Abstract

An aperture synthesis approach of digital holography for microscopy imaging at long working distance is proposed. Firstly, for an oblique object, a series of Fresnel off-axis holograms are recorded with different tilted plane wave illuminations without using lens for pre-magnification. Then the complex amplitudes are reconstructed and magnified from these holograms by the double-step Fresnel reconstruction method respectively. Finally, the synthesized image of the resolution enhanced and the speckle suppressed is obtained by incoherent superposition of these reconstructed complex amplitudes. The important advantage of the proposed approach is that the working distance of the system isn’t constrained and the reconstructed image doesn’t subject to lens aberrations. The experimental results with a die and an USAF-1951 resolution test target are shown and demonstrated that the resolution of both intensity and phase image can be effectively enhanced with simple set-up and procedure. The proposed approach can improve the capabilities of digital holography in three-dimensional in-situ microscopy at long working distance.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Kemper and G. von Bally, "Digital holographic microscopy for live cell applications and technical inspection," Appl. Opt. 47, A52-A61 (2008).
    [CrossRef] [PubMed]
  2. L. Xu, X. Peng, J. Miao, and A. K. Asundi, "Studies of digital microscopic holography with applications to microstructure testing," Appl. Opt. 40, 5046-5051 (2001).
    [CrossRef]
  3. P. Ferraro, S. Grilli, D. Alfieri, S. D. Nicola, A. Finizio, G. Pierattini, B. Javidi, G. Coppola, and V. Striano, "Extended focused image in microscopy by digital Holography," Opt. Express 13, 6738-6749 (2005). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-18-6738
    [CrossRef] [PubMed]
  4. F. Dubois, N. Callens, C. Yourassowsky, M. Hoyos, P. Kurowski, and O. Monnom, "Digital holographic microscopy with reduced spatial coherence for three-dimensional particle flow analysis," Appl. Opt. 45, 864-871 (2006).
    [CrossRef] [PubMed]
  5. R. Binet, J. Colineau, and J. C. Lehureau, "Short-range synthetic aperture at 633 nm by digital holography," Appl. Opt. 41, 4775-4782 (2002).
    [CrossRef] [PubMed]
  6. J. H. Massig. "Digital off-axis holography with a synthetic aperture," Opt. Lett. 27, 2179-2181 (2002).
    [CrossRef]
  7. L. Martinez-leon and B. Javidi. "Synthetic aperture single-exposure on-axis digital holography," Opt. Express 16, 161-169 (2008). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-1-161
    [CrossRef] [PubMed]
  8. C. Liu, Z. Liu, F. Bo, Y. Wang, and J. Zhu, "Super-resolution digital holographic imaging method," Appl. Phys. Lett. 81, 3143-3145 (2002).
    [CrossRef]
  9. M. Paturzo, F. Merola, S. Grilli, S. Nicola, A. Finizio, and P. Ferraro, "Super-resolution in digital holography by two-dimensional dynamic phase grating," Opt. Express 16, 17107-17118 (2008). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-21-17107
    [CrossRef] [PubMed]
  10. V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, "Synthetic aperture superresolution with multiple off-axis holograms," J. Opt. Soc. Am. A. 23, 3162-3170 (2006).
    [CrossRef]
  11. C. J. Yuan, H. C. Zhai, and H. T. Liu, "Angular multiplexing in pulsed digital holography for aperture synthesis," Opt. Lett. 33, 2356-2358 (2008).
    [CrossRef] [PubMed]
  12. S. A. Alexandrov, T. R. Hillman, T. Gutzler and D. D. Sampson, "Synthetic aperture Fourier holographic optical microscopy," Phys. Rev. Lett. 20, 168102-1- 168102-4 (2006).
  13. P. Ferraro, S. D. Nicola, G. Coppola, A. Finizio, D. Alfieri, and G. Pierattini, "Controlling image size as a function of distance and wavelength in Fresnel-transform reconstruction of digital holograms," Opt. Lett. 29, 854-856 (2004).
    [CrossRef] [PubMed]
  14. F. C. Zhang, I. Yamaguchi, and L. P. Yaroslavsky, "Algorithm for reconstruction of digital holograms with adjustable magnification," Opt. Lett. 29, 1668-1670 (2004).
    [CrossRef] [PubMed]
  15. C. S. Guo, L. Zhang, and Z. Y. Rong, "Effect of the fill factor of CCD pixels on digital holograms: comment on the papers "Frequency analysis of digital holography" and "Frequency analysis of digital holography with reconstruction by convolution,"Opt. Eng. 42, 2768-2771 (2003).
    [CrossRef]
  16. M. D. Pritt and J. S. Shipman, "Least-squares two-dimensional phase unwrapping using FFT’s," Proc. IEEE 32, 706-708 (1994).

2008

2006

S. A. Alexandrov, T. R. Hillman, T. Gutzler and D. D. Sampson, "Synthetic aperture Fourier holographic optical microscopy," Phys. Rev. Lett. 20, 168102-1- 168102-4 (2006).

V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, "Synthetic aperture superresolution with multiple off-axis holograms," J. Opt. Soc. Am. A. 23, 3162-3170 (2006).
[CrossRef]

F. Dubois, N. Callens, C. Yourassowsky, M. Hoyos, P. Kurowski, and O. Monnom, "Digital holographic microscopy with reduced spatial coherence for three-dimensional particle flow analysis," Appl. Opt. 45, 864-871 (2006).
[CrossRef] [PubMed]

2005

2004

2003

C. S. Guo, L. Zhang, and Z. Y. Rong, "Effect of the fill factor of CCD pixels on digital holograms: comment on the papers "Frequency analysis of digital holography" and "Frequency analysis of digital holography with reconstruction by convolution,"Opt. Eng. 42, 2768-2771 (2003).
[CrossRef]

2002

2001

1994

M. D. Pritt and J. S. Shipman, "Least-squares two-dimensional phase unwrapping using FFT’s," Proc. IEEE 32, 706-708 (1994).

Alexandrov, S. A.

S. A. Alexandrov, T. R. Hillman, T. Gutzler and D. D. Sampson, "Synthetic aperture Fourier holographic optical microscopy," Phys. Rev. Lett. 20, 168102-1- 168102-4 (2006).

Alfieri, D.

Asundi, A. K.

Binet, R.

Bo, F.

C. Liu, Z. Liu, F. Bo, Y. Wang, and J. Zhu, "Super-resolution digital holographic imaging method," Appl. Phys. Lett. 81, 3143-3145 (2002).
[CrossRef]

Callens, N.

Colineau, J.

Coppola, G.

Dubois, F.

Ferraro, P.

Finizio, A.

García, J.

V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, "Synthetic aperture superresolution with multiple off-axis holograms," J. Opt. Soc. Am. A. 23, 3162-3170 (2006).
[CrossRef]

García-Martínez, P.

V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, "Synthetic aperture superresolution with multiple off-axis holograms," J. Opt. Soc. Am. A. 23, 3162-3170 (2006).
[CrossRef]

Grilli, S.

Guo, C. S.

C. S. Guo, L. Zhang, and Z. Y. Rong, "Effect of the fill factor of CCD pixels on digital holograms: comment on the papers "Frequency analysis of digital holography" and "Frequency analysis of digital holography with reconstruction by convolution,"Opt. Eng. 42, 2768-2771 (2003).
[CrossRef]

Gutzler, T.

S. A. Alexandrov, T. R. Hillman, T. Gutzler and D. D. Sampson, "Synthetic aperture Fourier holographic optical microscopy," Phys. Rev. Lett. 20, 168102-1- 168102-4 (2006).

Hillman, T. R.

S. A. Alexandrov, T. R. Hillman, T. Gutzler and D. D. Sampson, "Synthetic aperture Fourier holographic optical microscopy," Phys. Rev. Lett. 20, 168102-1- 168102-4 (2006).

Hoyos, M.

Javidi, B.

Kemper, B.

Kurowski, P.

Lehureau, J. C.

Liu, C.

C. Liu, Z. Liu, F. Bo, Y. Wang, and J. Zhu, "Super-resolution digital holographic imaging method," Appl. Phys. Lett. 81, 3143-3145 (2002).
[CrossRef]

Liu, H. T.

Liu, Z.

C. Liu, Z. Liu, F. Bo, Y. Wang, and J. Zhu, "Super-resolution digital holographic imaging method," Appl. Phys. Lett. 81, 3143-3145 (2002).
[CrossRef]

Martinez-leon, L.

Massig, J. H.

Merola, F.

Miao, J.

Mico, V.

V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, "Synthetic aperture superresolution with multiple off-axis holograms," J. Opt. Soc. Am. A. 23, 3162-3170 (2006).
[CrossRef]

Monnom, O.

Nicola, S.

Nicola, S. D.

Paturzo, M.

Peng, X.

Pierattini, G.

Pritt, M. D.

M. D. Pritt and J. S. Shipman, "Least-squares two-dimensional phase unwrapping using FFT’s," Proc. IEEE 32, 706-708 (1994).

Rong, Z. Y.

C. S. Guo, L. Zhang, and Z. Y. Rong, "Effect of the fill factor of CCD pixels on digital holograms: comment on the papers "Frequency analysis of digital holography" and "Frequency analysis of digital holography with reconstruction by convolution,"Opt. Eng. 42, 2768-2771 (2003).
[CrossRef]

Sampson, D. D.

S. A. Alexandrov, T. R. Hillman, T. Gutzler and D. D. Sampson, "Synthetic aperture Fourier holographic optical microscopy," Phys. Rev. Lett. 20, 168102-1- 168102-4 (2006).

Shipman, J. S.

M. D. Pritt and J. S. Shipman, "Least-squares two-dimensional phase unwrapping using FFT’s," Proc. IEEE 32, 706-708 (1994).

Striano, V.

von Bally, G.

Wang, Y.

C. Liu, Z. Liu, F. Bo, Y. Wang, and J. Zhu, "Super-resolution digital holographic imaging method," Appl. Phys. Lett. 81, 3143-3145 (2002).
[CrossRef]

Xu, L.

Yamaguchi, I.

Yaroslavsky, L. P.

Yourassowsky, C.

Yuan, C. J.

Zalevsky, Z.

V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, "Synthetic aperture superresolution with multiple off-axis holograms," J. Opt. Soc. Am. A. 23, 3162-3170 (2006).
[CrossRef]

Zhai, H. C.

Zhang, F. C.

Zhang, L.

C. S. Guo, L. Zhang, and Z. Y. Rong, "Effect of the fill factor of CCD pixels on digital holograms: comment on the papers "Frequency analysis of digital holography" and "Frequency analysis of digital holography with reconstruction by convolution,"Opt. Eng. 42, 2768-2771 (2003).
[CrossRef]

Zhu, J.

C. Liu, Z. Liu, F. Bo, Y. Wang, and J. Zhu, "Super-resolution digital holographic imaging method," Appl. Phys. Lett. 81, 3143-3145 (2002).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

C. Liu, Z. Liu, F. Bo, Y. Wang, and J. Zhu, "Super-resolution digital holographic imaging method," Appl. Phys. Lett. 81, 3143-3145 (2002).
[CrossRef]

J. Opt. Soc. Am. A.

V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, "Synthetic aperture superresolution with multiple off-axis holograms," J. Opt. Soc. Am. A. 23, 3162-3170 (2006).
[CrossRef]

Opt. Eng.

C. S. Guo, L. Zhang, and Z. Y. Rong, "Effect of the fill factor of CCD pixels on digital holograms: comment on the papers "Frequency analysis of digital holography" and "Frequency analysis of digital holography with reconstruction by convolution,"Opt. Eng. 42, 2768-2771 (2003).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

S. A. Alexandrov, T. R. Hillman, T. Gutzler and D. D. Sampson, "Synthetic aperture Fourier holographic optical microscopy," Phys. Rev. Lett. 20, 168102-1- 168102-4 (2006).

Proc. IEEE

M. D. Pritt and J. S. Shipman, "Least-squares two-dimensional phase unwrapping using FFT’s," Proc. IEEE 32, 706-708 (1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Coordination system of object and hologram

Fig. 2.
Fig. 2.

Schematic diagram of experimental set-up, M1, M2, M3, M4: mirror; BE1, BE2: optical beam expanders; BS: beam splitter; PBS: polarized beam splitter.

Fig. 3.
Fig. 3.

(a), (b), (c), (d) Reconstructed intensity images with illumination from R2, L2, U2, D2 respectively.

Fig. 4.
Fig. 4.

(a). Reconstructed intensity image from one hologram with illumination wave from 0; (b). Synthetic intensity image from five holograms with illumination waves from 0, R1, L1, U1 and D1; (c). Synthetic intensity image from nine holograms with illumination waves from 0, R1, L1, U1, D1, R2, L2, U2, D2; (d), (e), (f). Regional magnified intensity images corresponding to selected region of (a), (b), (c) respectively.

Fig. 5
Fig. 5

(a), (b) 2D and 3D reconstructed phase images from one hologram with object illumination from 0; (c), (d) 2D and 3D synthetic phase images from five holograms with object illuminations from 0, R1, L1, U1 and D1; (e), (f) 2D and 3D synthetic phase images from nine holograms with object illuminations from 0, R1, L1, U1, D1, R2, L2, U2, D2 respectively.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

U i ( x , y ) = b ( x , y ) A i ( γ i , ζ i )
U ˜ i ( f x , f y ) = F { b ( x , y ) A 0 exp [ j 2 π ( γ i x + ζ i y ) ] }
= A b b ˜ ( f x + γ i , f y + ζ i )
U ˜ o ( f x , f y ) = A 0 C b ˜ ( f x + γ i , f y + ζ i ) rect ( λ d f x L ) rect ( λ d f y H )
U ˜ o sum ( f x , f y ) = i A 0 C ' b ˜ ( f x + γ i , f y + ζ i ) rect ( λ d f x L ) rect ( λ d f y H )
= A 0 C ' b ˜ ( f x , f y ) SA ( f x , f y )
SA ( f x , f y ) = i rect ( λ d ( f x + γ i ) L ) rect ( λ d ( f y + ζ i ) H )

Metrics