404 (2000).
    [CrossRef]
  18. W. Koechner and D. K. Rice, "Birefringence of YAG:Nd laser rods as a function of growth direction," J. Opt. Soc. Am. 61, 758-766 (1971).
    [CrossRef]
  19. L. N. Soms, A. A. Tarasov, and V. V. Shashkin, "On the problem of depolarization of linearly polarized light by a YAG:Nd3+ laser rod under conditions of thermally induced birefringence," Sov. J. Quantum. Electron. 10, 350-351 (1980).
    [CrossRef]
  20. L. N. Soms and A. A. Tarasov, "Thermal deformation in color-center laser active elements. 1.Theory," Sov. J. Quantum. Electron. 9, 1506-1508 (1979).
    [CrossRef]
  21. I. Shoji and T. Taira, "Intrinsic reduction of the depolarization loss in solid-state lasers by use of a (110)-cut Y3Al5O12 crystal," Appl. Phys. Lett. 80, 3048-3050 (2002).
    [CrossRef]
  22. I. B. Mukhin, O. V. Palashov, E. A. Khazanov, and I. A. Ivanov, "Influence of the orientation of a crystal on thermal polarization effects in high-power solid-state lasers," JETP Lett. 81, 120-124 (2005).
    [CrossRef]
  23. E. Khazanov, N. Andreev, O. Palashov, A. Poteomkin, A. Sergeev, O. Mehl, and D. Reitze, "Effect of terbium gallium garnet crystal orientation on the isolation ratio of a Faraday isolator at high average power," Appl. Opt. 41, 483-492 (2002).
    [CrossRef] [PubMed]
  24. V. Parfenov, V. Shashkin, and A. Stepanov, "Numerical investigation of thermally induced birefringence in optical elements of solid-state lasers," Appl. Opt. 32, 5243-5255 (1993).
    [CrossRef] [PubMed]
  25. R. W. Dixon, "Photoelastic properties of selected materials and their relevance for applications to acoustic light modulators and scanners," J. Appl. Phys. 38, 5149 (1967).
    [CrossRef]
  26. A. A. Kaminskii, Laser Crystals in Russian (Nauka, Moscow 1975) pp. 256 c.
  27. D. S. Zheleznov, A. V. Voitovich, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, "Considerable reduction of thermooptical distortions in Faraday isolators cooled to 77 K," Quantum Electron. 36, 383-388 (2006).
    [CrossRef]

2006

D. S. Zheleznov, A. V. Voitovich, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, "Considerable reduction of thermooptical distortions in Faraday isolators cooled to 77 K," Quantum Electron. 36, 383-388 (2006).
[CrossRef]

2005

I. B. Mukhin, O. V. Palashov, E. A. Khazanov, and I. A. Ivanov, "Influence of the orientation of a crystal on thermal polarization effects in high-power solid-state lasers," JETP Lett. 81, 120-124 (2005).
[CrossRef]

2002

2000

1996

1993

V. Parfenov, V. Shashkin, and A. Stepanov, "Numerical investigation of thermally induced birefringence in optical elements of solid-state lasers," Appl. Opt. 32, 5243-5255 (1993).
[CrossRef] [PubMed]

H. J. Eichler, A. Haase, R. Menzel, and A. Siemoneit, "Thermal lensing and depolarization in a highly pumped Nd:YAG laser amplifier," J. Phys. D 26, 1884-1891 (1993).
[CrossRef]

1990

1980

L. N. Soms, A. A. Tarasov, and V. V. Shashkin, "On the problem of depolarization of linearly polarized light by a YAG:Nd3+ laser rod under conditions of thermally induced birefringence," Sov. J. Quantum. Electron. 10, 350-351 (1980).
[CrossRef]

1979

L. N. Soms and A. A. Tarasov, "Thermal deformation in color-center laser active elements. 1.Theory," Sov. J. Quantum. Electron. 9, 1506-1508 (1979).
[CrossRef]

1974

I. B.  Vitrishchak, L. N.  Soms, and A. A.  Tarasov, "On intrinsic polarizations of a resonator with thermally distorted active element," Zh. Tekhn. Fiz.,  44, 1055-1062 (1974) (in Russian).

1971

1970

J. D. Foster and L. M. Osterink, "Thermal effects in a Nd:YAG laser," J. Appl. Phys. 41, 3656-3663 (1970).
[CrossRef]

G. A. Massey, "Criterion for selection of cw laser host materials to increase available power in the fundamental mode," Appl. Phys. Lett. 17, 213-215 (1970).
[CrossRef]

W. Koechner and D. K. Rice, "Effect of birefringence on the performance of linearly polarized YAG:Nd lasers," IEEE J. Quantum Electron. QE-6, 557-566 (1970).
[CrossRef]

A. Anan'ev and N. I. Grishmanova, "Deformation of active elements of interferometer and thermooptical constant Nd: glass," Prikladnaya spektroskopiya 12, 668-673 (1970).

W. Koechner, "Absorbed pump power, thermal profile and stresses in a cw pumped Nd:YAG crystal," Appl. Opt. 9, 1429-1434 (1970).
[CrossRef] [PubMed]

1967

R. W. Dixon, "Photoelastic properties of selected materials and their relevance for applications to acoustic light modulators and scanners," J. Appl. Phys. 38, 5149 (1967).
[CrossRef]

S. D. Sims, A. Stein, and C. Roth, "Rods pumped by flash lamps," Appl. Opt. 6, 579-580 (1967).
[CrossRef] [PubMed]

1966

A. Anan'ev, N. A. Kozlov, A. A. Mak, and A. I. Stepanov, "Thermal distortion of solid state laser cavity," Prikladnaya spektroskopiya 5, 51-55 (1966).

F. W. Quelle, "Thermal distortion of diffraction-limited optical elements," Appl. Opt. 5, 633-637 (1966).
[CrossRef] [PubMed]

Anan'ev, A.

A. Anan'ev and N. I. Grishmanova, "Deformation of active elements of interferometer and thermooptical constant Nd: glass," Prikladnaya spektroskopiya 12, 668-673 (1970).

A. Anan'ev, N. A. Kozlov, A. A. Mak, and A. I. Stepanov, "Thermal distortion of solid state laser cavity," Prikladnaya spektroskopiya 5, 51-55 (1966).

Andreev, N.

Dixon, R. W.

R. W. Dixon, "Photoelastic properties of selected materials and their relevance for applications to acoustic light modulators and scanners," J. Appl. Phys. 38, 5149 (1967).
[CrossRef]

Eichler, H. J.

H. J. Eichler, A. Haase, R. Menzel, and A. Siemoneit, "Thermal lensing and depolarization in a highly pumped Nd:YAG laser amplifier," J. Phys. D 26, 1884-1891 (1993).
[CrossRef]

Foster, J. D.

J. D. Foster and L. M. Osterink, "Thermal effects in a Nd:YAG laser," J. Appl. Phys. 41, 3656-3663 (1970).
[CrossRef]

Gopi, N.

Graf, T.

Grishmanova, N. I.

A. Anan'ev and N. I. Grishmanova, "Deformation of active elements of interferometer and thermooptical constant Nd: glass," Prikladnaya spektroskopiya 12, 668-673 (1970).

Haase, A.

H. J. Eichler, A. Haase, R. Menzel, and A. Siemoneit, "Thermal lensing and depolarization in a highly pumped Nd:YAG laser amplifier," J. Phys. D 26, 1884-1891 (1993).
[CrossRef]

Ivanov, I. A.

I. B. Mukhin, O. V. Palashov, E. A. Khazanov, and I. A. Ivanov, "Influence of the orientation of a crystal on thermal polarization effects in high-power solid-state lasers," JETP Lett. 81, 120-124 (2005).
[CrossRef]

Jackson, S. D.

Karr, M. A.

Khazanov, E.

Khazanov, E. A.

D. S. Zheleznov, A. V. Voitovich, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, "Considerable reduction of thermooptical distortions in Faraday isolators cooled to 77 K," Quantum Electron. 36, 383-388 (2006).
[CrossRef]

I. B. Mukhin, O. V. Palashov, E. A. Khazanov, and I. A. Ivanov, "Influence of the orientation of a crystal on thermal polarization effects in high-power solid-state lasers," JETP Lett. 81, 120-124 (2005).
[CrossRef]

Koechner, W.

Kozlov, N. A.

A. Anan'ev, N. A. Kozlov, A. A. Mak, and A. I. Stepanov, "Thermal distortion of solid state laser cavity," Prikladnaya spektroskopiya 5, 51-55 (1966).

Mak, A. A.

A. A. Mak, V. M. Mit'kin, and L. N. Soms, "About thermooptical constant of doped glasses," Optiko-mechanicheskaya promishlennost 9, 65-66 (1971).

A. Anan'ev, N. A. Kozlov, A. A. Mak, and A. I. Stepanov, "Thermal distortion of solid state laser cavity," Prikladnaya spektroskopiya 5, 51-55 (1966).

Massey, G. A.

G. A. Massey, "Criterion for selection of cw laser host materials to increase available power in the fundamental mode," Appl. Phys. Lett. 17, 213-215 (1970).
[CrossRef]

Mehl, O.

Menzel, R.

H. J. Eichler, A. Haase, R. Menzel, and A. Siemoneit, "Thermal lensing and depolarization in a highly pumped Nd:YAG laser amplifier," J. Phys. D 26, 1884-1891 (1993).
[CrossRef]

Mit'kin, V. M.

A. A. Mak, V. M. Mit'kin, and L. N. Soms, "About thermooptical constant of doped glasses," Optiko-mechanicheskaya promishlennost 9, 65-66 (1971).

Mukhin, I. B.

D. S. Zheleznov, A. V. Voitovich, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, "Considerable reduction of thermooptical distortions in Faraday isolators cooled to 77 K," Quantum Electron. 36, 383-388 (2006).
[CrossRef]

I. B. Mukhin, O. V. Palashov, E. A. Khazanov, and I. A. Ivanov, "Influence of the orientation of a crystal on thermal polarization effects in high-power solid-state lasers," JETP Lett. 81, 120-124 (2005).
[CrossRef]

Nathan, T. P. S.

Osterink, L. M.

J. D. Foster and L. M. Osterink, "Thermal effects in a Nd:YAG laser," J. Appl. Phys. 41, 3656-3663 (1970).
[CrossRef]

Palashov, O.

Palashov, O. V.

D. S. Zheleznov, A. V. Voitovich, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, "Considerable reduction of thermooptical distortions in Faraday isolators cooled to 77 K," Quantum Electron. 36, 383-388 (2006).
[CrossRef]

I. B. Mukhin, O. V. Palashov, E. A. Khazanov, and I. A. Ivanov, "Influence of the orientation of a crystal on thermal polarization effects in high-power solid-state lasers," JETP Lett. 81, 120-124 (2005).
[CrossRef]

Parfenov, V.

Piper, J. A.

Poteomkin, A.

Quelle, F. W.

Reitze, D.

Rice, D. K.

W. Koechner and D. K. Rice, "Birefringence of YAG:Nd laser rods as a function of growth direction," J. Opt. Soc. Am. 61, 758-766 (1971).
[CrossRef]

W. Koechner and D. K. Rice, "Effect of birefringence on the performance of linearly polarized YAG:Nd lasers," IEEE J. Quantum Electron. QE-6, 557-566 (1970).
[CrossRef]

Roth, C.

Schmid, M.

Sergeev, A.

Shashkin, V.

Shashkin, V. V.

L. N. Soms, A. A. Tarasov, and V. V. Shashkin, "On the problem of depolarization of linearly polarized light by a YAG:Nd3+ laser rod under conditions of thermally induced birefringence," Sov. J. Quantum. Electron. 10, 350-351 (1980).
[CrossRef]

Shoji, I.

I. Shoji and T. Taira, "Intrinsic reduction of the depolarization loss in solid-state lasers by use of a (110)-cut Y3Al5O12 crystal," Appl. Phys. Lett. 80, 3048-3050 (2002).
[CrossRef]

Siemoneit, A.

H. J. Eichler, A. Haase, R. Menzel, and A. Siemoneit, "Thermal lensing and depolarization in a highly pumped Nd:YAG laser amplifier," J. Phys. D 26, 1884-1891 (1993).
[CrossRef]

Sims, S. D.

Sinha, B. K.

Soms, L. N.

L. N. Soms, A. A. Tarasov, and V. V. Shashkin, "On the problem of depolarization of linearly polarized light by a YAG:Nd3+ laser rod under conditions of thermally induced birefringence," Sov. J. Quantum. Electron. 10, 350-351 (1980).
[CrossRef]

L. N. Soms and A. A. Tarasov, "Thermal deformation in color-center laser active elements. 1.Theory," Sov. J. Quantum. Electron. 9, 1506-1508 (1979).
[CrossRef]

I. B.  Vitrishchak, L. N.  Soms, and A. A.  Tarasov, "On intrinsic polarizations of a resonator with thermally distorted active element," Zh. Tekhn. Fiz.,  44, 1055-1062 (1974) (in Russian).

A. A. Mak, V. M. Mit'kin, and L. N. Soms, "About thermooptical constant of doped glasses," Optiko-mechanicheskaya promishlennost 9, 65-66 (1971).

Stein, A.

Stepanov, A.

Stepanov, A. I.

A. Anan'ev, N. A. Kozlov, A. A. Mak, and A. I. Stepanov, "Thermal distortion of solid state laser cavity," Prikladnaya spektroskopiya 5, 51-55 (1966).

Taira, T.

I. Shoji and T. Taira, "Intrinsic reduction of the depolarization loss in solid-state lasers by use of a (110)-cut Y3Al5O12 crystal," Appl. Phys. Lett. 80, 3048-3050 (2002).
[CrossRef]

Tarasov, A. A.

L. N. Soms, A. A. Tarasov, and V. V. Shashkin, "On the problem of depolarization of linearly polarized light by a YAG:Nd3+ laser rod under conditions of thermally induced birefringence," Sov. J. Quantum. Electron. 10, 350-351 (1980).
[CrossRef]

L. N. Soms and A. A. Tarasov, "Thermal deformation in color-center laser active elements. 1.Theory," Sov. J. Quantum. Electron. 9, 1506-1508 (1979).
[CrossRef]

I. B.  Vitrishchak, L. N.  Soms, and A. A.  Tarasov, "On intrinsic polarizations of a resonator with thermally distorted active element," Zh. Tekhn. Fiz.,  44, 1055-1062 (1974) (in Russian).

Vitrishchak, I. B.

I. B.  Vitrishchak, L. N.  Soms, and A. A.  Tarasov, "On intrinsic polarizations of a resonator with thermally distorted active element," Zh. Tekhn. Fiz.,  44, 1055-1062 (1974) (in Russian).

Voitovich, A. V.

D. S. Zheleznov, A. V. Voitovich, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, "Considerable reduction of thermooptical distortions in Faraday isolators cooled to 77 K," Quantum Electron. 36, 383-388 (2006).
[CrossRef]

Weber, H. P.

Zheleznov, D. S.

D. S. Zheleznov, A. V. Voitovich, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, "Considerable reduction of thermooptical distortions in Faraday isolators cooled to 77 K," Quantum Electron. 36, 383-388 (2006).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

I. Shoji and T. Taira, "Intrinsic reduction of the depolarization loss in solid-state lasers by use of a (110)-cut Y3Al5O12 crystal," Appl. Phys. Lett. 80, 3048-3050 (2002).
[CrossRef]

G. A. Massey, "Criterion for selection of cw laser host materials to increase available power in the fundamental mode," Appl. Phys. Lett. 17, 213-215 (1970).
[CrossRef]

IEEE J. Quantum Electron.

W. Koechner and D. K. Rice, "Effect of birefringence on the performance of linearly polarized YAG:Nd lasers," IEEE J. Quantum Electron. QE-6, 557-566 (1970).
[CrossRef]

J. Appl. Phys.

J. D. Foster and L. M. Osterink, "Thermal effects in a Nd:YAG laser," J. Appl. Phys. 41, 3656-3663 (1970).
[CrossRef]

R. W. Dixon, "Photoelastic properties of selected materials and their relevance for applications to acoustic light modulators and scanners," J. Appl. Phys. 38, 5149 (1967).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. B

J. Phys. D

H. J. Eichler, A. Haase, R. Menzel, and A. Siemoneit, "Thermal lensing and depolarization in a highly pumped Nd:YAG laser amplifier," J. Phys. D 26, 1884-1891 (1993).
[CrossRef]

JETP Lett.

I. B. Mukhin, O. V. Palashov, E. A. Khazanov, and I. A. Ivanov, "Influence of the orientation of a crystal on thermal polarization effects in high-power solid-state lasers," JETP Lett. 81, 120-124 (2005).
[CrossRef]

Optiko-mechanicheskaya promishlennost

A. A. Mak, V. M. Mit'kin, and L. N. Soms, "About thermooptical constant of doped glasses," Optiko-mechanicheskaya promishlennost 9, 65-66 (1971).

Prikladnaya spektroskopiya

A. Anan'ev and N. I. Grishmanova, "Deformation of active elements of interferometer and thermooptical constant Nd: glass," Prikladnaya spektroskopiya 12, 668-673 (1970).

A. Anan'ev, N. A. Kozlov, A. A. Mak, and A. I. Stepanov, "Thermal distortion of solid state laser cavity," Prikladnaya spektroskopiya 5, 51-55 (1966).

Quantum Electron.

D. S. Zheleznov, A. V. Voitovich, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, "Considerable reduction of thermooptical distortions in Faraday isolators cooled to 77 K," Quantum Electron. 36, 383-388 (2006).
[CrossRef]

Sov. J. Quantum. Electron.

L. N. Soms, A. A. Tarasov, and V. V. Shashkin, "On the problem of depolarization of linearly polarized light by a YAG:Nd3+ laser rod under conditions of thermally induced birefringence," Sov. J. Quantum. Electron. 10, 350-351 (1980).
[CrossRef]

L. N. Soms and A. A. Tarasov, "Thermal deformation in color-center laser active elements. 1.Theory," Sov. J. Quantum. Electron. 9, 1506-1508 (1979).
[CrossRef]

Zh. Tekhn. Fiz.

I. B.  Vitrishchak, L. N.  Soms, and A. A.  Tarasov, "On intrinsic polarizations of a resonator with thermally distorted active element," Zh. Tekhn. Fiz.,  44, 1055-1062 (1974) (in Russian).

Other

A. V. Mezenov, L. N. Soms, and A. I. Stepanov, Thermooptics of solid-state lasers. (Leningrad: Mashinostroenie, 1986).

W. Koechner, Solid-state laser engineering. (Berlin: Springer, 1999).

A. A. Kaminskii, Laser Crystals in Russian (Nauka, Moscow 1975) pp. 256 c.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Cross-section of cylindrical active element; e1 and e2 are intrinsic polarizations at the point (r,φ); E is polarization of incident radiation.

Fig. 2.
Fig. 2.

Curves for γ(p) for different orientations of YAG crystal: [111] (yellow), [001] (pink), [110] at R0/rh=1 (homogeneous heating of the crystal) and R0/ro=4 (green).

Fig. 3.
Fig. 3.

Schematic of depolarization measurements without (a) and with (b) complementary test laser: 1 – fiber cw laser, 2,10 – telescope, 3 – calcite wedge, 4 – crystals under consideration, 5 – fused quartz plate, 6 – Glan’s prism, 7 – lens for image transfer, 8 – CCD camera, 9 – diode laser, λ = 532 nm.

Fig. 4.
Fig. 4.

Experimental (points) and numerically calculated (curves) dependences of depolarization ratio γ on pump power for TGG crystal: γmax([110]) circles and curves 1,5; γmin([110]) squares and curves 2,6; γmin([001]) curves 3, 7; and γ([111] ) curve 4, 8

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

p = P h λκ α T n 0 3 4 1 + v 1 v ( p 11 p 12 ) ,
γ ( [ 001 ] ) = 0.25 1 4 1 ξ 1 + ξ γ ( [ 111 ] ) = 0.25

Metrics