Abstract

For the first time, optical cooling has been observed in the 4I13/2 excited state of erbium(III), using the low phonon energy host materal, potassium lead chloride (KPb2Cl5). Cooling was observed when samples were pumped at wavelengths longer than 1557 nm, 17 nm longer than the mean fluorescence wavelength of 1540 nm, which implies a nonradiative heat load of 1.1% for the 4I13/24I15/2 transition. When pumped at 1568 nm, the total cooling efficiency was 0.38% of the absorbed power. These results highlight the potential of Er3+:KPb2Cl5 as a material for lasers operating in an eye safe spectral region.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Pringsheim, "Zwei Bemerkungen über den Unterschied von Lumineszenz- und Temperaturstrahlung.," Z. Phys. 57, 739-746 (1929).
    [CrossRef]
  2. N. Djeu and W. T. Whitney, "Laser cooling by spontaneous anti-Stokes scattering," Phys. Rev. Lett. 46, 236-239 (1981).
    [CrossRef]
  3. R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C..E. Mungan, "Observation of laser-induced fluorescent cooling of a solid," Nature 377, 500-503 (1995).
    [CrossRef]
  4. C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, "Observation of Anti-Stokes Fluorescence Cooling in Thulium-Doped Glass," Phys. Rev. Lett. 85, 3600-3603 (2000).
    [CrossRef] [PubMed]
  5. S. R. Bowman and C. E. Mungan, "New materials for optical cooling," Appl. Phys. B 71, 807-811 (2000).
  6. R. I. Epstein, J. J. Brown, B. C. Edwards, and A. Gibbs, "Measurements of optical refrigeration in ytterbium-doped crystals," J. Appl. Phys. 90, 4815-4819 (2001)
    [CrossRef]
  7. C. E. Mungan, M. I. Buchwald, and G. L. Mills, "All-Solid-State Optical Coolers: History, Status, and Potential," in Cryocoolers 14, S.D. Miller and R.G. Ross, Jr, eds. (International Cryocooler Conference, Inc., 2007) 539-548.
  8. S. R. Bowman, "Lasers Without Internal Heat Generation," IEEE J. Quantum Electron. 35, 115-122 (1999).
    [CrossRef]
  9. S. R. Bowman, S. P. O’Connor, and S. Biswal, "Ytterbium Laser With Reduced Thermal Loading," IEEE J. Quantum Electron. 41, 1510-1517 (2005).
    [CrossRef]
  10. D. Garbuzov, I. Kudryashov, and M. Dubinskii, "110 W (0.9 J) pulsed power from resonantly diode-laser-pumped 1.6-μm Er:YAG laser," Appl. Phys. Lett. 87, 121101 (2005).
    [CrossRef]
  11. D. Y. Shen, J. K. Sahu, and W. A. Clarkson, "Highly efficient in-band pumped Er:YAG laser with 60 W of output at 1645 nm," Opt. Lett. 31, 754-756 (2006).
    [CrossRef] [PubMed]
  12. K. Spariosu, V. Levya, R. A. Reeder, and M. J. Klotz, "Efficient Er:YAG Laser Operating at 1645 and 1617 nm," IEEE J. Quantum Electron. 42, 182-186 (2006).
    [CrossRef]
  13. J. O. White, M. Dubinskii, L. D. Merkle, I. Kudryashov, and D. Garbuzov, "Resonant pumping and upconversion in 1.6 μm Er3+ lasers," J. Opt. Soc. Am. B 24, 2454-2460 (2007).
    [CrossRef]
  14. N. J. Condon, S. O’Connor, and S. R. Bowman; "Growth and characterization of single-crystal Er3+:KPb2Cl5 as a mid-infrared laser material," J. Crys. Growth 291, 472-478 (2006).
    [CrossRef]
  15. S. R. Bowman, S. K. Searles, N. W. Jenkins, S. B. Qadri, E. F. Skelton, and J. Ganem, "New mid-IR laser based on an erbium activated low phonon energy crystal," presented at the Conference on Lasers and Electro-Optics, Baltimore, MD, 11 May 2001.
  16. J. Fernandez, A. J. Garcia-Adeva, and R. Balda, "Anti-Stokes Laser Cooling in Bulk Erbium-Doped Materials," Phys. Rev. Lett. 97, 033001 (2006).
    [CrossRef] [PubMed]
  17. R. S. Quimby, N. J. Condon, S. P. O’Connor, S. Biswal, and S. R. Bowman, "Upconversion and excited-state absorption in the lower levels of Er:KPb2Cl5," Opt. Mater. 30, 827-834 (2008).
    [CrossRef]
  18. O. L. Antipov, D. V. Bredikhin, O. N. Eremeykin, A. P. Savikin, E. V. Ivankin, and A. V. Sukhadolau, "Electronic mechanism for refractive-index changes in intensively pumped Yb:YAG laser crystals," Opt. Lett. 31, 763-765 (2006).
    [CrossRef] [PubMed]
  19. S. Biswal, S. P. O’Connor, and S. R. Bowman, "Nonradiative losses in Yb:KGd(WO4)2 and Yb:Y3Al5O12," App. Phys. Lett. 89, 091911 (2006).
    [CrossRef]
  20. N. W. Jenkins, S. R. Bowman, S. O’Connor, S. K. Searles, and J. Ganem, "Spectroscopic characterization of Er-doped KPb2Cl5, laser crystals," Optical Materials 22, 311-320 (2003).
    [CrossRef]
  21. C. E. Mungan and T. R. Gosnell, "Laser cooling of solids," Adv. At. Mol. Opt. Phys. 40, 161-228 (1999).

2008 (1)

R. S. Quimby, N. J. Condon, S. P. O’Connor, S. Biswal, and S. R. Bowman, "Upconversion and excited-state absorption in the lower levels of Er:KPb2Cl5," Opt. Mater. 30, 827-834 (2008).
[CrossRef]

2007 (1)

2006 (6)

N. J. Condon, S. O’Connor, and S. R. Bowman; "Growth and characterization of single-crystal Er3+:KPb2Cl5 as a mid-infrared laser material," J. Crys. Growth 291, 472-478 (2006).
[CrossRef]

J. Fernandez, A. J. Garcia-Adeva, and R. Balda, "Anti-Stokes Laser Cooling in Bulk Erbium-Doped Materials," Phys. Rev. Lett. 97, 033001 (2006).
[CrossRef] [PubMed]

D. Y. Shen, J. K. Sahu, and W. A. Clarkson, "Highly efficient in-band pumped Er:YAG laser with 60 W of output at 1645 nm," Opt. Lett. 31, 754-756 (2006).
[CrossRef] [PubMed]

K. Spariosu, V. Levya, R. A. Reeder, and M. J. Klotz, "Efficient Er:YAG Laser Operating at 1645 and 1617 nm," IEEE J. Quantum Electron. 42, 182-186 (2006).
[CrossRef]

O. L. Antipov, D. V. Bredikhin, O. N. Eremeykin, A. P. Savikin, E. V. Ivankin, and A. V. Sukhadolau, "Electronic mechanism for refractive-index changes in intensively pumped Yb:YAG laser crystals," Opt. Lett. 31, 763-765 (2006).
[CrossRef] [PubMed]

S. Biswal, S. P. O’Connor, and S. R. Bowman, "Nonradiative losses in Yb:KGd(WO4)2 and Yb:Y3Al5O12," App. Phys. Lett. 89, 091911 (2006).
[CrossRef]

2005 (2)

S. R. Bowman, S. P. O’Connor, and S. Biswal, "Ytterbium Laser With Reduced Thermal Loading," IEEE J. Quantum Electron. 41, 1510-1517 (2005).
[CrossRef]

D. Garbuzov, I. Kudryashov, and M. Dubinskii, "110 W (0.9 J) pulsed power from resonantly diode-laser-pumped 1.6-μm Er:YAG laser," Appl. Phys. Lett. 87, 121101 (2005).
[CrossRef]

2003 (1)

N. W. Jenkins, S. R. Bowman, S. O’Connor, S. K. Searles, and J. Ganem, "Spectroscopic characterization of Er-doped KPb2Cl5, laser crystals," Optical Materials 22, 311-320 (2003).
[CrossRef]

2001 (1)

R. I. Epstein, J. J. Brown, B. C. Edwards, and A. Gibbs, "Measurements of optical refrigeration in ytterbium-doped crystals," J. Appl. Phys. 90, 4815-4819 (2001)
[CrossRef]

2000 (2)

C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, "Observation of Anti-Stokes Fluorescence Cooling in Thulium-Doped Glass," Phys. Rev. Lett. 85, 3600-3603 (2000).
[CrossRef] [PubMed]

S. R. Bowman and C. E. Mungan, "New materials for optical cooling," Appl. Phys. B 71, 807-811 (2000).

1999 (2)

S. R. Bowman, "Lasers Without Internal Heat Generation," IEEE J. Quantum Electron. 35, 115-122 (1999).
[CrossRef]

C. E. Mungan and T. R. Gosnell, "Laser cooling of solids," Adv. At. Mol. Opt. Phys. 40, 161-228 (1999).

1995 (1)

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C..E. Mungan, "Observation of laser-induced fluorescent cooling of a solid," Nature 377, 500-503 (1995).
[CrossRef]

1981 (1)

N. Djeu and W. T. Whitney, "Laser cooling by spontaneous anti-Stokes scattering," Phys. Rev. Lett. 46, 236-239 (1981).
[CrossRef]

1929 (1)

P. Pringsheim, "Zwei Bemerkungen über den Unterschied von Lumineszenz- und Temperaturstrahlung.," Z. Phys. 57, 739-746 (1929).
[CrossRef]

Anderson, J. E.

C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, "Observation of Anti-Stokes Fluorescence Cooling in Thulium-Doped Glass," Phys. Rev. Lett. 85, 3600-3603 (2000).
[CrossRef] [PubMed]

Antipov, O. L.

Balda, R.

J. Fernandez, A. J. Garcia-Adeva, and R. Balda, "Anti-Stokes Laser Cooling in Bulk Erbium-Doped Materials," Phys. Rev. Lett. 97, 033001 (2006).
[CrossRef] [PubMed]

Biswal, S.

R. S. Quimby, N. J. Condon, S. P. O’Connor, S. Biswal, and S. R. Bowman, "Upconversion and excited-state absorption in the lower levels of Er:KPb2Cl5," Opt. Mater. 30, 827-834 (2008).
[CrossRef]

S. Biswal, S. P. O’Connor, and S. R. Bowman, "Nonradiative losses in Yb:KGd(WO4)2 and Yb:Y3Al5O12," App. Phys. Lett. 89, 091911 (2006).
[CrossRef]

S. R. Bowman, S. P. O’Connor, and S. Biswal, "Ytterbium Laser With Reduced Thermal Loading," IEEE J. Quantum Electron. 41, 1510-1517 (2005).
[CrossRef]

Bowman, S. R.

R. S. Quimby, N. J. Condon, S. P. O’Connor, S. Biswal, and S. R. Bowman, "Upconversion and excited-state absorption in the lower levels of Er:KPb2Cl5," Opt. Mater. 30, 827-834 (2008).
[CrossRef]

N. J. Condon, S. O’Connor, and S. R. Bowman; "Growth and characterization of single-crystal Er3+:KPb2Cl5 as a mid-infrared laser material," J. Crys. Growth 291, 472-478 (2006).
[CrossRef]

S. Biswal, S. P. O’Connor, and S. R. Bowman, "Nonradiative losses in Yb:KGd(WO4)2 and Yb:Y3Al5O12," App. Phys. Lett. 89, 091911 (2006).
[CrossRef]

S. R. Bowman, S. P. O’Connor, and S. Biswal, "Ytterbium Laser With Reduced Thermal Loading," IEEE J. Quantum Electron. 41, 1510-1517 (2005).
[CrossRef]

N. W. Jenkins, S. R. Bowman, S. O’Connor, S. K. Searles, and J. Ganem, "Spectroscopic characterization of Er-doped KPb2Cl5, laser crystals," Optical Materials 22, 311-320 (2003).
[CrossRef]

S. R. Bowman and C. E. Mungan, "New materials for optical cooling," Appl. Phys. B 71, 807-811 (2000).

S. R. Bowman, "Lasers Without Internal Heat Generation," IEEE J. Quantum Electron. 35, 115-122 (1999).
[CrossRef]

Bredikhin, D. V.

Brown, J. J.

R. I. Epstein, J. J. Brown, B. C. Edwards, and A. Gibbs, "Measurements of optical refrigeration in ytterbium-doped crystals," J. Appl. Phys. 90, 4815-4819 (2001)
[CrossRef]

Buchwald, M. I.

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C..E. Mungan, "Observation of laser-induced fluorescent cooling of a solid," Nature 377, 500-503 (1995).
[CrossRef]

Clarkson, W. A.

Condon, N. J.

R. S. Quimby, N. J. Condon, S. P. O’Connor, S. Biswal, and S. R. Bowman, "Upconversion and excited-state absorption in the lower levels of Er:KPb2Cl5," Opt. Mater. 30, 827-834 (2008).
[CrossRef]

N. J. Condon, S. O’Connor, and S. R. Bowman; "Growth and characterization of single-crystal Er3+:KPb2Cl5 as a mid-infrared laser material," J. Crys. Growth 291, 472-478 (2006).
[CrossRef]

Djeu, N.

N. Djeu and W. T. Whitney, "Laser cooling by spontaneous anti-Stokes scattering," Phys. Rev. Lett. 46, 236-239 (1981).
[CrossRef]

Dubinskii, M.

J. O. White, M. Dubinskii, L. D. Merkle, I. Kudryashov, and D. Garbuzov, "Resonant pumping and upconversion in 1.6 μm Er3+ lasers," J. Opt. Soc. Am. B 24, 2454-2460 (2007).
[CrossRef]

D. Garbuzov, I. Kudryashov, and M. Dubinskii, "110 W (0.9 J) pulsed power from resonantly diode-laser-pumped 1.6-μm Er:YAG laser," Appl. Phys. Lett. 87, 121101 (2005).
[CrossRef]

Edwards, B. C.

R. I. Epstein, J. J. Brown, B. C. Edwards, and A. Gibbs, "Measurements of optical refrigeration in ytterbium-doped crystals," J. Appl. Phys. 90, 4815-4819 (2001)
[CrossRef]

C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, "Observation of Anti-Stokes Fluorescence Cooling in Thulium-Doped Glass," Phys. Rev. Lett. 85, 3600-3603 (2000).
[CrossRef] [PubMed]

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C..E. Mungan, "Observation of laser-induced fluorescent cooling of a solid," Nature 377, 500-503 (1995).
[CrossRef]

Epstein, R. I.

R. I. Epstein, J. J. Brown, B. C. Edwards, and A. Gibbs, "Measurements of optical refrigeration in ytterbium-doped crystals," J. Appl. Phys. 90, 4815-4819 (2001)
[CrossRef]

C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, "Observation of Anti-Stokes Fluorescence Cooling in Thulium-Doped Glass," Phys. Rev. Lett. 85, 3600-3603 (2000).
[CrossRef] [PubMed]

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C..E. Mungan, "Observation of laser-induced fluorescent cooling of a solid," Nature 377, 500-503 (1995).
[CrossRef]

Eremeykin, O. N.

Fernandez, J.

J. Fernandez, A. J. Garcia-Adeva, and R. Balda, "Anti-Stokes Laser Cooling in Bulk Erbium-Doped Materials," Phys. Rev. Lett. 97, 033001 (2006).
[CrossRef] [PubMed]

Ganem, J.

N. W. Jenkins, S. R. Bowman, S. O’Connor, S. K. Searles, and J. Ganem, "Spectroscopic characterization of Er-doped KPb2Cl5, laser crystals," Optical Materials 22, 311-320 (2003).
[CrossRef]

Garbuzov, D.

J. O. White, M. Dubinskii, L. D. Merkle, I. Kudryashov, and D. Garbuzov, "Resonant pumping and upconversion in 1.6 μm Er3+ lasers," J. Opt. Soc. Am. B 24, 2454-2460 (2007).
[CrossRef]

D. Garbuzov, I. Kudryashov, and M. Dubinskii, "110 W (0.9 J) pulsed power from resonantly diode-laser-pumped 1.6-μm Er:YAG laser," Appl. Phys. Lett. 87, 121101 (2005).
[CrossRef]

Garcia-Adeva, A. J.

J. Fernandez, A. J. Garcia-Adeva, and R. Balda, "Anti-Stokes Laser Cooling in Bulk Erbium-Doped Materials," Phys. Rev. Lett. 97, 033001 (2006).
[CrossRef] [PubMed]

Gibbs, A.

R. I. Epstein, J. J. Brown, B. C. Edwards, and A. Gibbs, "Measurements of optical refrigeration in ytterbium-doped crystals," J. Appl. Phys. 90, 4815-4819 (2001)
[CrossRef]

Gosnell, T. R.

C. E. Mungan and T. R. Gosnell, "Laser cooling of solids," Adv. At. Mol. Opt. Phys. 40, 161-228 (1999).

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C..E. Mungan, "Observation of laser-induced fluorescent cooling of a solid," Nature 377, 500-503 (1995).
[CrossRef]

Hoyt, C. W.

C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, "Observation of Anti-Stokes Fluorescence Cooling in Thulium-Doped Glass," Phys. Rev. Lett. 85, 3600-3603 (2000).
[CrossRef] [PubMed]

Ivankin, E. V.

Jenkins, N. W.

N. W. Jenkins, S. R. Bowman, S. O’Connor, S. K. Searles, and J. Ganem, "Spectroscopic characterization of Er-doped KPb2Cl5, laser crystals," Optical Materials 22, 311-320 (2003).
[CrossRef]

Klotz, M. J.

K. Spariosu, V. Levya, R. A. Reeder, and M. J. Klotz, "Efficient Er:YAG Laser Operating at 1645 and 1617 nm," IEEE J. Quantum Electron. 42, 182-186 (2006).
[CrossRef]

Kudryashov, I.

J. O. White, M. Dubinskii, L. D. Merkle, I. Kudryashov, and D. Garbuzov, "Resonant pumping and upconversion in 1.6 μm Er3+ lasers," J. Opt. Soc. Am. B 24, 2454-2460 (2007).
[CrossRef]

D. Garbuzov, I. Kudryashov, and M. Dubinskii, "110 W (0.9 J) pulsed power from resonantly diode-laser-pumped 1.6-μm Er:YAG laser," Appl. Phys. Lett. 87, 121101 (2005).
[CrossRef]

Levya, V.

K. Spariosu, V. Levya, R. A. Reeder, and M. J. Klotz, "Efficient Er:YAG Laser Operating at 1645 and 1617 nm," IEEE J. Quantum Electron. 42, 182-186 (2006).
[CrossRef]

Merkle, L. D.

Mungan, C. E.

S. R. Bowman and C. E. Mungan, "New materials for optical cooling," Appl. Phys. B 71, 807-811 (2000).

C. E. Mungan and T. R. Gosnell, "Laser cooling of solids," Adv. At. Mol. Opt. Phys. 40, 161-228 (1999).

Mungan, C..E.

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C..E. Mungan, "Observation of laser-induced fluorescent cooling of a solid," Nature 377, 500-503 (1995).
[CrossRef]

O’Connor, S.

N. J. Condon, S. O’Connor, and S. R. Bowman; "Growth and characterization of single-crystal Er3+:KPb2Cl5 as a mid-infrared laser material," J. Crys. Growth 291, 472-478 (2006).
[CrossRef]

N. W. Jenkins, S. R. Bowman, S. O’Connor, S. K. Searles, and J. Ganem, "Spectroscopic characterization of Er-doped KPb2Cl5, laser crystals," Optical Materials 22, 311-320 (2003).
[CrossRef]

O’Connor, S. P.

R. S. Quimby, N. J. Condon, S. P. O’Connor, S. Biswal, and S. R. Bowman, "Upconversion and excited-state absorption in the lower levels of Er:KPb2Cl5," Opt. Mater. 30, 827-834 (2008).
[CrossRef]

S. Biswal, S. P. O’Connor, and S. R. Bowman, "Nonradiative losses in Yb:KGd(WO4)2 and Yb:Y3Al5O12," App. Phys. Lett. 89, 091911 (2006).
[CrossRef]

S. R. Bowman, S. P. O’Connor, and S. Biswal, "Ytterbium Laser With Reduced Thermal Loading," IEEE J. Quantum Electron. 41, 1510-1517 (2005).
[CrossRef]

Pringsheim, P.

P. Pringsheim, "Zwei Bemerkungen über den Unterschied von Lumineszenz- und Temperaturstrahlung.," Z. Phys. 57, 739-746 (1929).
[CrossRef]

Quimby, R. S.

R. S. Quimby, N. J. Condon, S. P. O’Connor, S. Biswal, and S. R. Bowman, "Upconversion and excited-state absorption in the lower levels of Er:KPb2Cl5," Opt. Mater. 30, 827-834 (2008).
[CrossRef]

Reeder, R. A.

K. Spariosu, V. Levya, R. A. Reeder, and M. J. Klotz, "Efficient Er:YAG Laser Operating at 1645 and 1617 nm," IEEE J. Quantum Electron. 42, 182-186 (2006).
[CrossRef]

Sahu, J. K.

Savikin, A. P.

Searles, S. K.

N. W. Jenkins, S. R. Bowman, S. O’Connor, S. K. Searles, and J. Ganem, "Spectroscopic characterization of Er-doped KPb2Cl5, laser crystals," Optical Materials 22, 311-320 (2003).
[CrossRef]

Sheik-Bahae, M.

C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, "Observation of Anti-Stokes Fluorescence Cooling in Thulium-Doped Glass," Phys. Rev. Lett. 85, 3600-3603 (2000).
[CrossRef] [PubMed]

Shen, D. Y.

Spariosu, K.

K. Spariosu, V. Levya, R. A. Reeder, and M. J. Klotz, "Efficient Er:YAG Laser Operating at 1645 and 1617 nm," IEEE J. Quantum Electron. 42, 182-186 (2006).
[CrossRef]

Sukhadolau, A. V.

White, J. O.

Whitney, W. T.

N. Djeu and W. T. Whitney, "Laser cooling by spontaneous anti-Stokes scattering," Phys. Rev. Lett. 46, 236-239 (1981).
[CrossRef]

Adv. At. Mol. Opt. Phys. (1)

C. E. Mungan and T. R. Gosnell, "Laser cooling of solids," Adv. At. Mol. Opt. Phys. 40, 161-228 (1999).

App. Phys. Lett. (1)

S. Biswal, S. P. O’Connor, and S. R. Bowman, "Nonradiative losses in Yb:KGd(WO4)2 and Yb:Y3Al5O12," App. Phys. Lett. 89, 091911 (2006).
[CrossRef]

Appl. Phys. B (1)

S. R. Bowman and C. E. Mungan, "New materials for optical cooling," Appl. Phys. B 71, 807-811 (2000).

Appl. Phys. Lett. (1)

D. Garbuzov, I. Kudryashov, and M. Dubinskii, "110 W (0.9 J) pulsed power from resonantly diode-laser-pumped 1.6-μm Er:YAG laser," Appl. Phys. Lett. 87, 121101 (2005).
[CrossRef]

IEEE J. Quantum Electron. (3)

K. Spariosu, V. Levya, R. A. Reeder, and M. J. Klotz, "Efficient Er:YAG Laser Operating at 1645 and 1617 nm," IEEE J. Quantum Electron. 42, 182-186 (2006).
[CrossRef]

S. R. Bowman, "Lasers Without Internal Heat Generation," IEEE J. Quantum Electron. 35, 115-122 (1999).
[CrossRef]

S. R. Bowman, S. P. O’Connor, and S. Biswal, "Ytterbium Laser With Reduced Thermal Loading," IEEE J. Quantum Electron. 41, 1510-1517 (2005).
[CrossRef]

J. Appl. Phys. (1)

R. I. Epstein, J. J. Brown, B. C. Edwards, and A. Gibbs, "Measurements of optical refrigeration in ytterbium-doped crystals," J. Appl. Phys. 90, 4815-4819 (2001)
[CrossRef]

J. Crys. Growth (1)

N. J. Condon, S. O’Connor, and S. R. Bowman; "Growth and characterization of single-crystal Er3+:KPb2Cl5 as a mid-infrared laser material," J. Crys. Growth 291, 472-478 (2006).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nature (1)

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C..E. Mungan, "Observation of laser-induced fluorescent cooling of a solid," Nature 377, 500-503 (1995).
[CrossRef]

Opt. Lett. (2)

Opt. Mater. (1)

R. S. Quimby, N. J. Condon, S. P. O’Connor, S. Biswal, and S. R. Bowman, "Upconversion and excited-state absorption in the lower levels of Er:KPb2Cl5," Opt. Mater. 30, 827-834 (2008).
[CrossRef]

Optical Materials (1)

N. W. Jenkins, S. R. Bowman, S. O’Connor, S. K. Searles, and J. Ganem, "Spectroscopic characterization of Er-doped KPb2Cl5, laser crystals," Optical Materials 22, 311-320 (2003).
[CrossRef]

Phys. Rev. Lett. (3)

J. Fernandez, A. J. Garcia-Adeva, and R. Balda, "Anti-Stokes Laser Cooling in Bulk Erbium-Doped Materials," Phys. Rev. Lett. 97, 033001 (2006).
[CrossRef] [PubMed]

C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, "Observation of Anti-Stokes Fluorescence Cooling in Thulium-Doped Glass," Phys. Rev. Lett. 85, 3600-3603 (2000).
[CrossRef] [PubMed]

N. Djeu and W. T. Whitney, "Laser cooling by spontaneous anti-Stokes scattering," Phys. Rev. Lett. 46, 236-239 (1981).
[CrossRef]

Z. Phys. (1)

P. Pringsheim, "Zwei Bemerkungen über den Unterschied von Lumineszenz- und Temperaturstrahlung.," Z. Phys. 57, 739-746 (1929).
[CrossRef]

Other (2)

C. E. Mungan, M. I. Buchwald, and G. L. Mills, "All-Solid-State Optical Coolers: History, Status, and Potential," in Cryocoolers 14, S.D. Miller and R.G. Ross, Jr, eds. (International Cryocooler Conference, Inc., 2007) 539-548.

S. R. Bowman, S. K. Searles, N. W. Jenkins, S. B. Qadri, E. F. Skelton, and J. Ganem, "New mid-IR laser based on an erbium activated low phonon energy crystal," presented at the Conference on Lasers and Electro-Optics, Baltimore, MD, 11 May 2001.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Absorption (parallel to [0 1 0]) and emission (averaged over all orientations) spectra of Er:KPb2Cl5. The five dotted vertical lines denote the five pump diode center wavelengths used in the experiment, while solid vertical line denotes the fluorescence line center, λF = 1539.8 nm.

Fig. 2.
Fig. 2.

The vacuum chamber with the sample and sample mount. The chamber itself is aluminum, with calcium fluoride windows on all four sides. The sample mount is made from two pairs of crossed glass cover slips mounted on a polycarbonate block to provide minimal thermal contact with the sample. The pump beam enters from the left and exits to the right.

Fig. 3.
Fig. 3.

Temperature transients, corrected for chamber temperature drift, following shutoff of the pump lasers. Every thirtieth data point is plotted, and each transient is fit to an exponential. The two shorter-wavelength curves show evidence of heating, while the two longer-wavelength curves show cooling.

Fig. 4.
Fig. 4.

Fractional heat load as a function of pump diode wavelength. The three diagonal lines are the expected lines for nonradiative contributions, ξNR , of 0%, 1%, and 2%.

Tables (1)

Tables Icon

Table 1. Temperature transient fitting results and the resulting calculated heat loads.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Δ T ( t ) = Δ T eq exp ( 1 τ )
ξ = m c p Δ T eq τ P abs
ξ ( λ P ) = ξ QD ( λ P ) + ξ NR ( λ P )
ξ NR = 1 η
ξ QD ( λ P ) = ηE ( λ P ) ηE ( λ F ) E ( λ P ) = η ( 1 λ P λ F )
ξ ( λ 0 ) = 0 λ 0 = λ F η
ξ ( λ P ) = 1 λ p λ 0

Metrics